1
|
Pang S, Ma L, Yang Y, Chen H, Lu L, Yang S, Baeyens J, Si Z, Qin P. A High-Quality Mixed Matrix Membrane with Nanosheets Assembled and Uniformly Dispersed Fillers for Ethanol Recovery. Macromol Rapid Commun 2024; 45:e2400384. [PMID: 39096156 DOI: 10.1002/marc.202400384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/12/2024] [Indexed: 08/05/2024]
Abstract
A high-quality filler within mixed matrix membranes, coupled with uniform dispersity, endows a high-efficiency transfer pathway for the significant improvement on separation performance. In this work, a zeolite-typed MCM-22 filler is reported that is doped into polydimethylsiloxane (PDMS) matrix by ultrafast photo-curing technique. The unique structure of nanosheets assembly layer by layer endows the continuous transfer channels towards penetrate molecules because of the inter-connective nanosheets within PDMS matrix. Furthermore, an ultrafast freezing effect produced by fast photo-curing is used to overcome the key issue, namely filler aggregation, and further eliminates defects. When pervaporative separating a 5 wt% ethanol aqueous solution, the resulting MCM-22/PDMS membrane exhibits an excellent membrane flux of 1486 g m-2 h-1 with an ethanol separation factor of 10.2. Considering a biobased route for ethanol production, the gas stripping and vapor permeation through this membrane also shows a great enrichment performance, and the concentrated ethanol is up to 65.6 wt%. Overall, this MCM-22/PDMS membrane shows a high separation ability for ethanol benefited from a unique structure deign of fillers and ultrafast curing speed of PDMS, and has a great potential for bioethanol separation from cellulosic ethanol fermentation.
Collapse
Affiliation(s)
- Siyu Pang
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Liang Ma
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, SINOPEC Shanghai Research Institute of Petrochemical Technology Co., Ltd., Shanghai, 201208, P. R. China
| | - Yongfu Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan, 430062, P. R. China
| | - Huidong Chen
- High-Tech Reacher Institute, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Lu Lu
- Paris Curie Engineer School, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan, 430062, P. R. China
| | - Jan Baeyens
- Department of Chemical Engineering, Sint-Katelijne-Waver, Ku Leuven, 2860, Belgium
| | - Zhihao Si
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Peiyong Qin
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
2
|
Li P, Wang M, Di H, Du Q, Zhang Y, Tan X, Xu P, Gao C, Jiang T, Lü C, Ma C. Efficient production of 1,2,4-butanetriol from corn cob hydrolysate by metabolically engineered Escherichia coli. Microb Cell Fact 2024; 23:49. [PMID: 38347493 PMCID: PMC10863244 DOI: 10.1186/s12934-024-02317-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 01/25/2024] [Indexed: 02/15/2024] Open
Abstract
Corn cob is a major waste mass-produced in corn agriculture. Corn cob hydrolysate containing xylose, arabinose, and glucose is the hydrolysis product of corn cob. Herein, a recombinant Escherichia coli strain BT-10 was constructed to transform corn cob hydrolysate into 1,2,4-butanetriol, a platform substance with diversified applications. To eliminate catabolite repression and enhance NADPH supply for alcohol dehydrogenase YqhD catalyzed 1,2,4-butanetriol generation, ptsG encoding glucose transporter EIICBGlc and pgi encoding phosphoglucose isomerase were deleted. With four heterologous enzymes including xylose dehydrogenase, xylonolactonase, xylonate dehydratase, α-ketoacid decarboxylase and endogenous YqhD, E. coli BT-10 can produce 36.63 g/L 1,2,4-butanetriol with a productivity of 1.14 g/[L·h] using xylose as substrate. When corn cob hydrolysate was used as the substrate, 43.4 g/L 1,2,4-butanetriol was generated with a productivity of 1.09 g/[L·h] and a yield of 0.9 mol/mol. With its desirable characteristics, E. coli BT-10 is a promising strain for commercial 1,2,4-butanetriol production.
Collapse
Affiliation(s)
- Ping Li
- State Key Laboratory of Microbial Technology, Shandong University, NO.72 Binhai Road, Qingdao, 266237, China
- Bloomage Biotechnology Corporation Limited, 678 Tianchen Street, Jinan, 250101, China
| | - Mengjiao Wang
- State Key Laboratory of Microbial Technology, Shandong University, NO.72 Binhai Road, Qingdao, 266237, China
| | - Haiyan Di
- State Key Laboratory of Microbial Technology, Shandong University, NO.72 Binhai Road, Qingdao, 266237, China
| | - Qihang Du
- Shandong Institute of Metrology, Jinan, 250014, China
| | - Yipeng Zhang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Xiaoxu Tan
- State Key Laboratory of Microbial Technology, Shandong University, NO.72 Binhai Road, Qingdao, 266237, China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chao Gao
- State Key Laboratory of Microbial Technology, Shandong University, NO.72 Binhai Road, Qingdao, 266237, China
| | - Tianyi Jiang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Chuanjuan Lü
- State Key Laboratory of Microbial Technology, Shandong University, NO.72 Binhai Road, Qingdao, 266237, China.
| | - Cuiqing Ma
- State Key Laboratory of Microbial Technology, Shandong University, NO.72 Binhai Road, Qingdao, 266237, China.
| |
Collapse
|
3
|
Gallego-García M, Susmozas A, Negro MJ, Moreno AD. Challenges and prospects of yeast-based microbial oil production within a biorefinery concept. Microb Cell Fact 2023; 22:246. [PMID: 38053171 DOI: 10.1186/s12934-023-02254-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/17/2023] [Indexed: 12/07/2023] Open
Abstract
Biodiesel, unlike to its fossil-based homologue (diesel), is renewable. Its use contributes to greater sustainability in the energy sector, mainly by reducing greenhouse gas emissions. Current biodiesel production relies on plant- and animal-related feedstocks, resulting in high final costs to the prices of those raw materials. In addition, the production of those materials competes for arable land and has provoked a heated debate involving their use food vs. fuel. As an alternative, single-cell oils (SCOs) obtained from oleaginous microorganisms are attractive sources as a biofuel precursor due to their high lipid content, and composition similar to vegetable oils and animal fats. To make SCOs competitive from an economic point of view, the use of readily available low-cost substrates becomes essential. This work reviews the most recent advances in microbial oil production from non-synthetic sugar-rich media, particularly sugars from lignocellulosic wastes, highlighting the main challenges and prospects for deploying this technology fully in the framework of a Biorefinery concept.
Collapse
Affiliation(s)
- María Gallego-García
- Advanced Biofuels and Bioproducts Unit, Department of Energy, Research Center for Energy, Environment and Technology (CIEMAT), Avda. Complutense 40, Madrid, 28040, Spain
- Department of Biomedicine and Biotechnology, University of Alcalá de Henares, Alcalá de Henares, Spain
| | - Ana Susmozas
- Advanced Biofuels and Bioproducts Unit, Department of Energy, Research Center for Energy, Environment and Technology (CIEMAT), Avda. Complutense 40, Madrid, 28040, Spain
| | - María José Negro
- Advanced Biofuels and Bioproducts Unit, Department of Energy, Research Center for Energy, Environment and Technology (CIEMAT), Avda. Complutense 40, Madrid, 28040, Spain.
| | - Antonio D Moreno
- Advanced Biofuels and Bioproducts Unit, Department of Energy, Research Center for Energy, Environment and Technology (CIEMAT), Avda. Complutense 40, Madrid, 28040, Spain
| |
Collapse
|
4
|
Passoth V, Brandenburg J, Chmielarz M, Martín-Hernández GC, Nagaraj Y, Müller B, Blomqvist J. Oleaginous yeasts for biochemicals, biofuels and food from lignocellulose-hydrolysate and crude glycerol. Yeast 2023; 40:290-302. [PMID: 36597618 DOI: 10.1002/yea.3838] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/21/2022] [Accepted: 12/31/2022] [Indexed: 01/05/2023] Open
Abstract
Microbial lipids produced from lignocellulose and crude glycerol (CG) can serve as sustainable alternatives to vegetable oils, whose production is, in many cases, accompanied by monocultures, land use changes or rain forest clearings. Our projects aim to understand the physiology of microbial lipid production by oleaginous yeasts, optimise the production and establish novel applications of microbial lipid compounds. We have established methods for fermentation and intracellular lipid quantification. Following the kinetics of lipid accumulation in different strains, we found high variability in lipid formation even between very closely related oleaginous yeast strains on both, wheat straw hydrolysate and CG. For example, on complete wheat straw hydrolysate, we saw that one Rhodotorula glutinis strain, when starting assimilating D-xylosealso assimilated the accumulated lipids, while a Rhodotorula babjevae strain could accumulate lipids on D-xylose. Two strains (Rhodotorula toruloides CBS 14 and R. glutinis CBS 3044) were found to be the best out of 27 tested to accumulate lipids on CG. Interestingly, the presence of hemicellulose hydrolysate stimulated glycerol assimilation in both strains. Apart from microbial oil, R. toruloides also produces carotenoids. The first attempts of extraction using the classical acetone-based method showed that β-carotene is the major carotenoid. However, there are indications that there are also substantial amounts of torulene and torularhodin, which have a very high potential as antioxidants.
Collapse
Affiliation(s)
- Volkmar Passoth
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jule Brandenburg
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Klinisk Mikrobiologi Falun, Falun Lasarett, Falun, Sweden
| | - Mikołaj Chmielarz
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | - Yashaswini Nagaraj
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Bettina Müller
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Johanna Blomqvist
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
5
|
Sun H, Gao Z, Zhang L, Wang X, Gao M, Wang Q. A comprehensive review on microbial lipid production from wastes: research updates and tendencies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:79654-79675. [PMID: 37328718 DOI: 10.1007/s11356-023-28123-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 06/01/2023] [Indexed: 06/18/2023]
Abstract
Microbial lipids have recently attracted attention as an intriguing alternative for the biodiesel and oleochemical industries to achieve sustainable energy generation. However, large-scale lipid production remains limited due to the high processing costs. As multiple variables affect lipid synthesis, an up-to-date overview that will benefit researchers studying microbial lipids is necessary. In this review, the most studied keywords from bibliometric studies are first reviewed. Based on the results, the hot topics in the field were identified to be associated with microbiology studies that aim to enhance lipid synthesis and reduce production costs, focusing on the biological and metabolic engineering involved. The research updates and tendencies of microbial lipids were then analyzed in depth. In particular, feedstock and associated microbes, as well as feedstock and corresponding products, were analyzed in detail. Strategies for lipid biomass enhancement were also discussed, including feedstock adoption, value-added product synthesis, selection of oleaginous microbes, cultivation mode optimization, and metabolic engineering strategies. Finally, the environmental implications of microbial lipid production and possible research directions were presented.
Collapse
Affiliation(s)
- Haishu Sun
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, 528399, China
| | - Zhen Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Lirong Zhang
- Tianjin College, University of Science and Technology, Beijing, Tianjin, 301811, China
| | - Xiaona Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, 528399, China.
| | - Ming Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qunhui Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Tianjin College, University of Science and Technology, Beijing, Tianjin, 301811, China
| |
Collapse
|
6
|
He C, Zhang X, Zhang Z, Wang C, Wang D, Wei G. Whole-crop biorefinery of corn biomass for pullulan production by Aureobasidium pullulans. BIORESOURCE TECHNOLOGY 2023; 370:128517. [PMID: 36565822 DOI: 10.1016/j.biortech.2022.128517] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
In the present study, corn starch, cob, and straw were biorefined and used as feedstocks for the production of pullulan. The titer and molecular weight (Mw) of pullulan significantly decreased when corn cob and straw hydrolysates were utilized by the parental strain Aureobasidium pullulans CCTCC M 2012259 (PS). Based on adaptive laboratory evolution of PS, an evolved strain A. pullulans EV6 with strong adaptability to the whole corn biomass hydrolysate and high capability of pullulan biosynthesis was screened. Batch pullulan fermentation results indicated that EV6 produced an increased titer of pullulan with a higher Mw than PS. The underlying reasons for these increases were revealed by assaying key enzymes activities and measuring intracellular uridine diphosphate glucose levels. Subsequently, whole-crop biorefinery of corn biomass was conducted, and the results confirmed that whole corn crop has immense potential for efficient pullulan production.
Collapse
Affiliation(s)
- Chaoyong He
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, PR China
| | - Xuehan Zhang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, PR China
| | - Zhen Zhang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, PR China
| | - Chonglong Wang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, PR China
| | - Dahui Wang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, PR China
| | - Gongyuan Wei
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
7
|
Si Z, Wu H, Qin P, Van der Bruggen B. Polydimethylsiloxane based membranes for biofuels pervaporation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
8
|
Review of alternative technologies for acetone-butanol-ethanol separation: Principles, state-of-the-art, and development trends. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Sundaramahalingam MA, Sivashanmugam P, Rajeshbanu J, Ashokkumar M. A review on contemporary approaches in enhancing the innate lipid content of yeast cell. CHEMOSPHERE 2022; 293:133616. [PMID: 35033523 DOI: 10.1016/j.chemosphere.2022.133616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
For the past few decades, industrialization has made a huge environmental hazard to the world with its waste. The approach of waste to wealth in the recent era has made many Eco-economical suggestions for the industries. The valuable products in biorefinery aspects of the eco-economical suggestions include; energy products, high-value drugs and novel materials. Bio-lipids are found to be the major influencing eco-economical products in the process. Production of bio-lipid from microbial sources has paved the way for future research on lipid-bioproducts. The yeast cell is a unique organism with a large unicellular structure capable of accumulating a high amount of lipids. It constitutes 90% of neutral lipids. Various strategies enhance the lipid profile of yeast cells: usage of oleaginous yeast, usage of low cost (or) alternative substrates, developing stress conditions in the growth medium, using genetically modified yeast, altering metabolic pathways of yeast and by using the symbiotic cultures of yeast with other microbes. The metabolic alterations of lipid pathways such as lipid biosynthesis, lipid elongation, lipid accumulation and lipid degradation have been a striking feature of research in lipid-based microbial work. The lipid-bioproducts have also made a strong footprint in the history of alternative energy products. It includes partial acyl glycerol, oleochemicals, phospholipids and biofuels. This report comprises the recent approaches carried out in the yeast cell for enhancing its lipid content. The limitations, challenges and future scope of individual strategies were also highlighted in this article.
Collapse
Affiliation(s)
- M A Sundaramahalingam
- Chemical and Biochemical Process Engineering Laboratory, Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, Tamil Nadu, India
| | - P Sivashanmugam
- Chemical and Biochemical Process Engineering Laboratory, Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, Tamil Nadu, India.
| | - J Rajeshbanu
- Department of Life Sciences, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamil Nadu, India
| | | |
Collapse
|
10
|
Li S, Luo Z, Wang W, Sun H, Xie J, Liang X. Catalytic fast pyrolysis of enzymatic hydrolysis lignin over Lewis-acid catalyst niobium pentoxide and mechanism study. BIORESOURCE TECHNOLOGY 2020; 316:123853. [PMID: 32731173 DOI: 10.1016/j.biortech.2020.123853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
Lewis-acid catalyst Nb2O5 is first applied in catalytic fast pyrolysis (CFP) of enzymatic hydrolysis lignin (EHL) to produce aromatic hydrocarbons (AHs) that can be used as alternative liquid fuels. The catalyst exhibits a good talent to convert lignin into AHs with quite little polycyclic aromatic hydrocarbons (PAHs) formation. The yield of AHs reaches 11.2 wt% and monocyclic aromatic hydrocarbons (MAHs) takes up 94% under the optimized condition (Catalyst to Lignin ratio 9:1, 650 °C). No coke is generated during the reactions. The reaction sequence is proposed and verified by model compound reactions. Furthermore, DFT calculations are performed to understand the mechanisms of limitation of PAHs or char/coke formation and the efficient deoxygenation ability over catalyst. Nb2O5 with Lewis acid sites is proved to be a promising catalyst for the production of AHs from lignin. This work provides a new idea on choice of catalysts for CFP of lignin in future.
Collapse
Affiliation(s)
- Simin Li
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, PR China
| | - Zhongyang Luo
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, PR China.
| | - Wenbo Wang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, PR China
| | - Haoran Sun
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, PR China
| | - Jiaqi Xie
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, PR China
| | - Xiaorui Liang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, PR China
| |
Collapse
|
11
|
Karamerou EE, Webb C. Cultivation modes for microbial oil production using oleaginous yeasts – A review. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.107322] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Liu J, Mu T, He W, He T, Lu L, Peng K, Huang X. Integration of coagulation, acid separation and struvite precipitation as fermentation medium conditioning methods to enhance microbial lipid production from dewatered sludge. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2019.100221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
13
|
Jia Q, Teng X, Yu S, Si Z, Li G, Zhou M, Cai D, Qin P, Chen B. Production of furfural from xylose and hemicelluloses using tin-loaded sulfonated diatomite as solid acid catalyst in biphasic system. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2019.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
14
|
Zhang X, Liu M, Zhang X, Tan T. Microbial lipid production and organic matters removal from cellulosic ethanol wastewater through coupling oleaginous yeasts and activated sludge biological method. BIORESOURCE TECHNOLOGY 2018; 267:395-400. [PMID: 30031278 DOI: 10.1016/j.biortech.2018.07.075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/10/2018] [Accepted: 07/14/2018] [Indexed: 06/08/2023]
Abstract
In this paper, a novel strategy for lipid production through coupling oleaginous yeasts and activated sludge biological methods by cultivation of Rhodotorula glutinis in cellulosic ethanol wastewater was studied. Under optimal conditions in wastewater medium (dilution ratio of 1:2 and glucose supplement of 40 g/L), the maximum biomass and lipid content as well as the lipid yield reached 11.31 g/L, 18.35% and 2.08 g/L, with the associated removal rates of COD, TOC, NH4+-N, TN and TP reaching 83.15%, 81.81%, 85.49%, 70.52% and 67.46%, respectively. Cellulosic ethanol wastewater treated by the anaerobic-aerobic biological process resulted in removal of COD, NH4+-N, TP and TN reaching 67.55%, 94.17%, 90.16% and 48.89%, respectively. The reused water was used to dilute medium of R. glutinis for microbial lipid production reaching 2.38 g/L and caused positive effects on the accumulation of biomass and lipid.
Collapse
Affiliation(s)
- Xueling Zhang
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Meng Liu
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Xu Zhang
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Tianwei Tan
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
15
|
Yang P, Wu Y, Zheng Z, Cao L, Zhu X, Mu D, Jiang S. CRISPR-Cas9 Approach Constructing Cellulase sestc-Engineered Saccharomyces cerevisiae for the Production of Orange Peel Ethanol. Front Microbiol 2018; 9:2436. [PMID: 30364071 PMCID: PMC6191481 DOI: 10.3389/fmicb.2018.02436] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 09/24/2018] [Indexed: 11/25/2022] Open
Abstract
The development of lignocellulosic bioethanol plays an important role in the substitution of petrochemical energy and high-value utilization of agricultural wastes. The safe and stable expression of cellulase gene sestc was achieved by applying the clustered regularly interspaced short palindromic repeats-Cas9 approach to the integration of sestc expression cassette containing Agaricus biporus glyceraldehyde-3-phosphate-dehydrogenase gene (gpd) promoter in the Saccharomyces cerevisiae chromosome. The target insertion site was found to be located in the S. cerevisiae hexokinase 2 by designing a gRNA expression vector. The recombinant SESTC protein exhibited a size of approximately 44 kDa in the engineered S. cerevisiae. By using orange peel as the fermentation substrate, the filter paper, endo-1,4-β-glucanase, exo-1,4-β-glucanase activities of the transformants were 1.06, 337.42, and 1.36 U/mL, which were 35.3-fold, 23.03-fold, and 17-fold higher than those from wild-type S. cerevisiae, respectively. After 6 h treatment, approximately 20 g/L glucose was obtained. Under anaerobic conditions the highest ethanol concentration reached 7.53 g/L after 48 h fermentation and was 37.7-fold higher than that of wild-type S. cerevisiae (0.2 g/L). The engineered strains may provide a valuable material for the development of lignocellulosic ethanol.
Collapse
Affiliation(s)
- Peizhou Yang
- College of Food and Biological Engineering, Anhui Key Laboratory of Intensive Processing of Agricultural Products, Hefei University of Technology, Hefei, China
| | | | | | | | | | | | | |
Collapse
|
16
|
Lamb CDC, Silva BMZD, de Souza D, Fornasier F, Riça LB, Schneider RDCDS. Bioethanol production from rice hull and evaluation of the final solid residue. CHEM ENG COMMUN 2018. [DOI: 10.1080/00986445.2017.1422495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Christiano de C. Lamb
- Environmental Technology Postgraduation Program, University of Santa Cruz do Sul, Santa Cruz do Sul, RS, Brazil
| | | | - Diego de Souza
- Environmental Technology Postgraduation Program, University of Santa Cruz do Sul, Santa Cruz do Sul, RS, Brazil
| | - Franccesca Fornasier
- Department of Chemistry and Physics, University of Santa Cruz do Sul, Santa Cruz do Sul, RS, Brazil
| | - Larissa Brixner Riça
- Department of Chemistry and Physics, University of Santa Cruz do Sul, Santa Cruz do Sul, RS, Brazil
| | - Rosana de Cassia de Souza Schneider
- Environmental Technology Postgraduation Program, University of Santa Cruz do Sul, Santa Cruz do Sul, RS, Brazil
- Department of Chemistry and Physics, University of Santa Cruz do Sul, Santa Cruz do Sul, RS, Brazil
| |
Collapse
|
17
|
Song HT, Yang YM, Liu DK, Xu XQ, Xiao WJ, Liu ZL, Xia WC, Wang CY, Yu X, Jiang ZB. Construction of recombinant Yarrowia lipolytica and its application in bio-transformation of lignocellulose. Bioengineered 2017; 8:624-629. [PMID: 28282268 PMCID: PMC5639843 DOI: 10.1080/21655979.2017.1293219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/04/2017] [Accepted: 02/06/2017] [Indexed: 10/20/2022] Open
Abstract
Lignocellulose is a polysaccharide and an abundant biomass resource that widely exists in grains, beans, rice, and their by-products. Over 10 million tons of lignocellulose resources and processing products are produced every year in China. Three recombinant Y. lipolytica strains with cellulase (β-glucosidase, endoglucanase and cellobiohydrolase) were constructed. The enzymatic activities of these enzymes were 14.181 U/mL, 16.307 U/mL, and 17.391 U/mL, respectively. The whole cell cellulases were used for a stover bio-transformation. The celluloses in the stover were partly degraded by the cellulases, and the degradation products were transformed into single cell protein (SCP) by the Y. lipolytica cells. After 15 d of fermentation with the whole cell cellulases, the protein content of the maize stover and the rice straw reached 16.23% and 14.75%, which increased by 168.26% and 161.52% compared with the control, respectively. This study provides a new stage for the efficient utilization of stover in the feed industry.
Collapse
Affiliation(s)
- Hui-Ting Song
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei University, Wuhan, China
- College of Resources and Environmental Science, Hubei University, Wuhan, China
| | - Yi-Min Yang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei University, Wuhan, China
| | - Ding-kang Liu
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei University, Wuhan, China
| | - Xiao-Qing Xu
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei University, Wuhan, China
| | - Wen-Jing Xiao
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei University, Wuhan, China
| | - Zi-Lu Liu
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei University, Wuhan, China
| | - Wu-Cheng Xia
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei University, Wuhan, China
| | - Chao-Ying Wang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei University, Wuhan, China
| | - Xiao Yu
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei University, Wuhan, China
- College of Resources and Environmental Science, Hubei University, Wuhan, China
| | - Zheng-Bing Jiang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei University, Wuhan, China
- Hubei Key Laboratory of Industrial Biotechnology, College of Life Science, Hubei University, Wuhan, China
| |
Collapse
|
18
|
Li P, Cai D, Zhang C, Li S, Qin P, Chen C, Wang Y, Wang Z. Comparison of two-stage acid-alkali and alkali-acid pretreatments on enzymatic saccharification ability of the sweet sorghum fiber and their physicochemical characterizations. BIORESOURCE TECHNOLOGY 2016; 221:636-644. [PMID: 27693729 DOI: 10.1016/j.biortech.2016.09.075] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 09/15/2016] [Accepted: 09/16/2016] [Indexed: 06/06/2023]
Abstract
Two-stage acid/alkali pretreatment was used to enhance the saccharification efficiency of sweet sorghum fiber. The physicochemical characterizations of the pretreated fibers were evaluated by SEM, FTIR and XRD. The acid and alkali sequence in the two-stage pretreatment process was compared, and their dosage was optimized. The results indicated that the two-stage pretreatment showed better saccharification performance when compared with conventional single stage pretreatment. And compared with the acid-alkali sequence, the alkali-acid sequence achieved higher glucose yield (0.23g·g-1) under the optimized conditions, which was 1.64 and 1.21 times higher than that of the single stage and the acid-alkali pretreatments, respectively. Overall, the two-stage pretreatment process is a promising approach to achieve high fermentable glucose conversion rate of cellulosic material.
Collapse
Affiliation(s)
- Ping Li
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Di Cai
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Changwei Zhang
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Shufeng Li
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Peiyong Qin
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Changjing Chen
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yong Wang
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Zheng Wang
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|