1
|
Cai X, Pang S, Zhang M, Teng J, Lin H, Xia S. Predicting thermodynamic adhesion energies of membrane fouling in planktonic anammox MBR via backpropagation neural network model. BIORESOURCE TECHNOLOGY 2024; 406:131011. [PMID: 38901751 DOI: 10.1016/j.biortech.2024.131011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/01/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
Predicting thermodynamic adhesion energies was a critical strategy for mitigating membrane fouling. This study utilized a backpropagation (BP) neural network model to predict the thermodynamic adhesion energies associated with membrane fouling in a planktonic anammox MBR. Acid-base (ΔGAB), electrostatic double layer (ΔGEL), and Lifshitz-van der Waals (ΔGLW) energies were selected as output variables, the training dataset was collected by the advanced Derjaguin-Landau-Verwey-Overbeek (XDLVO) method. Optimization results identified "7-10-3″ as the optimal network structure for the BP model. The prediction results demonstrated a high degree of fit between the predicted and experimental values of thermodynamic adhesion energy (R2 ≥ 0.9278), indicating a robust predictive capability of the model in this study. Overall, the study presented a practical BP neural network model for predicting thermodynamic adhesion energies, significantly enhancing the prediction tool for adhesive fouling behavior in anammox MBRs.
Collapse
Affiliation(s)
- Xiang Cai
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Si Pang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Meijia Zhang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Jiaheng Teng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
2
|
Lu D, Fatehi P. Interaction of deformable solid and hollow particles with rough surface morphology in colloidal systems. J Colloid Interface Sci 2023; 630:497-510. [DOI: 10.1016/j.jcis.2022.10.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/07/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022]
|
3
|
Interfacial interactions of rough spherical surfaces with random topographies. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128570] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Guo X, Wang J. Modeling of the fractal-like adsorption systems based on the diffusion limited aggregation model. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114692] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
5
|
Lu D, Fatehi P. A modeling approach for quantitative assessment of interfacial interaction between two rough particles in colloidal systems. J Colloid Interface Sci 2020; 587:24-38. [PMID: 33360896 DOI: 10.1016/j.jcis.2020.11.121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 01/21/2023]
Abstract
HYPOTHESIS AND BACKGROUND The simulation of rough particle surface is important to understand and control the interface behavior of particles in colloidal systems. Literature analysis suggested a lack of information for an accurate model simulating the interfacial interaction between two rough particles. It is hypothesized that the total interfacial energy developed between two rough particles would depend on the surface morphologies of particles, and it could be predicted if a mathematical model to represent the interaction of two rough particles were created accurately. EXPERIMENTS In this study, mathematical models were developed to determine the interfacial energy created between two particles according to the XDLVO theory by considering the rippled particle theory and surface element integral (SEI) method. Three different scenarios of particle interactions were assumed in the simulation. The present study provides deep insights into particle interactions via considering aspect ratio, size, and surface roughness of two particles in colloidal systems. FINDINGS The assessment of the interfacial interaction revealed that an increase in the aspect ratio, surface roughness, and relative surface roughness of particles would weaken the total interaction energy generated between particles and promote particle aggregation. Increased interaction energy was predicted for the interaction of particles by increasing the particle size. The asperity ratio was more effective than the asperity number in controlling the interfacial energy between two particles. The results of this study could be used for foreseeing the interaction of rough particles, which has a significant application in particle coagulation or dispersion in colloidal systems.
Collapse
Affiliation(s)
- Duowei Lu
- Green Processes Research Centre and Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B5E1, Canada
| | - Pedram Fatehi
- Green Processes Research Centre and Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B5E1, Canada.
| |
Collapse
|
6
|
Giwa A, Dindi A, Kujawa J. Membrane bioreactors and electrochemical processes for treatment of wastewaters containing heavy metal ions, organics, micropollutants and dyes: Recent developments. JOURNAL OF HAZARDOUS MATERIALS 2019; 370:172-195. [PMID: 29958700 DOI: 10.1016/j.jhazmat.2018.06.025] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 06/10/2018] [Accepted: 06/11/2018] [Indexed: 05/26/2023]
Abstract
Research and development activities on standalone systems of membrane bioreactors and electrochemical reactors for wastewater treatment have been intensified recently. However, several challenges are still being faced during the operation of these reactors. The current challenges associated with the operation of standalone MBR and electrochemical reactors include: membrane fouling in MBR, set-backs from operational errors and conditions, energy consumption in electrochemical systems, high cost requirement, and the need for simplified models. The advantage of this review is to present the most critical challenges and opportunities. These challenges have necessitated the design of MBR derivatives such as anaerobic MBR (AnMBR), osmotic MBR (OMBR), biofilm MBR (BF-MBR), membrane aerated biofilm reactor (MABR), and magnetically-enhanced systems. Likewise, electrochemical reactors with different configurations such as parallel, cylindrical, rotating impeller-electrode, packed bed, and moving particle configurations have emerged. One of the most effective approaches towards reducing energy consumption and membrane fouling rate is the integration of MBR with low-voltage electrochemical processes in an electrically-enhanced membrane bioreactor (eMBR). Meanwhile, research on eMBR modeling and sludge reuse is limited. Future trends should focus on novel/fresh concepts such as electrically-enhanced AnMBRs, electrically-enhanced OMBRs, and coupled systems with microbial fuel cells to further improve energy efficiency and effluent quality.
Collapse
Affiliation(s)
- Adewale Giwa
- Department of Chemical Engineering, Khalifa University of Science and Technology, Masdar City campus, P.O. Box 54224, Abu Dhabi, United Arab Emirates.
| | - Abdallah Dindi
- Department of Chemical Engineering, Khalifa University of Science and Technology, Masdar City campus, P.O. Box 54224, Abu Dhabi, United Arab Emirates
| | - Joanna Kujawa
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7, Gagarina Street, 87-100 Torun, Poland
| |
Collapse
|
7
|
Teng J, Shen L, He Y, Liao BQ, Wu G, Lin H. Novel insights into membrane fouling in a membrane bioreactor: Elucidating interfacial interactions with real membrane surface. CHEMOSPHERE 2018; 210:769-778. [PMID: 30036825 DOI: 10.1016/j.chemosphere.2018.07.086] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 07/05/2018] [Accepted: 07/15/2018] [Indexed: 06/08/2023]
Abstract
While governing adhesion/deposition of various foulants on membrane surface and membrane fouling in membrane bioreactors (MBRs), interfacial interactions with real membrane surface have not yet been fully quantified. In this study, theoretical deduction and experiments were carried out to numerically elucidate interfacial interactions in a MBR. A continuous real membrane morphology was reconstructed based on atomic force microscopy (AFM) characterization and triangulation technique. Thereafter, a method to calculate those interactions was established by incorporating the spatial relationship between a foulant and the reconstructed morphology into surface element integration (SEI) method. A case study of the proposed method was conducted. With surface characterization of the foulants and membrane, the interfacial interactions with real membrane morphology were approximated for the first time by computer programming according to composite Simpson's rule. The results showed that rough morphology prolonged the interfacial interactions, indicating the profound role of morphology in the interfacial interactions related with membrane fouling. The new method would provide significant insights into membrane fouling in MBRs.
Collapse
Affiliation(s)
- Jiaheng Teng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Yiming He
- Department of Materials Physics, Zhejiang Normal University, Jinhua, 321004, China
| | - Bao-Qiang Liao
- Department of Chemical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario, P7B 5E1, Canada
| | - Guosheng Wu
- Department of Chemical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario, P7B 5E1, Canada
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
8
|
Kuśnierz M. Scale of Small Particle Population in Activated Sludge Flocs. WATER, AIR, AND SOIL POLLUTION 2018; 229:327. [PMID: 30294049 PMCID: PMC6153693 DOI: 10.1007/s11270-018-3979-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 09/11/2018] [Indexed: 06/08/2023]
Abstract
The light scattering method is a valuable tool for accessing particle size and structure mainly due to fast and the nonintrusive nature of the measurement. The method is based on a scattered intensity pattern and depends on particle volume, particle morphology, the light wavelength and the scattering angle. The light scattering model, for particles characterised by a fractal structure, is enabled with the use of the Rayleigh-Gans-Debye theory under constrained assumptions. The range of validity of the Rayleigh-Gans-Debye is limited when primary particles constituting aggregate have a size close to the wavelength. In this work, a range of particle sizes was characterised in order to achieve a better understanding of the relationship between flocs size and its fractal dimension. Hence, the width of the power law regime is discussed. What is more, a specific fractal dimension value of activated sludge flocs was found for each of the analysed wastewater treatment plant, which suggests that the spatial structure of suspensions constituting the activated sludge is an individual characteristic of each treatment facility. It has been shown that activated sludge consists of microflocs from the range of 1-10 μm, which constitute approximately 90% of all the population.
Collapse
Affiliation(s)
- Magdalena Kuśnierz
- Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
- Institute of Environmental Engineering, Plac Grunwaldzki 24, 50-363 Wroclaw, Poland
| |
Collapse
|
9
|
Cai X, Yu G, Hong H, He Y, Shen L, Lin H. Impacts of morphology on fouling propensity in a membrane bioreactor based on thermodynamic analyses. J Colloid Interface Sci 2018; 531:282-290. [PMID: 30041106 DOI: 10.1016/j.jcis.2018.07.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/07/2018] [Accepted: 07/09/2018] [Indexed: 12/29/2022]
Abstract
Impacts of morphologies of both membrane and foulant on interaction energies related with adhesive fouling in a membrane bioreactor (MBR) were explored by thermodynamic analyses. Interaction energies in three possible interaction scenarios regarding different membrane and foulant morphologies under conditions in this study were quantified according to the thermodynamic methods. It was interestingly found that, strength of total interaction between soluble microbial products (SMPs) and rough membrane was over 20,000 times of that between sludge flocs and rough membrane under same conditions, indicating the extremely higher adhesion ability of SMPs than the large particulate foulants. This result plausibly explained the high fouling propensity of SMPs over sludge flocs. As compared with smooth surfaces, rough surfaces of both membrane and sludge flocs significantly reduced total interaction strength, alleviating adhesive fouling caused by the sludge flocs. Reduce in fractal dimension (Df) of membrane increased adhesive fouling caused by the SMPs, but alleviated adhesive fouling caused by the sludge flocs. These findings gave important implications to better understand and control membrane fouling in MBRs.
Collapse
Affiliation(s)
- Xiang Cai
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Genying Yu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Huachang Hong
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yiming He
- Department of Materials Physics, Zhejiang Normal University, Jinhua 321004, China
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
10
|
A novel integrated method for quantification of interfacial interactions between two rough bioparticles. J Colloid Interface Sci 2018; 516:295-303. [DOI: 10.1016/j.jcis.2018.01.075] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/04/2018] [Accepted: 01/22/2018] [Indexed: 01/06/2023]
|
11
|
Zhang M, Hong H, Lin H, Yu G, Wang F, Liao BQ. Quantitative assessment of interfacial forces between two rough surfaces and its implications for anti-adhesion membrane fabrication. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2017.08.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
12
|
Feng S, Yu G, Cai X, Eulade M, Lin H, Chen J, Liu Y, Liao BQ. Effects of fractal roughness of membrane surfaces on interfacial interactions associated with membrane fouling in a membrane bioreactor. BIORESOURCE TECHNOLOGY 2017; 244:560-568. [PMID: 28803106 DOI: 10.1016/j.biortech.2017.07.160] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/22/2017] [Accepted: 07/26/2017] [Indexed: 06/07/2023]
Abstract
Fractal roughness is one of the most important properties of a fractal surface. In this study, it was found that, randomly rough membrane surface was a fractal surface, which could be digitally modeled by a modified two-variable Weierstrass-Mandelbrot (WM) function. Fractal roughness of membrane surfaces has a typical power function relation with the statistical roughness of the modeled surface. Assessment of interfacial interactions showed that an increase in fractal roughness of membrane surfaces will strengthen and prolong the interfacial interactions between membranes and foulants, and under conditions in this study, will significantly increase the adhesion propensity of a foulant particle on membrane surface. This interesting result can be attributed to that increase in fractal roughness simultaneously improves separation distance and interaction surface area for adhesion of a foulant particle. This study gives deep insights into interfacial interactions and membrane fouling in MBRs.
Collapse
Affiliation(s)
- Shushu Feng
- College of Geography and Environmental Sciences, Science Research Institute, Zhejiang Normal University, Jinhua 321004, PR China
| | - Genying Yu
- College of Geography and Environmental Sciences, Science Research Institute, Zhejiang Normal University, Jinhua 321004, PR China
| | - Xiang Cai
- College of Geography and Environmental Sciences, Science Research Institute, Zhejiang Normal University, Jinhua 321004, PR China
| | - Mahoro Eulade
- College of Geography and Environmental Sciences, Science Research Institute, Zhejiang Normal University, Jinhua 321004, PR China
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Science Research Institute, Zhejiang Normal University, Jinhua 321004, PR China.
| | - Jianrong Chen
- College of Geography and Environmental Sciences, Science Research Institute, Zhejiang Normal University, Jinhua 321004, PR China
| | - Yong Liu
- College of Geography and Environmental Sciences, Science Research Institute, Zhejiang Normal University, Jinhua 321004, PR China
| | - Bao-Qiang Liao
- Department of Chemical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
| |
Collapse
|
13
|
Hong H, Cai X, Shen L, Li R, Lin H. Membrane fouling in a submerged membrane bioreactor: New method and its applications in interfacial interaction quantification. BIORESOURCE TECHNOLOGY 2017; 241:406-414. [PMID: 28582763 DOI: 10.1016/j.biortech.2017.05.096] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 05/14/2017] [Accepted: 05/16/2017] [Indexed: 06/07/2023]
Abstract
Quantification of interfacial interactions between two rough surfaces represents one of the most pressing requirements for membrane fouling prediction and control in membrane bioreactors (MBRs). This study firstly constructed regularly rough membrane and particle surfaces by using rigorous mathematical equations. Thereafter, a new method involving surface element integration (SEI) method, differential geometry and composite Simpson's rule was proposed to quantify the interfacial interactions between the two constructed rough surfaces. This new method were then applied to investigate interfacial interactions in a MBR with the data of surface properties of membrane and foulants experimentally measured. The feasibility of the new method was verified. It was found that asperity amplitude and period of the membrane surface exerted profound effects on the total interaction. The new method had broad potential application fields especially including guiding membrane surface design for membrane fouling mitigation.
Collapse
Affiliation(s)
- Huachang Hong
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China
| | - Xiang Cai
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China
| | - Renjie Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China.
| |
Collapse
|
14
|
Cai X, Yang L, Wang Z, Zhang M, Shen L, Hong H, Lin H, Yu G. Influences of fractal dimension of membrane surface on interfacial interactions related to membrane fouling in a membrane bioreactor. J Colloid Interface Sci 2017; 500:79-87. [DOI: 10.1016/j.jcis.2017.03.107] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/25/2017] [Accepted: 03/27/2017] [Indexed: 01/14/2023]
|
15
|
Zhang M, Zhou X, Shen L, Cai X, Wang F, Chen J, Lin H, Li R, Wu X, Liao BQ. Quantitative evaluation of the interfacial interactions between a randomly rough sludge floc and membrane surface in a membrane bioreactor based on fractal geometry. BIORESOURCE TECHNOLOGY 2017; 234:198-207. [PMID: 28319768 DOI: 10.1016/j.biortech.2017.03.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 02/26/2017] [Accepted: 03/05/2017] [Indexed: 06/06/2023]
Abstract
In this paper, a new method for quantification of interfacial interactions between a randomly rough particle and membrane surface was proposed. It was found that sludge flocs in a membrane bioreactor were of apparent fractal characteristics, and could be modeled by the modified two-variable Weierstrass-Mandelbrot (WM) function. By combining the surface element integration (SEI) method, differential geometry and composite Simpson's rule, the quantitation method for calculating such interfacial interactions was further developed. The correctness and feasibility of the new method were verified. This method was then applied to evaluate the interfacial interactions between a randomly rough particle and membrane surface. It was found that, randomly rough particle possesses stronger interaction strength than regularly rough particle but weaker strength than smooth particle with membrane surface, indicating significant effects of surface morphology and roughness. The proposed method in this study has broad application prospect in membrane fouling study.
Collapse
Affiliation(s)
- Meijia Zhang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China
| | - Xiaoling Zhou
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China
| | - Xiang Cai
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China
| | - Fangyuan Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China
| | - Jianrong Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China.
| | - Renjie Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China
| | - Xilin Wu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China
| | - Bao-Qiang Liao
- Department of Chemical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
| |
Collapse
|
16
|
Quantification of interfacial interactions between a rough sludge floc and membrane surface in a membrane bioreactor. J Colloid Interface Sci 2017; 490:710-718. [DOI: 10.1016/j.jcis.2016.12.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 12/02/2016] [Indexed: 01/12/2023]
|