1
|
Jia L, Li T, Wang R, Ma M, Yang Z. Enhancing docosahexaenoic acid production from Schizochytrium sp. by using waste Pichia pastoris as nitrogen source based on two-stage feeding control. BIORESOURCE TECHNOLOGY 2024; 403:130891. [PMID: 38788808 DOI: 10.1016/j.biortech.2024.130891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
To reduce the cost of docosahexaenoic acid (DHA) production from Schizochytrium sp., the waste Pichia pastoris was successfully used as an alternative nitrogen source to achieve high-density cultivation during the cell growth phase. However, due to the high oxygen consumption feature when implementing high-density cultivation, the control of both the nitrogen source and dissolved oxygen concentration (DO) at each sufficient level was impossible; thus, two realistic control strategies, including "DO sufficiency-nitrogen limitation" and "DO limitation-nitrogen sufficiency", were proposed. When using the strategy of "DO sufficiency-nitrogen limitation", the lowest maintenance coefficient of glucose (12.3 mg/g/h vs. 17.0 mg/g/h) and the highest activities of related enzymes in DHA biosynthetic routes were simultaneously obtained; thus, a maximum DHA concentration of 12.8 ± 1.2 g/L was achieved, which was 1.58-fold greater than that of the control group. Overall, two-stage feeding control for alternative nitrogen sources is an efficient strategy to industrial DHA fermentation.
Collapse
Affiliation(s)
- Luqiang Jia
- School of Food Science and Technology, Yangzhou University, 225127 Yangzhou, China.
| | - Tianyi Li
- School of Food Science and Technology, Yangzhou University, 225127 Yangzhou, China
| | - Ruoyu Wang
- School of Food Science and Technology, Yangzhou University, 225127 Yangzhou, China
| | - Mengyao Ma
- School of Food Science and Technology, Yangzhou University, 225127 Yangzhou, China
| | - Zhenquan Yang
- School of Food Science and Technology, Yangzhou University, 225127 Yangzhou, China.
| |
Collapse
|
2
|
Zhang ZX, Xu YS, Li ZJ, Xu LW, Ma W, Li YF, Guo DS, Sun XM, Huang H. Turning waste into treasure: A new direction for low-cost production of lipid chemicals from Thraustochytrids. Biotechnol Adv 2024; 73:108354. [PMID: 38588906 DOI: 10.1016/j.biotechadv.2024.108354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
Thraustochytrids are marine microorganisms known for their fast growth and ability to store lipids, making them useful for producing polyunsaturated fatty acids (PUFAs), biodiesel, squalene, and carotenoids. However, the high cost of production, mainly due to expensive fermentation components, limits their wider use. A significant challenge in this context is the need to balance production costs with the value of the end products. This review focuses on integrating the efficient utilization of waste with Thraustochytrids fermentation, including the economic substitution of carbon sources, nitrogen sources, and fermentation water. This approach aligns with the 3Rs principles (reduction, recycling, and reuse). Furthermore, it emphasizes the role of Thraustochytrids in converting waste into lipid chemicals and promoting sustainable circular production models. The aim of this review is to emphasize the value of Thraustochytrids in converting waste into treasure, providing precise cost reduction strategies for future commercial production.
Collapse
Affiliation(s)
- Zi-Xu Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Ying-Shuang Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Zi-Jia Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Lu-Wei Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Wang Ma
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Ying-Feng Li
- Zhihe Biotechnology (Changzhou) Co. Ltd, 1 Hanshan Road, Xuejia Town, Xinbei District, Changzhou, People's Republic of China
| | - Dong-Sheng Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China; Zhihe Biotechnology (Changzhou) Co. Ltd, 1 Hanshan Road, Xuejia Town, Xinbei District, Changzhou, People's Republic of China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| |
Collapse
|
3
|
Schütte L, Hanisch PG, Scheler N, Haböck KC, Huber R, Ersoy F, Berger RG. Squalene production under oxygen limitation by Schizochytrium sp. S31 in different cultivation systems. Appl Microbiol Biotechnol 2024; 108:201. [PMID: 38349390 PMCID: PMC10864429 DOI: 10.1007/s00253-024-13051-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/26/2024] [Accepted: 02/02/2024] [Indexed: 02/15/2024]
Abstract
The triterpene squalene is widely used in the food, cosmetics and pharmaceutical industries due to its antioxidant, antistatic and anti-carcinogenic properties. It is usually obtained from the liver of deep sea sharks, which are facing extinction. Alternative production organisms are marine protists from the family Thraustochytriaceae, which produce and store large quantities of various lipids. Squalene accumulation in thraustochytrids is complex, as it is an intermediate in sterol biosynthesis. Its conversion to squalene 2,3-epoxide is the first step in sterol synthesis and is heavily oxygen dependent. Hence, the oxygen supply during cultivation was investigated in our study. In shake flask cultivations, a reduced oxygen supply led to increased squalene and decreased sterol contents and yields. Oxygen-limited conditions were applied to bioreactor scale, where squalene accumulation and growth of Schizochytrium sp. S31 was determined in batch, fed-batch and continuous cultivation. The highest dry matter (32.03 g/L) was obtained during fed-batch cultivation, whereas batch cultivation yielded the highest biomass productivity (0.2 g/L*h-1). Squalene accumulation benefited from keeping the microorganisms in the growth phase. Therefore, the highest squalene content of 39.67 ± 1.34 mg/g was achieved by continuous cultivation (D = 0.025 h-1) and the highest squalene yield of 1131 mg/L during fed-batch cultivation. Volumetric and specific squalene productivity both reached maxima in the continuous cultivation at D = 0.025 h-1 (6.94 ± 0.27 mg/L*h-1 and 1.00 ± 0.03 mg/g*h-1, respectively). Thus, the choice of a suitable cultivation method under oxygen-limiting conditions depends heavily on the process requirements. KEY POINTS: • Measurements of respiratory activity and backscatter light of thraustochytrids • Oxygen limitation increased squalene accumulation in Schizochytrium sp. S31 • Comparison of different cultivation methods under oxygen-limiting conditions.
Collapse
Affiliation(s)
- Lina Schütte
- Institute of Food Chemistry, Gottfried Wilhelm Leibniz University Hannover, Hannover, Germany.
| | - Patrick G Hanisch
- Department of Engineering and Management, Munich University of Applied Sciences HM, Munich, Germany
| | - Nina Scheler
- Institute of Food Chemistry, Gottfried Wilhelm Leibniz University Hannover, Hannover, Germany
| | - Katharina C Haböck
- Institute of Food Chemistry, Gottfried Wilhelm Leibniz University Hannover, Hannover, Germany
| | - Robert Huber
- Department of Engineering and Management, Munich University of Applied Sciences HM, Munich, Germany
| | - Franziska Ersoy
- Institute of Food Chemistry, Gottfried Wilhelm Leibniz University Hannover, Hannover, Germany
| | - Ralf G Berger
- Institute of Food Chemistry, Gottfried Wilhelm Leibniz University Hannover, Hannover, Germany
| |
Collapse
|
4
|
Li J, Zheng Y, Yang WQ, Wei ZY, Xu YS, Zhang ZX, Ma W, Sun XM. Enhancing the accumulation of lipid and docosahexaenoic acid in Schizochytrium sp. by co-overexpression of phosphopantetheinyl transferase and ω-3 fatty acid desaturase. Biotechnol J 2023; 18:e2300314. [PMID: 37596914 DOI: 10.1002/biot.202300314] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/24/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Docosahexaenoic acid (DHA) as one of ω-3 polyunsaturated fatty acids (PUFAs), plays a key role in brain development, and is widely used in food additives and the pharmaceutical industry. Schizochytrium sp. is often considered as a satisfactory strain for DHA industrialization. The aim of this study was to assess the feasibility of phosphopantetheinyl transferase (PPTase) and ω-3 fatty acid desaturase (FAD) for regulating DHA content in Schizochytrium sp. PPTase is essential to activate the polyketide-like synthase (PKS) pathway, which can transfer apo-acyl-carrier protein (apo-ACP) into holo-ACP, and plays a key role in DHA synthesis. Moreover, DHA and docosapentaenoic acid (DPA) are synthesized by the PKS pathway simultaneously, so high DPA synthesis limits the increase of DHA content. In addition, the detailed mechanisms of PKS pathway have not been fully elucidated, so it is difficult to improve DHA content by modifying PKS. However, ω-3 FAD can convert DPA into DHA, and it is the most direct and effective way to increase DHA content and reduce DPA content. Based on this, PPTase was overexpressed to enhance the synthesis of DHA by the PKS pathway, overexpressed ω-3 FAD to convert the co-product of the PKS pathway into DHA, and co-overexpressed PPTase and ω-3 FAD. With these strategies, compared with wild type, the final lipid, and DHA titer were 92.5 and 51.5 g L-1 , which increased by 46.4% and 78.1%, respectively. This study established an efficient DHA production strain, and provided some feasible strategies for industrial DHA production in Schizochytrium sp.
Collapse
Affiliation(s)
- Jin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Yi Zheng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Wen-Qian Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Zhi-Yun Wei
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Ying-Shuang Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Zi-Xu Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Wang Ma
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| |
Collapse
|
5
|
Chen ZL, Yang LH, He SJ, Du YH, Guo DS. Development of a green fermentation strategy with resource cycle for the docosahexaenoic acid production by Schizochytrium sp. BIORESOURCE TECHNOLOGY 2023:129434. [PMID: 37399951 DOI: 10.1016/j.biortech.2023.129434] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/05/2023]
Abstract
The fermentation production of docosahexaenoic acid (DHA) is an industrial process with huge consumption of freshwater resource and nutrient, such as carbon sources and nitrogen sources. In this study, seawater and fermentation wastewater were introduced into the fermentation production of DHA, which could solve the problem of fermentation industry competing with humans for freshwater. In addition, a green fermentation strategy with pH control using waste ammonia, NaOH and citric acid as well as FW recycling was proposed. It could provide a stable external environment for cell growth and lipid synthesis while alleviating the dependence on organic nitrogen sources of Schizochytrium sp. It was proved that this strategy has good industrialization potential for DHA production, and the biomass, lipid and DHA yield reached to 195.8 g/L, 74.4 g/L and 46.4 g/L in 50 L bioreactor, respectively. This study provides a green and economic bioprocess technology for DHA production by Schizochytrium sp.
Collapse
Affiliation(s)
- Zi-Lei Chen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Lin-Hui Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Shao-Jie He
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Yuan-Hang Du
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Dong-Sheng Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, People's Republic of China.
| |
Collapse
|
6
|
Liu L, Zhu X, Ye H, Wen Y, Sen B, Wang G. Low dissolved oxygen supply functions as a global regulator of the growth and metabolism of Aurantiochytrium sp. PKU#Mn16 in the early stages of docosahexaenoic acid fermentation. Microb Cell Fact 2023; 22:52. [PMID: 36918882 PMCID: PMC10015696 DOI: 10.1186/s12934-023-02054-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/04/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Thraustochytrids accumulate lipids with a high content of docosahexaenoic acid (DHA). Although their growth and DHA content are significantly affected by the dissolved oxygen (DO) supply, the role of DO on the transcriptional regulation of metabolism and accumulation of intracellular metabolites remains poorly understood. Here we investigate the effects of three different DO supply conditions (10%, 30%, and 50%) on the fed-batch culture of the Aurantiochytrium PKU#Mn16 strain to mainly reveal the differential gene expressions and metabolite profiles. RESULTS While the supply of 10% DO significantly reduced the rates of biomass and DHA production in the early stages of fermentation, it achieved the highest amounts of biomass (56.7 g/L) and DHA (6.0 g/L) on prolonged fermentation. The transcriptome analyses of the early stage (24 h) of fermentation revealed several genes involved in the central carbon, amino acid, and fatty acid metabolism, which were significantly downregulated at a 10% DO level. The comparative metabolomics results revealed the accumulation of several long-chain fatty acids, amino acids, and other metabolites, supporting the transcriptional regulation under the influence of a low oxygen supply condition. In addition, certain genes involved in antioxidative systems were downregulated under 10% DO level, suggesting a lesser generation of reactive oxygen species that lead to oxidative damage and fatty acid oxidation. CONCLUSIONS The findings of this study suggest that despite the slow growth and metabolism in the early stage of fermentation of Aurantiochytrium sp. PKU#Mn16, a constant supply of low dissolved oxygen can yield biomass and DHA content better than that with high oxygen supply conditions. The critical information gained in this study will help to further improve DHA production through bioprocess engineering strategies.
Collapse
Affiliation(s)
- Lu Liu
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Xingyu Zhu
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Huike Ye
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Yingying Wen
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Biswarup Sen
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China.
| | - Guangyi Wang
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China.
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China.
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
7
|
Arduino Soft Sensor for Monitoring Schizochytrium sp. Fermentation, a Proof of Concept for the Industrial Application of Genome-Scale Metabolic Models in the Context of Pharma 4.0. Processes (Basel) 2022. [DOI: 10.3390/pr10112226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Schizochytrium sp. is a microorganism cultured for producing docosahexaenoic acid (DHA). Genome-scale metabolic modeling (GEM) is a promising technique for describing gen-protein-reactions in cells, but with still limited industrial application due to its complexity and high computation requirements. In this work, we simplified GEM results regarding the relationship between the specific oxygen uptake rate (−rO2), the specific growth rate (µ), and the rate of lipid synthesis (rL) using an evolutionary algorithm for developing a model that can be used by a soft sensor for fermentation monitoring. The soft sensor estimated the concentration of active biomass (X), glutamate (N), lipids (L), and DHA in a Schizochytrium sp. fermentation using the dissolved oxygen tension (DO) and the oxygen mass transfer coefficient (kLa) as online input variables. The soft sensor model described the biomass concentration response of four reported experiments characterized by different kLa values. The average range normalized root-mean-square error for X, N, L, and DHA were equal to 1.1, 1.3, 1.1, and 3.2%, respectively, suggesting an acceptable generalization capacity. The feasibility of implementing the soft sensor over a low-cost electronic board was successfully tested using an Arduino UNO, showing a novel path for applying GEM-based soft sensors in the context of Pharma 4.0.
Collapse
|
8
|
Nazir Y, Phabakaran P, Halim H, Mohamed H, Naz T, Abdul Hamid A, Song Y. Strategic Development of Aurantiochytrium sp. Mutants With Superior Oxidative Stress Tolerance and Glucose-6-Phosphate Dehydrogenase Activity for Enhanced DHA Production Through Plasma Mutagenesis Coupled With Chemical Screening. Front Nutr 2022; 9:876649. [PMID: 35558745 PMCID: PMC9087853 DOI: 10.3389/fnut.2022.876649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/11/2022] [Indexed: 12/12/2022] Open
Abstract
Thraustochytrids, such as Aurantiochytrium and Schizochytrium, have been shown as a promising sustainable alternative to fish oil due to its ability to accumulate a high level of docosahexaenoic acid (DHA) from its total fatty acids. However, the low DHA volumetric yield by most of the wild type (WT) strain of thraustochytrids which probably be caused by the low oxidative stress tolerance as well as a limited supply of key precursors for DHA biosynthesis has restricted its application for industrial application. Thus, to enhance the DHA production, we aimed to generate Aurantiochytrium SW1 mutant with high tolerance toward oxidative stress and high glucose-6 phosphate dehydrogenase (G6PDH) activities through strategic plasma mutagenesis coupled with chemical screening. The WT strain (Aurantiochytrium sp. SW1) was initially exposed to plasma radiation and was further challenged with zeocin and polydatin, generating a mutant (YHPM1) with a 30, 65, and 80% higher overall biomass, lipid, and DHA production in comparison with the parental strains, respectively. Further analysis showed that the superior growth, lipid, and DHA biosynthesis of the YHMP1 were attributed not only to the higher G6PDH and enzymes involved in the oxidative defense such as superoxide dismutase (SOD) and catalase (CAT) but also to other key metabolic enzymes involved in lipid biosynthesis. This study provides an effective approach in developing the Aurantiochytrium sp. mutant with superior DHA production capacity that has the potential for industrial applications.
Collapse
Affiliation(s)
- Yusuf Nazir
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China.,Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia.,Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Pranesha Phabakaran
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Hafiy Halim
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Hassan Mohamed
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China.,Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Tahira Naz
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Aidil Abdul Hamid
- Department of Bioscience and Biotechnology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Yuanda Song
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| |
Collapse
|
9
|
Zhang H, Zhao X, Zhao C, Zhang J, Liu Y, Yao M, Liu J. Effects of glycerol and glucose on docosahexaenoic acid synthesis in Aurantiochyrium limacinum SFD-1502 by transcriptome analysis. Prep Biochem Biotechnol 2022; 53:81-92. [PMID: 35289738 DOI: 10.1080/10826068.2022.2042820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Docosahexaenoic acid (DHA) has numerous functions in adjusting the organic health and pragmatic value in medicine and food field. In this study, we compared glycerol and glucose as the only carbon source for DHA production by Aurantiochytrium. When the glycerol concentration was 120 g/L, the maximum DHA yield was 11.08 g/L, and the DHA yield increased significantly, reaching 47.67% of the total lipid content. When the cells grew in glucose, the DHA proportion was 37.39%. Transcriptome data showed that the glycolysis pathway and tricarboxylic acid cycle in Aurantiochytrium were significantly inhibited during glycerol culture, which promoted the tricarboxylic acid transport system and was conducive to the synthesis of fatty acids by acetyl coenzyme A; glucose as substrate activated fatty acid synthesis (FAS)pathway and produced more saturated fatty acids, while glycerol as substrate activated polyketide synthase (PKS)pathway and produced more long-chain polyunsaturated fatty acids. This laid a foundation for fermentation metabolism regulation and molecular transformation.
Collapse
Affiliation(s)
- Huaqiu Zhang
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China
| | - Xiangying Zhao
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China.,Shandong Provincial Key Laboratory of Food and Fermentation Engineering, Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China.,School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China
| | - Chen Zhao
- Shandong Provincial Key Laboratory of Food and Fermentation Engineering, Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China
| | - Jiaxiang Zhang
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China.,Shandong Provincial Key Laboratory of Food and Fermentation Engineering, Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China.,School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China
| | - Yang Liu
- Shandong Provincial Key Laboratory of Food and Fermentation Engineering, Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China
| | - Mingjing Yao
- Shandong Provincial Key Laboratory of Food and Fermentation Engineering, Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China
| | - Jianjun Liu
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China.,Shandong Provincial Key Laboratory of Food and Fermentation Engineering, Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China.,School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China
| |
Collapse
|
10
|
|
11
|
ARTP Mutagenesis of Schizochytrium sp. PKU#Mn4 and Clethodim-Based Mutant Screening for Enhanced Docosahexaenoic Acid Accumulation. Mar Drugs 2021; 19:md19100564. [PMID: 34677463 PMCID: PMC8539320 DOI: 10.3390/md19100564] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 11/16/2022] Open
Abstract
Schizochytrium species are one of the best oleaginous thraustochytrids for high-yield production of docosahexaenoic acid (DHA, 22:6). However, the DHA yields from most wild-type (WT) strains of Schizochytrium are unsatisfactory for large-scale production. In this study, we applied the atmospheric and room-temperature plasma (ARTP) tool to obtain the mutant library of a previously isolated strain of Schizochytrium (i.e., PKU#Mn4). Two rounds of ARTP mutagenesis coupled with the acetyl-CoA carboxylase (ACCase) inhibitor (clethodim)-based screening yielded the mutant A78 that not only displayed better growth, glucose uptake and ACCase activity, but also increased (54.1%) DHA content than that of the WT strain. Subsequent optimization of medium components and supplementation improved the DHA content by 75.5 and 37.2%, respectively, compared with that of mutant A78 cultivated in the unoptimized medium. Interestingly, the ACCase activity of mutant A78 in a medium supplemented with biotin, citric acid or sodium citrate was significantly greater than that in a medium without supplementation. This study provides an effective bioengineering approach for improving the DHA accumulation in oleaginous microbes.
Collapse
|
12
|
Wang Q, Han W, Jin W, Gao S, Zhou X. Docosahexaenoic acid production by Schizochytrium sp.: review and prospect. FOOD BIOTECHNOL 2021. [DOI: 10.1080/08905436.2021.1908900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Qing Wang
- Shenzhen Engineering Laboratory of Microalgae Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen, China
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Wei Han
- Shenzhen Engineering Laboratory of Microalgae Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen, China
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Wenbiao Jin
- Shenzhen Engineering Laboratory of Microalgae Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen, China
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Shuhong Gao
- Shenzhen Engineering Laboratory of Microalgae Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen, China
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Xu Zhou
- Shenzhen Engineering Laboratory of Microalgae Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen, China
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
13
|
Hu X, Tang X, Bi Z, Zhao Q, Ren L. Adaptive evolution of microalgae Schizochytrium sp. under high temperature for efficient production of docosahexaeonic acid. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Han X, Li Z, Wen Y, Chen Z. Overproduction of docosahexaenoic acid in Schizochytrium sp. through genetic engineering of oxidative stress defense pathways. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:70. [PMID: 33726826 PMCID: PMC7968238 DOI: 10.1186/s13068-021-01918-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Oxidation and peroxidation of lipids in microorganisms result in increased levels of intracellular reactive oxygen species (ROS) and reactive aldehydes, and consequent reduction of cell growth and lipid accumulation. RESULTS To reduce oxygen-mediated cell damage and increase lipid and docosahexaenoic acid (DHA) production in Schizochytrium sp., we strengthened the oxidative stress defense pathways. Overexpression of the enzymes thioredoxin reductase (TRXR), aldehyde dehydrogenase (ALDH), glutathione peroxidase (GPO), and glucose-6-phosphate dehydrogenase (ZWF) strongly promoted cell growth, lipid yield, and DHA production. Coexpression of ZWF, ALDH, GPO, and TRXR enhanced ROS-scavenging ability. Highest values of dry cell weight, lipid yield, and DHA production (50.5 g/L, 33.1 g/L, and 13.3 g/L, respectively) were attained in engineered strain OaldH-gpo-trxR by shake flask fed-batch culture; these were increases of 18.5%, 80.9%, and 114.5% relative to WT values. CONCLUSIONS Our findings demonstrate that engineering of oxidative stress defense pathways is an effective strategy for promoting cell robustness, lipid yield, and DHA production in Schizochytrium.
Collapse
Affiliation(s)
- Xiao Han
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhaohui Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Ying Wen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhi Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
15
|
Du F, Wang YZ, Xu YS, Shi TQ, Liu WZ, Sun XM, Huang H. Biotechnological production of lipid and terpenoid from thraustochytrids. Biotechnol Adv 2021; 48:107725. [PMID: 33727145 DOI: 10.1016/j.biotechadv.2021.107725] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/15/2021] [Accepted: 02/25/2021] [Indexed: 12/21/2022]
Abstract
As fungus-like protists, thraustochytrids have been increasingly studied for their faster growth rates and high lipid content. In the 1990s, thraustochytrids were used as docosahexaenoic acid (DHA) producers for the first time. Thraustochytrids genera, such as Thraustochytrium, Schizochytrium, and Aurantiochytrium have been developed and patented as industrial strains for DHA production. The high DHA yield is attributed to its unique and efficient polyketide-like synthase (PKS) pathway. Moreover, thraustochytrids possess a completed mevalonate (MVA) pathway, so it can be used as host for terpenoid production. In order to improve strain performance, the metabolic engineering strategies have been applied to promote or disrupt intracellular metabolic pathways, such as genetic engineering and addition of chemical activators. However, it is difficult to realize industrialization only by improving strain performance. Various operation strategies were developed to enlarge the production quantities from the laboratory-scale, including two-stage cultivation strategies, scale-up technologies and bioreactor design. Moreover, an economical and effective downstream process is also an important consideration for the industrial application of thraustochytrids. Downstream costs accounts for 20-60% of the overall process costs, which represents an attractive target for increasing the cost-competitiveness of thraustochytrids, including how to improve the efficiency of lipid extraction and the further application of biomass residues. This review aims to overview the whole lipid biotechnology of thraustochytrids to provide the background information for researchers.
Collapse
Affiliation(s)
- Fei Du
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Yu-Zhou Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Ying-Shuang Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Wen-Zheng Liu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China; College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, People's Republic of China
| |
Collapse
|
16
|
Bartosova Z, Ertesvåg H, Nyfløt EL, Kämpe K, Aasen IM, Bruheim P. Combined Metabolome and Lipidome Analyses for In-Depth Characterization of Lipid Accumulation in the DHA Producing Aurantiochytrium sp. T66. Metabolites 2021; 11:metabo11030135. [PMID: 33669117 PMCID: PMC7996494 DOI: 10.3390/metabo11030135] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/19/2022] Open
Abstract
Thraustochytrids are marine heterotrophic microorganisms known for their potential to accumulate docosahexaenoic acid (DHA)-enriched lipids. There have been many attempts to improve thraustochytrid DHA bioprocesses, especially through traditional optimization of cultivation and media conditions. Nevertheless, thraustochytrid-based bioprocesses are still not commercially competitive for high volume-low cost production of DHA. Thus, it is realized that genetic and metabolic engineering strategies are needed for the development of commercially competitive thraustochytrid DHA cell factories. Here, we present an analytical workflow for high resolution phenotyping at metabolite and lipid levels to generate deeper insight into the thraustochytrid physiology, with particular focus on central carbon and redox metabolism. We use time-series sampling during unlimited growth and nitrogen depleted triggering of DHA synthesis and lipid accumulation (LA) to show-case our methodology. The mass spectrometric absolute quantitative metabolite profiling covered glycolytic, pentose phosphate pathway (PPP) and tricarboxylic acid cycle (TCA) metabolites, amino acids, complete (deoxy)nucleoside phosphate pools, CoA and NAD metabolites, while semiquantitative high-resolution supercritical fluid chromatography MS/MS was applied for the lipid profiling. Interestingly, trace amounts of a triacylglycerols (TG) with DHA incorporated in all three acyl positions was detected, while TGs 16:0_16:0_22:6 and 16:0_22:6_22:6 were among the dominant lipid species. The metabolite profiling data indicated that lipid accumulation is not limited by availability of the acyl chain carbon precursor acetyl-CoA nor reducing power (NADPH) but rather points to the TG head group precursor glycerol-3-phosphate as the potential cause at the metabolite level for the gradual decline in lipid production throughout the cultivation. This high-resolution phenotyping provides new knowledge of changes in the central metabolism during growth and LA in thraustochytrids and will guide target selection for metabolic engineering needed for further improvements of this DHA cell factory.
Collapse
Affiliation(s)
- Zdenka Bartosova
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, 7491 Trondheim, Norway; (Z.B.); (H.E.); (E.L.N.); (K.K.)
| | - Helga Ertesvåg
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, 7491 Trondheim, Norway; (Z.B.); (H.E.); (E.L.N.); (K.K.)
| | - Eirin Lishaugen Nyfløt
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, 7491 Trondheim, Norway; (Z.B.); (H.E.); (E.L.N.); (K.K.)
| | - Kristoffer Kämpe
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, 7491 Trondheim, Norway; (Z.B.); (H.E.); (E.L.N.); (K.K.)
| | - Inga Marie Aasen
- Biotechnology and Nanomedicine, SINTEF Industry, 4730 Trondheim, Norway;
| | - Per Bruheim
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, 7491 Trondheim, Norway; (Z.B.); (H.E.); (E.L.N.); (K.K.)
- Correspondence:
| |
Collapse
|
17
|
Xu X, Huang C, Xu Z, Xu H, Wang Z, Yu X. The strategies to reduce cost and improve productivity in DHA production by Aurantiochytrium sp.: from biochemical to genetic respects. Appl Microbiol Biotechnol 2020; 104:9433-9447. [PMID: 32978687 DOI: 10.1007/s00253-020-10927-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/14/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022]
Abstract
The marine oleaginous protist Aurantiochytrium sp. (Schizochytrium sp.) is a well-known docosahexaenoic acid (DHA) producer and its different DHA products are the ideal substitute for the traditional fish oil resource. However, the cost of the DHA products derived from Aurantiochytrium sp. (Schizochytrium sp.) is still high, limiting their wide applications. In order to reduce the cost or improve the productivity of DHA from the microbial resource, many researches are focusing on exploring the renewable and low-cost materials as feedbacks, and/or the stimulators for biomass and DHA production. In addition, the genetic engineering is also being used in the Aurantiochytrium sp. (Schizochytrium sp.) system for further improvement. These break the bottleneck of the DHA production by Aurantiochytrium sp. (Schizochytrium sp.) in some degree. In this review, the strategies used currently to reduce cost and improve DHA productivity, mainly from the utilizations of low-cost materials and effective stimulators to the genetic engineering perspectives, are summarized, and the availabilities from the cost perspective are also evaluated. This review provides an overview about the strategies to revolve the production cost and yield of the DHA by Aurantiochytrium sp. (Schizochytrium sp.), a theoretical basis for genetic modification of Aurantiochytrium sp. (Schizochytrium sp.), and a practical basis for the development of DHA industry. KEY POINTS : • Utilizations of various low-cost materials for DHA production • Inducing the growth and DHA biosynthesis by the effective stimulators • Reducing cost and improving DHA productivity by genetic modification • The availability from cost perspective is evaluated.
Collapse
Affiliation(s)
- Xiaodan Xu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No.18, Chaowang Road, Hangzhou, 310014, People's Republic of China
| | - Changyi Huang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No.18, Chaowang Road, Hangzhou, 310014, People's Republic of China
| | - Zhexian Xu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No.18, Chaowang Road, Hangzhou, 310014, People's Republic of China
| | - Huixia Xu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No.18, Chaowang Road, Hangzhou, 310014, People's Republic of China
| | - Zhao Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No.18, Chaowang Road, Hangzhou, 310014, People's Republic of China
| | - Xinjun Yu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No.18, Chaowang Road, Hangzhou, 310014, People's Republic of China.
| |
Collapse
|
18
|
Ji XJ, Ledesma-Amaro R. Microbial Lipid Biotechnology to Produce Polyunsaturated Fatty Acids. Trends Biotechnol 2020; 38:832-834. [DOI: 10.1016/j.tibtech.2020.02.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 02/07/2023]
|
19
|
Shafiq M, Zeb L, Cui G, Jawad M, Chi Z. High-Density pH-Auxostat Fed-Batch Culture of Schizochytrium limacinum SR21 with Acetic Acid as a Carbon Source. Appl Biochem Biotechnol 2020; 192:1163-1175. [PMID: 32700201 DOI: 10.1007/s12010-020-03396-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/16/2020] [Indexed: 01/10/2023]
Abstract
Schizochytrium limacinum SR21 is an important strain for industrial production of docosahexaenoic acid (DHA), which is an important omega-3 fatty acid used in the nutraceutical and food industry. However, the high cost of carbon sources has limited its further application in the market with much larger volume, such as animal feed for aquaculture, poultry, and livestock. To seek low-cost carbon source, acetic acid is tested in the present study. The effect of different factors, including initial carbon source concentration, pH, aeration rate, and nitrogen sources, on biomass, lipid, and DHA production were tested. With optimized culture conditions, the biomass concentration of 146 g/L, total fatty acids (TFAs) of 82.3 g/L, and DHA content of 23.0 g/L were achieved with a pH-auxostat fed-batch cultivation. These results suggested that acetic acid is a promising feedstock for the low-cost production of DHA. Graphical Abstract.
Collapse
Affiliation(s)
- Muhammad Shafiq
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, People's Republic of China
| | - Liaqat Zeb
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, People's Republic of China
| | - Guannan Cui
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Muhammad Jawad
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, People's Republic of China
| | - Zhanyou Chi
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, People's Republic of China.
| |
Collapse
|
20
|
Guo DS, Tong LL, Ji XJ, Ren LJ, Ding QQ. Development of a Strategy to Improve the Stability of Culture Environment for Docosahexaenoic Acid Fermentation by Schizochytrium sp. Appl Biochem Biotechnol 2020; 192:881-894. [DOI: 10.1007/s12010-020-03298-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/12/2020] [Indexed: 11/30/2022]
|
21
|
Galactomyces geotrichum mold isolated from a traditional fried cottage cheese produced omega-3 fatty acids. Int J Food Microbiol 2020; 319:108503. [PMID: 31923767 DOI: 10.1016/j.ijfoodmicro.2019.108503] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 12/20/2019] [Accepted: 12/27/2019] [Indexed: 11/21/2022]
Abstract
Thirty nine strains of Galactomyces geotrichum molds were isolated from a traditional fried cottage cheese and production of polyunsaturated fatty acids (PUFA) was assessed. Among them eleven strains produced an extracellular lipids enriched in n-6 and n-3 PUFA. The extracellular lipids produced by G. geotrichum strain 38 contained the highest amounts of total PUFA (24.3%), with the highest contribution of n-3 fatty acids (17.9%), where α-linolenic, eicosapentaenoic, docosapentaenoic and docosahexaenoic acids were the main contributors. To obtain maximal production of PUFA, composition of the medium consisted of 10 g/L rapeseed oil, 5 g/L yeast extract, 0.05 g/L K2HPO4, 0.17 g/L MgSO4, 0.015 g/L MnSO4, 0.015 g/L ZnSO4, 0.05 g/L FeSO4, and 10 mg/L vitamin B12. The optimal growth conditions at 30 °C involve: aeration at 1.5 vvm (volume of air per volume of broth per minute) at pH 6.5. The cheese produced under described conditions contained higher amount of n-3 PUFA (0.25 mg/g cheese) in comparison to control (0.01 mg/g). α-Linolenic acid predominated among n-3 fatty acids. Galactomyces geotrichum is a natural microflora of dairy products, and could be used to enrich food/cheese in deficient omega-3 lipids.
Collapse
|
22
|
Lab-Scale Optimization of Aurantiochytrium sp. Culture Medium for Improved Growth and DHA Production. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10072500] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Thraustochytrids have gained increasing relevance over the last decades, due to their fast growth and outstanding capacity to accumulate polyunsaturated fatty acids (PUFAs), particularly docosahexaenoic acid (DHA). In this context, the present work aimed to optimize the growth performance and DHA yields by improving the culture medium of Aurantiochytrium sp. AF0043. Accordingly, two distinct culture media were optimized: (i) an inorganic optimized medium (IOM), containing only monosodium glutamate and glucose as nitrogen and carbon sources, respectively; and (ii) an organic and sustainable waste-based optimized medium (WOM), containing corn steep powder and glycerol, added in fed-batch mode, as nitrogen and carbon sources, respectively. Overall, the lab-scale optimization allowed to increase the biomass yield 1.5-fold and enhance DHA content 1.7-fold using IOM. Moreover, WOM enabled a 2-fold increase in biomass yield and a significant improvement in lipid contents, from 22.78% to 31.14%. However, DHA content was enhanced almost 3-fold, from an initial content of 10.12% to 29.66% of total fatty acids contained in the biomass. Therefore, these results strongly suggest, not only that the production pipeline was significantly improved but also confirmed the potential use of Aurantiochytrium sp. AF0043 as a source of DHA.
Collapse
|
23
|
Wang SK, Wang X, Tian YT, Cui YH. Nutrient recovery from tofu whey wastewater for the economical production of docosahexaenoic acid by Schizochytrium sp. S31. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 710:136448. [PMID: 32050374 DOI: 10.1016/j.scitotenv.2019.136448] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/19/2019] [Accepted: 12/30/2019] [Indexed: 06/10/2023]
Abstract
Docosahexaenoic acid plays a vital role in human health as it is essential for the proper function of the nervous system and for visual functions. To decrease the cost of docosahexaenoic acid production by Schizochytrium, the cost of the medium should be further decreased. In this study, the use of tofu whey wastewater to culture Schizochytrium sp. for docosahexaenoic acid production was tested, with the goal of reducing the medium cost. The results indicated that tofu whey wastewater presented a better culture performance with respect to biomass, lipid, and docosahexaenoic acid production compared with three traditional media. Through simple pH adjustment, the biomass and docosahexaenoic acid productivity reached 1.89 and 0.24 g/L/day, respectively, which were much higher than those obtained using traditional medium. The removal efficiency of chemical oxygen demand, total nitrogen, and total phosphorus reached 64.7, 66.0, and 59.3%, respectively. Due to the rich nutrients in tofu whey wastewater, the use of extra nitrogen source was avoided and the total medium cost for docosahexaenoic acid production in cultures using tofu whey wastewater was <1/3 of that of traditional media. This result indicated that tofu whey wastewater is an effective and economic basal medium for docosahexaenoic acid production by Schizochytrium sp.
Collapse
Affiliation(s)
- Shi-Kai Wang
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, PR China.
| | - Xu Wang
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, PR China
| | - Yong-Ting Tian
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, PR China
| | - Yue-Hua Cui
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, PR China
| |
Collapse
|
24
|
Patel A, Liefeldt S, Rova U, Christakopoulos P, Matsakas L. Co-production of DHA and squalene by thraustochytrid from forest biomass. Sci Rep 2020; 10:1992. [PMID: 32029800 PMCID: PMC7005032 DOI: 10.1038/s41598-020-58728-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 01/15/2020] [Indexed: 12/12/2022] Open
Abstract
Omega-3 fatty acids, and specifically docosahexaenoic acid (DHA), are important and essential nutrients for human health. Thraustochytrids are recognised as commercial strains for nutraceuticals production, they are group of marine oleaginous microorganisms capable of co-synthesis of DHA and other valuable carotenoids in their cellular compartment. The present study sought to optimize DHA and squalene production by the thraustochytrid Schizochytrium limacinum SR21. The highest biomass yield (0.46 g/gsubstrate) and lipid productivity (0.239 g/gsubstrate) were observed with 60 g/L of glucose, following cultivation in a bioreactor, with the DHA content to be 67.76% w/wtotal lipids. To reduce costs, cheaper feedstocks and simultaneous production of various value-added products for pharmaceutical or energy use should be attempted. To this end, we replaced pure glucose with organosolv-pretreated spruce hydrolysate and assessed the simultaneous production of DHA and squalene from S. limacinum SR21. After the 72 h of cultivation period in bioreactor, the maximum DHA content was observed to 66.72% w/wtotal lipids that was corresponded to 10.15 g/L of DHA concentration. While the highest DHA productivity was 3.38 ± 0.27 g/L/d and squalene reached a total of 933.72 ± 6.53 mg/L (16.34 ± 1.81 mg/gCDW). In summary, we show that the co-production of DHA and squalene makes S. limacinum SR21 appropriate strain for commercial-scale production of nutraceuticals.
Collapse
Affiliation(s)
- Alok Patel
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87, Luleå, Sweden
| | - Stephan Liefeldt
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87, Luleå, Sweden
| | - Ulrika Rova
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87, Luleå, Sweden
| | - Paul Christakopoulos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87, Luleå, Sweden
| | - Leonidas Matsakas
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87, Luleå, Sweden.
| |
Collapse
|
25
|
Boosting productivity of heterotrophic microalgae by efficient control of the oxygen transfer coefficient using a microbubble sparger. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101474] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Efficient docosahexaenoic acid production by Schizochytrium sp. via a two-phase pH control strategy using ammonia and citric acid as pH regulators. Process Biochem 2019. [DOI: 10.1016/j.procbio.2018.11.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
27
|
Yin FW, Zhu SY, Guo DS, Ren LJ, Ji XJ, Huang H, Gao Z. Development of a strategy for the production of docosahexaenoic acid by Schizochytrium sp. from cane molasses and algae-residue. BIORESOURCE TECHNOLOGY 2019; 271:118-124. [PMID: 30265951 DOI: 10.1016/j.biortech.2018.09.114] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/20/2018] [Accepted: 09/21/2018] [Indexed: 06/08/2023]
Abstract
The aim of this work was to reduce the algae-residue emission and make use of cane molasses as fermentation materials for docosahexaenoic acid (DHA) fermentaion by Schizochytrium sp., which further could cut the cost of DHA production. Algae-residue and cane molasses were respectively used as nitrogen and carbon sources to replace yeast extract and glucose. A significant DHA yield of 18.58 g/L was obtained using algae-residue, while cane molasses could not be used well as sole carbon source due to the presence of undesirable substance. A two-stage culture strategy with glucose followed by pretreated cane molasses as carbon source was developed, resulting in a final DHA yield of 15.22 g/L. This study therefore offers an economical and green strategy for DHA production by Schizochytrium sp.
Collapse
Affiliation(s)
- Feng-Wei Yin
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Si-Yu Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Dong-Sheng Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Lu-Jing Ren
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
| | - He Huang
- School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
| | - Zhen Gao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| |
Collapse
|
28
|
Guo DS, Ji XJ, Ren LJ, Yin FW, Sun XM, Huang H, Zhen G. Development of a multi-stage continuous fermentation strategy for docosahexaenoic acid production by Schizochytrium sp. BIORESOURCE TECHNOLOGY 2018; 269:32-39. [PMID: 30149252 DOI: 10.1016/j.biortech.2018.08.066] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 08/15/2018] [Accepted: 08/16/2018] [Indexed: 06/08/2023]
Abstract
Docosahexaenoic acid (DHA) has wide-ranging benefits for normal development of the visual and nervous systems in infants. A sustainable source of DHA production through fermentation using Schizochytrium sp. has been developed. In this paper, we present the discovery of growth-uncoupled DHA production by Schizochytrium sp. and the development of corresponding kinetic models of fed-batch fermentations, which can be used to describe and predict the cell growth and substrate utilization as well as lipid and DHA production. Based on this kinetic model, a predictive model of multi-stage continuous fermentation process was established and used to analyze, optimize and design the process parameters. Optimal predicted processes of two-stage and three-stage continuous fermentation were developed and verified in lab-scale bioreactor based on the predicted process parameters. A successful three-stage continuous fermentation was achieved, which increased the lipid, DHA content and DHA productivity by 47.6, 64.3 and 97.1%, respectively, compared with two-stage continuous fermentation.
Collapse
Affiliation(s)
- Dong-Sheng Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
| | - Lu-Jing Ren
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
| | - Feng-Wei Yin
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Xiao-Man Sun
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - He Huang
- School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
| | - Gao Zhen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| |
Collapse
|
29
|
Yin FW, Guo DS, Ren LJ, Ji XJ, Huang H. Development of a method for the valorization of fermentation wastewater and algal-residue extract in docosahexaenoic acid production by Schizochytrium sp. BIORESOURCE TECHNOLOGY 2018; 266:482-487. [PMID: 29990764 DOI: 10.1016/j.biortech.2018.06.109] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 06/08/2023]
Abstract
Fermentation wastewater (FW) and algal residue are major by-products of docosahexaenoic acid (DHA) fermentations utilizing Schizochytrium sp. In order to reduce production costs and environmental pollution, we explored the application of FW and algal-residue extract (AE) for DHA production. Components analysis showed that FW and AE contained some mineral elements and protein residues, respectively. When they were used for DHA fermentation, results showed that 20% replacement of fresh water by FW and 80% replacement of yeast extract nitrogen by AE reached DHA content of 22.23 g/L and 27.10 g/L, respectively. Furthermore, a novel medium that utilizes a mixture of FW and AE was applied for DHA fermentation, whereby the final DHA yield reached 28.45 g/L, 24.56% higher than conventional medium. The strategy of valorizing fermentation waste provides a new method for reducing the costs and reducing environmental pollution of microbial fermentations.
Collapse
Affiliation(s)
- Feng-Wei Yin
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Biotechnology and Pharmaceutical Engineering, School of Pharmacy, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Dong-Sheng Guo
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Biotechnology and Pharmaceutical Engineering, School of Pharmacy, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Lu-Jing Ren
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Biotechnology and Pharmaceutical Engineering, School of Pharmacy, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| | - Xiao-Jun Ji
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Biotechnology and Pharmaceutical Engineering, School of Pharmacy, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - He Huang
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Biotechnology and Pharmaceutical Engineering, School of Pharmacy, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| |
Collapse
|
30
|
Cui J, Diao J, Sun T, Shi M, Liu L, Wang F, Chen L, Zhang W. 13C Metabolic Flux Analysis of Enhanced Lipid Accumulation Modulated by Ethanolamine in Crypthecodinium cohnii. Front Microbiol 2018; 9:956. [PMID: 29867861 PMCID: PMC5963191 DOI: 10.3389/fmicb.2018.00956] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/24/2018] [Indexed: 11/13/2022] Open
Abstract
The heterotrophic microalga Crypthecodinium cohnii has attracted considerable attention due to its capability of accumulating lipids with a high fraction of docosahexaenoic acid (DHA). In our previous study, ethanolamine (ETA) was identified as an effective chemical modulator for lipid accumulation in C. cohnii. In this study, to gain a better understanding of the lipid metabolism and mechanism for the positive effects of modulator ETA, metabolic flux analysis was performed using 13C-labeled glucose with and without 1 mM ETA modulator. The analysis of flux distribution showed that with the addition of ETA, flux in glycolysis pathway and citrate pyruvate cycle was strengthened while flux in pentose phosphate pathway was decreased. In addition, flux in TCA cycle was slightly decreased compared with the control without ETA. The enzyme activity of malic enzyme (ME) was significantly increased, suggesting that NADP+-dependent ME might be the major source of NADPH for lipid accumulation. The flux information obtained by this study could be valuable for the further efforts in improving lipid accumulation and DHA production in C. cohnii.
Collapse
Affiliation(s)
- Jinyu Cui
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Jinjin Diao
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Tao Sun
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Mengliang Shi
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Liangsen Liu
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Fangzhong Wang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Center for Biosafety Research and Strategy, Tianjin University, Tianjin, China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China.,Center for Biosafety Research and Strategy, Tianjin University, Tianjin, China
| |
Collapse
|
31
|
Development of a scale-up strategy for fermentative production of docosahexaenoic acid by Schizochytrium sp. Chem Eng Sci 2018. [DOI: 10.1016/j.ces.2017.11.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
32
|
Sun XM, Geng LJ, Ren LJ, Ji XJ, Hao N, Chen KQ, Huang H. Influence of oxygen on the biosynthesis of polyunsaturated fatty acids in microalgae. BIORESOURCE TECHNOLOGY 2018; 250:868-876. [PMID: 29174352 DOI: 10.1016/j.biortech.2017.11.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/03/2017] [Accepted: 11/05/2017] [Indexed: 05/02/2023]
Abstract
As one of the most important environmental factors, oxygen is particularly important for synthesis of n-3 polyunsaturated fatty acids (n-3 PUFA) in microalgae. In general, a higher oxygen supply is beneficial for cell growth but obstructs PUFA synthesis. The generation of reactive oxygen species (ROS) under aerobic conditions, which leads to the peroxidation of lipids and especially PUFA, is an inevitable aspect of life, but is often ignored in fermentation processes. Irritability, microalgal cells are able to activate a number of anti-oxidative defenses, and the lipid profile of many species is reported to be altered under oxidative stress. In this review, the effects of oxygen on the PUFA synthesis, sources of oxidative damage, and anti-oxidative defense systems of microalgae were summarized and discussed. Moreover, this review summarizes the published reports on microalgal biotechnology involving direct/indirect oxygen regulation and new bioreactor designs that enable the improved production of PUFA.
Collapse
Affiliation(s)
- Xiao-Man Sun
- Jiangsu National Synergetic Innovation Center for Advanced Materials, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, School of Pharmacy, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Ling-Jun Geng
- Jiangsu National Synergetic Innovation Center for Advanced Materials, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, School of Pharmacy, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Lu-Jing Ren
- Jiangsu National Synergetic Innovation Center for Advanced Materials, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, School of Pharmacy, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| | - Xiao-Jun Ji
- Jiangsu National Synergetic Innovation Center for Advanced Materials, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, School of Pharmacy, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Ning Hao
- Jiangsu National Synergetic Innovation Center for Advanced Materials, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, School of Pharmacy, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Ke-Quan Chen
- Jiangsu National Synergetic Innovation Center for Advanced Materials, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, School of Pharmacy, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - He Huang
- Jiangsu National Synergetic Innovation Center for Advanced Materials, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, School of Pharmacy, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| |
Collapse
|
33
|
Li X, Yu C, Yao J, Wang Z, Lu S. An Online Respiratory Quotient-Feedback Strategy of Feeding Yeast Extract for Efficient Arachidonic Acid Production by Mortierella alpina. Front Bioeng Biotechnol 2018; 5:83. [PMID: 29404320 PMCID: PMC5786879 DOI: 10.3389/fbioe.2017.00083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/14/2017] [Indexed: 11/17/2022] Open
Abstract
Mortierella alpina (M. alpina) is well known for arachidonic acid (ARA) production. However, low efficiency and unstableness are long existed problems for industrial production of ARA by M. alpina due to the lack of online regulations. The aim of the present work is to develop an online-regulation strategy for efficient and stable ARA production in industry. The strategy was developed in 50 L fermenters and then applied in a 200 m3 fermenter. Results indicated that yeast extract (YE) highly increased cell growth in shake flask, it was then used in bioreactor fermentation by various feeding strategies. Feeding YE to control respiratory quotient (RQ) at 1.1 during 0-48 h and at 1.5 during 48-160 h, dry cell weight, and ARA titer reached 53.1 and 11.49 g/L in 50 L fermenter, which were increased by 79.4 and 36.9% as compared to that without YE feeding, respectively. Then, the online RQ-feedback strategy was applied in 200 m3 bioreactor fermentation and an average ARA titer of 16.82 g/L was obtained from 12 batches, which was 41.0% higher than the control batches. This is the first report on successful application of online RQ-feedback control of YE in ARA production, especially in an industrial scale of 200 m3 fermentation. It could be applied to other industrial production of microbial oil by oleaginous microorganisms.
Collapse
Affiliation(s)
- Xiangyu Li
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- University of Science and Technology of China, Hefei, China
- CABIO Bioengineering (Wuhan) Co., Ltd, Wuhan, China
- Hubei Province Nutrition Chemicals Biosynthetic Engineering Technology Research Center, Wuhan, China
| | - Chao Yu
- CABIO Bioengineering (Wuhan) Co., Ltd, Wuhan, China
- Hubei Province Nutrition Chemicals Biosynthetic Engineering Technology Research Center, Wuhan, China
| | - Jianming Yao
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- University of Science and Technology of China, Hefei, China
- CABIO Bioengineering (Wuhan) Co., Ltd, Wuhan, China
- Hubei Province Nutrition Chemicals Biosynthetic Engineering Technology Research Center, Wuhan, China
| | - Zhiming Wang
- CABIO Bioengineering (Wuhan) Co., Ltd, Wuhan, China
- Hubei Province Nutrition Chemicals Biosynthetic Engineering Technology Research Center, Wuhan, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Shuhuan Lu
- CABIO Bioengineering (Wuhan) Co., Ltd, Wuhan, China
- Hubei Province Nutrition Chemicals Biosynthetic Engineering Technology Research Center, Wuhan, China
| |
Collapse
|
34
|
Jin J, Wang Y, Yao M, Gu X, Li B, Liu H, Ding M, Xiao W, Yuan Y. Astaxanthin overproduction in yeast by strain engineering and new gene target uncovering. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:230. [PMID: 30159030 PMCID: PMC6106823 DOI: 10.1186/s13068-018-1227-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 08/14/2018] [Indexed: 05/04/2023]
Abstract
BACKGROUND Astaxanthin is a natural carotenoid pigment with tremendous antioxidant activity and great commercial value. Microbial production of astaxanthin via metabolic engineering has become a promising alternative. Although great efforts have been conducted by tuning the heterologous modules and precursor pools, the astaxanthin yields in these non-carotenogenic microorganisms were still unsatisfactory for commercialization, indicating that in addition to targeted tailoring limited targets guided by rationally metabolic design, combining more globe disturbances in astaxanthin biosynthesis system and uncovering new molecular mechanisms seem to be much more crucial for further development. Since combined metabolic engineering with mutagenesis by screening is a powerful tool to achieve more global variations and even uncover more molecular targets, this study would apply a comprehensive approach integrating heterologous module engineering and mutagenesis by atmospheric and room temperature plasma (ARTP) to promote astaxanthin production in Saccharomyces cerevisiae. RESULTS Here, compared to the strain with β-carotene hydroxylase (CrtZ) from Alcaligenes sp. strain PC-1, involving new CrtZ from Agrobacterium aurantiacum enhanced astaxanthin yield to 1.78-fold and increased astaxanthin ratio to 88.7% (from 66.6%). Astaxanthin yield was further increased by 0.83-fold (to 10.1 mg/g DCW) via ARTP mutagenesis, which is the highest reported yield at shake-flask level in yeast so far. Three underlying molecular targets (CSS1, YBR012W-B and DAN4) associated with astaxanthin biosynthesis were first uncovered by comparative genomics analysis. To be noted, individual deletion of CSS1 can recover 75.6% improvement on astaxanthin yield achieved by ARTP mutagenesis, indicating CSS1 was a very promising molecular target for further development. Eventually, 217.9 mg/L astaxanthin (astaxanthin ratio was 89.4% and astaxanthin yield was up to 13.8 mg/g DCW) was obtained in 5-L fermenter without any addition of inducers. CONCLUSIONS Through integrating rational engineering of pathway modules and random mutagenesis of hosts efficiently, our report stepwise promoted astaxanthin yield to achieve the highest reported one in yeast so far. This work not only breaks the upper ceiling of astaxanthin production in yeast, but also fulfills the underlying molecular targets pools with regard to isoprenoid microbial overproductions.
Collapse
Affiliation(s)
- Jin Jin
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical & Engineering, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072 People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Ying Wang
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical & Engineering, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072 People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Mingdong Yao
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical & Engineering, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072 People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Xiaoli Gu
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical & Engineering, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072 People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Bo Li
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical & Engineering, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072 People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Hong Liu
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical & Engineering, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072 People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Mingzhu Ding
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical & Engineering, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072 People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Wenhai Xiao
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical & Engineering, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072 People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Yingjin Yuan
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical & Engineering, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072 People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 People’s Republic of China
| |
Collapse
|
35
|
Yu JH, Wang Y, Sun J, Bian F, Chen G, Zhang Y, Bi YP, Wu YJ. Antioxidant activity of alcohol aqueous extracts of Crypthecodinium cohnii and Schizochytrium sp. J Zhejiang Univ Sci B 2017. [DOI: 10.1631/jzus.b1600367] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
36
|
Guo DS, Ji XJ, Ren LJ, Li GL, Huang H. Improving docosahexaenoic acid production by Schizochytrium
sp. using a newly designed high-oxygen-supply bioreactor. AIChE J 2017. [DOI: 10.1002/aic.15783] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Dong-Sheng Guo
- College of Biotechnology and Pharmaceutical Engineering; Nanjing Tech University; No. 30 South Puzhu Road Nanjing 211816 P.R. China
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering; Nanjing Tech University; No. 30 South Puzhu Road Nanjing 211816 P.R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); No. 5 Xinmofan Road Nanjing 210009 P.R. China
| | - Lu-Jing Ren
- College of Biotechnology and Pharmaceutical Engineering; Nanjing Tech University; No. 30 South Puzhu Road Nanjing 211816 P.R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); No. 5 Xinmofan Road Nanjing 210009 P.R. China
| | - Gan-Lu Li
- College of Biotechnology and Pharmaceutical Engineering; Nanjing Tech University; No. 30 South Puzhu Road Nanjing 211816 P.R. China
| | - He Huang
- School of Pharmaceutical Sciences; Nanjing Tech University; No. 30 South Puzhu Road Nanjing 211816 P.R. China
- State Key Laboratory of Materials-Oriented Chemical Engineering; Nanjing Tech University; No. 5 Xinmofan Road Nanjing 210009 P.R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); No. 5 Xinmofan Road Nanjing 210009 P.R. China
| |
Collapse
|