1
|
Sarangi PK, Srivastava RK, Vivekanand V, Goksen G, Sahoo UK, Thakur TK, Debeaufort F, Uysal-Unalan I, Pugazhendhi A. Recovery of green phenolic compounds from lignin-based source: Role of ferulic acid esterase towards waste valorization and bioeconomic perspectives. ENVIRONMENTAL RESEARCH 2024; 256:119218. [PMID: 38782335 DOI: 10.1016/j.envres.2024.119218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/08/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024]
Abstract
The production of chemicals/products so far relies on fossil-based resources with the creation of several environmental problems at the global level. In this situation, a sustainable and circular economy model is necessitated to mitigate global environmental issues. Production of biowaste from various processing industries also creates environmental issues which would be valorized for the production of industrially important reactive and bioactive compounds. Lignin acts as a vital part in biowaste composition which can be converted into a wide range of phenolic compounds. The phenolic compounds have attracted much attention, owing to their influence on diverse not only organoleptic parameters, such as taste or color, but also active agents for active packaging systems. Crop residues of varied groups, which are an affluent source of lignocellulosic biomass could serve as a renewable resource for the biosynthesis of ferulic acid (FA). FA is obtained by the FA esterase enzyme action, and it can be further converted into various tail end phenolic flavor green compounds like vanillin, vanillic acid and hydroxycinnamic acid. Lignin being renewable in nature, processing and management of biowastes towards sustainability is the need as far as the global industrial point is concerned. This review explores all the approaches for conversion of lignin into value-added phenolic compounds that could be included to packaging applications. These valorized products can exhibit the antioxidant, antimicrobial, cardioprotective, anti-inflammatory and anticancer properties, and due to these features can emerge to incorporate them into production of functional foods and be utilization of them at active food packaging application. These approaches would be an important step for utilization of the recovered bioactive compounds at the nutraceutical and food industrial sectors.
Collapse
Affiliation(s)
| | - Rajesh Kumar Srivastava
- Department of Biotechnology, GST, Gandhi Institute of Technology and Management (GITAM), Visakhapatnam, 530045, A.P., India
| | - Vivekanand Vivekanand
- Center for Energy and Environment, Malaviya National Institute of Technology Jaipur, 302 017, Rajasthan, India
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences, Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100, Mersin, Turkey
| | | | | | - Frederic Debeaufort
- Department of BioEngineering, Institute of Technology Dijon Auxerre, University of Burgundy, 7 Blvd Docteur Petitjean, 20178 Dijon Cedex, France
| | - Ilke Uysal-Unalan
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200, Aarhus N, Denmark; CiFOOD - Center for Innovative Food Research, Aarhus University, Agro Food Park 48, 8200, Aarhus N, Denmark
| | - Arivalagan Pugazhendhi
- School of Engineering, Lebanese American University, Byblos, Lebanon; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India.
| |
Collapse
|
2
|
Zhang Y, Ye Q, Liu B, Feng Z, Zhang X, Luo M, Yang L. Fermenting Distiller's Grains by the Domesticated Microbial Consortium To Release Ferulic Acid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72. [PMID: 38598779 PMCID: PMC11046480 DOI: 10.1021/acs.jafc.3c08067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024]
Abstract
The microbial consortium FA12 that can release ferulic acid (FA) by fermenting distiller's grains was screened from Daqu. Taibaiella, Comamonadaceae, and Ochrobacum were highly abundant in FA12 by 16S rRNA gene sequencing. In the process of long-term acclimation with distiller's grains as a medium, the biomass of FA12 remained stable, and the pH value of fermentation liquid was also relatively stable. Meanwhile, the activities of cellulase, xylanase, and feruloyl esterase secreted by FA12 were stable in the ranges of 0.2350-0.4470, 0.1917-0.3078, and 0.1103-0.1595 U/mL, respectively, and the release of FA could reach 133.77 μg/g. It is proven that the microbial consortium has good genetic stability. In addition, the structural changes of lignocellulose in distiller's grains before and after fermentation were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR), and the changes of distiller's grains weight and lignocellulose content before and after fermentation were also detected. These results all confirmed that FA12 had the function of degrading distiller's grains. In this study, we explored a method to use microbial communities to release FA from distiller's grains and degrade lignocellulose in the waste, which opened up a new way for the application of the high value of lost waste.
Collapse
Affiliation(s)
- Yao Zhang
- College
of Bioengineering, Sichuan University of
Science & Engineering, Yinbin 643000, China
| | - Qiang Ye
- College
of Bioengineering, Sichuan University of
Science & Engineering, Yinbin 643000, China
| | - Bo Liu
- College
of Bioengineering, Sichuan University of
Science & Engineering, Yinbin 643000, China
| | - Zhiping Feng
- College
of Bioengineering, Sichuan University of
Science & Engineering, Yinbin 643000, China
| | - Xian Zhang
- College
of Bioengineering, Sichuan University of
Science & Engineering, Yinbin 643000, China
| | - Mingyou Luo
- Xufu
Distillery Co. Ltd., Yibin 644000, China
| | - Lijuan Yang
- College
of Bioengineering, Sichuan University of
Science & Engineering, Yinbin 643000, China
- Liquor
Making Bio-Technology & Application of Key Laboratory of Sichuan
Province, Sichuan University of Science
& Engineering, Yibin 643000, China
| |
Collapse
|
3
|
Zhu Z, Chen R, Zhang L. Simple phenylpropanoids: recent advances in biological activities, biosynthetic pathways, and microbial production. Nat Prod Rep 2024; 41:6-24. [PMID: 37807808 DOI: 10.1039/d3np00012e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Covering: 2000 to 2023Simple phenylpropanoids are a large group of natural products with primary C6-C3 skeletons. They are not only important biomolecules for plant growth but also crucial chemicals for high-value industries, including fragrances, nutraceuticals, biomaterials, and pharmaceuticals. However, with the growing global demand for simple phenylpropanoids, direct plant extraction or chemical synthesis often struggles to meet current needs in terms of yield, titre, cost, and environmental impact. Benefiting from the rapid development of metabolic engineering and synthetic biology, microbial production of natural products from inexpensive and renewable sources provides a feasible solution for sustainable supply. This review outlines the biological activities of simple phenylpropanoids, compares their biosynthetic pathways in different species (plants, bacteria, and fungi), and summarises key research on the microbial production of simple phenylpropanoids over the last decade, with a focus on engineering strategies that seem to hold most potential for further development. Moreover, constructive solutions to the current challenges and future perspectives for industrial production of phenylpropanoids are presented.
Collapse
Affiliation(s)
- Zhanpin Zhu
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai 200433, China.
| | - Ruibing Chen
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai 200433, China.
| | - Lei Zhang
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai 200433, China.
- Institute of Interdisciplinary Integrative Medicine Research, Medical School of Nantong University, Nantong 226001, China
- Innovative Drug R&D Centre, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| |
Collapse
|
4
|
Lan J, Ji S, Yang C, Cai G, Lu J, Li X. Extracellular Expression of Feruloyl Esterase and Xylanase in Escherichia coli for Ferulic Acid Production from Agricultural Residues. Microorganisms 2023; 11:1869. [PMID: 37630429 PMCID: PMC10456899 DOI: 10.3390/microorganisms11081869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
There is still a large amount of ferulic acid (FA), an outstanding antioxidant, present in agricultural residues. Enzymatic hydrolysis has been regarded as the most effective way to release FA. This present study therefore selected feruloyl esterase (FAE) and xylanase (XYN) from the metagenomes of a cow rumen and a camel rumen, respectively, for their recombinant expression in Escherichia coli BL21 and further application in releasing FA. After screening the candidate signal peptides, the optimal one for each enzyme, which were selected as SP1 and SP4, respectively, was integrated into the vectors pET22b(+) and pETDuet-1. Among the generated E. coli strains SP1-F, SP4-X, and SP1-F-SP4-X that could express extracellular enzymes either separately or simultaneously, the latter one performed the best in relation to degrading the biomass and releasing FA. Under the optimized culture and induction conditions, the strain SP1-F-SP4-X released 90% of FA from 10% of de-starched wheat bran and produced 314.1 mg/L FA, which was deemed to be the highest obtained value to the best of our knowledge. This result could pave a way for the re-utilization of agricultural residues and enhancing their add-value.
Collapse
Affiliation(s)
- Jiaxin Lan
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (J.L.); (S.J.); (C.Y.); (G.C.); (J.L.)
| | - Shujie Ji
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (J.L.); (S.J.); (C.Y.); (G.C.); (J.L.)
| | - Chuanjia Yang
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (J.L.); (S.J.); (C.Y.); (G.C.); (J.L.)
| | - Guolin Cai
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (J.L.); (S.J.); (C.Y.); (G.C.); (J.L.)
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Jian Lu
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (J.L.); (S.J.); (C.Y.); (G.C.); (J.L.)
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Xiaomin Li
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (J.L.); (S.J.); (C.Y.); (G.C.); (J.L.)
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| |
Collapse
|
5
|
Lo Verde C, Pepra-Ameyaw NB, Drucker CT, Okumura TLS, Lyon KA, Muniz JC, Sermet CS, Were Senger L, Owens CP. A highly active esterase from Lactobacillus helveticus hydrolyzes chlorogenic acid in sunflower meal to prevent chlorogenic acid induced greening in sunflower protein isolates. Food Res Int 2022; 162:111996. [PMID: 36461298 DOI: 10.1016/j.foodres.2022.111996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 09/20/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022]
Abstract
Chlorogenic acid (CGA) is an ester between caffeic and quinic acid. It is found in many foods and reacts with free amino groups in proteins at alkaline pH, leading to the formation of an undesirable green pigment in sunflower seed-derived ingredients. This paper presents the biochemical characterization and application of a highly active chlorogenic acid esterase from Lactobacillus helveticus. The enzyme is one of the most active CGA esterases known to date with a Km of 0.090 mM and a kcat of 82.1 s-1. The CGA esterase is easily expressed recombinantly in E. coli in large yields and is stable over a wide range of pH and temperatures. We characterized CGA esterase's kinetic properties in sunflower meal and demonstrated that the enzyme completely hydrolyzes CGA in the meal. Finally, we showed that CGA esterase treatment of sunflower seed meal enables the production of pale brown sunflower protein isolates using alkaline extraction. This work will allow for more widespread use of sunflower-derived products in applications where neutrally-colored food products are desired.
Collapse
Affiliation(s)
- Christine Lo Verde
- Schmid College of Science and Technology, Chapman University, One University Drive, Orange CA 92866, USA.
| | - Nana Baah Pepra-Ameyaw
- Schmid College of Science and Technology, Chapman University, One University Drive, Orange CA 92866, USA.
| | - Charles T Drucker
- Schmid College of Science and Technology, Chapman University, One University Drive, Orange CA 92866, USA.
| | - Tracie L S Okumura
- Schmid College of Science and Technology, Chapman University, One University Drive, Orange CA 92866, USA.
| | - Katherine A Lyon
- Schmid College of Science and Technology, Chapman University, One University Drive, Orange CA 92866, USA.
| | - Julia C Muniz
- Schmid College of Science and Technology, Chapman University, One University Drive, Orange CA 92866, USA.
| | - Chloe S Sermet
- Schmid College of Science and Technology, Chapman University, One University Drive, Orange CA 92866, USA.
| | - Lilian Were Senger
- Schmid College of Science and Technology, Chapman University, One University Drive, Orange CA 92866, USA.
| | - Cedric P Owens
- Schmid College of Science and Technology, Chapman University, One University Drive, Orange CA 92866, USA.
| |
Collapse
|
6
|
Liu X, Jiang Y, Liu H, Yuan H, Huang D, Wang T. Research progress and biotechnological applications of feruloyl esterases. BIOCATAL BIOTRANSFOR 2022. [DOI: 10.1080/10242422.2022.2116277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Xuejun Liu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
| | - Yi Jiang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
| | - Hongling Liu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
| | - Haibo Yuan
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
| | - Di Huang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
| | - Tengfei Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
| |
Collapse
|
7
|
Wang H, Qi X, Gao S, Zhang Y, An Y. Biochemical characterization of an engineered bifunctional xylanase/feruloyl esterase and its synergistic effects with cellulase on lignocellulose hydrolysis. BIORESOURCE TECHNOLOGY 2022; 355:127244. [PMID: 35489578 DOI: 10.1016/j.biortech.2022.127244] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
Herein, the xylanase and feruloyl esterase domains of the xylanase/feruloyl esterase bifunctional enzyme (Xyn-Fae) from Prevotella ruminicola 23 were identified using N- and C-terminal truncation mutagenesis. In addition, a novel and more efficient xylanase/feruloyl esterase bifunctional enzyme XynII-Fae was constructed, and its synergistic action with a commercial cellulase for lignocellulose hydrolysis was studied. When 40% cellulase was replaced by XynII-Fae, the production of reducing sugars increased by 65% than that with the cellulase alone, and the conversions of xylan and glucan were increased by 125.1% and 54.3%, respectively. When 80% cellulase was substituted by XynII-Fae, up to 43.5 μg/mL ferulic acid and 418.7 μg/mL acetic acid were obtained. The XynII-Fae could also accelerate the hydrolysis of wheat straw and sugarcane bagasse with commercial cellulase. These results indicated that the synergistic action of XynII-Fae with cellulase could dramatically improve the hydrolysis efficiency of lignocellulose, showing the great potential for industrial applications.
Collapse
Affiliation(s)
- Hongling Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, China; College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Xianghui Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Song Gao
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Yifeng Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang, China; College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Yingfeng An
- College of Food Science, Shenyang Agricultural University, Shenyang, China; College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China.
| |
Collapse
|
8
|
Abstract
Within the kingdom of fungi, the division Basidiomycota represents more than 30,000 species, some with huge genomes indicating great metabolic potential. The fruiting bodies of many basidiomycetes are appreciated as food (“mushrooms”). Solid-state and submerged cultivation processes have been established for many species. Specifically, xylophilic fungi secrete numerous enzymes but also form smaller metabolites along unique pathways; both groups of compounds may be of interest to the food processing industry. To stimulate further research and not aim at comprehensiveness in the broad field, this review describes some recent progress in fermentation processes and the knowledge of fungal genetics. Processes with potential for food applications based on lipases, esterases, glycosidases, peptidases and oxidoreductases are presented. The formation and degradation of colourants, the degradation of harmful food components, the formation of food ingredients and particularly of volatile and non-volatile flavours serve as examples. In summary, edible basidiomycetes are foods—and catalysts—for food applications and rich donors of genes to construct heterologous cell factories for fermentation processes. Options arise to support the worldwide trend toward greener, more eco-friendly and sustainable processes.
Collapse
|
9
|
Zhang R, Lin D, Zhang L, Zhan R, Wang S, Wang K. Molecular and Biochemical Analyses of a Novel Trifunctional Endoxylanase/Endoglucanase/Feruloyl Esterase from the Human Colonic Bacterium Bacteroides intestinalis DSM 17393. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4044-4056. [PMID: 35316064 DOI: 10.1021/acs.jafc.2c01019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A novel enzyme Bi76 comprising GH10, E_set_Esterase_N, and CE1 modules was identified, with the highest homology (62.9%) with a bifunctional endoxylanase/feruloyl esterase among characterized enzymes. Interestingly, Bi76 hydrolyzed glucan substrates besides xylans and feruloylated substrates, suggesting that it is the first characterized trifunctional endoxylanase/endoglucanase/feruloyl esterase. Analyses of truncation variants revealed that GH10 and E_set_Esterase_N + CE1 modules encoded endoxylanase/endoglucanase and feruloyl esterase activities, respectively. Synergism analyses indicated that endoxylanase, α-l-arabinofuranosidase, and feruloyl esterase acted cooperatively in releasing ferulic acid (FA) and xylooligosaccharides from feruloylated arabinoxylan. The interdomain synergism of Bi76 overmatched the intermolecular synergism of TM1 and TM2. Importantly, Bi76 exhibited good capacity in producing FA, releasing 5.20, 4.38, 2.12, 1.35, 0.46, and 0.19 mg/g from corn bran, corn cob, wheat bran, corn stover, rice husk, and rice bran, respectively. This study expands the trifunctional endoxylanase/endoglucanase/feruloyl esterase repertoire and demonstrates the great potential of Bi76 in agricultural residue utilization.
Collapse
Affiliation(s)
- Ruiqin Zhang
- Research Center of Chinese Herbal Resource Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, People's Republic of China
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education of the People's Republic of China, Guangzhou, Guangdong 510006, People's Republic of China
| | - Dongxia Lin
- Research Center of Chinese Herbal Resource Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, People's Republic of China
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education of the People's Republic of China, Guangzhou, Guangdong 510006, People's Republic of China
| | - Liang Zhang
- Research Center of Chinese Herbal Resource Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, People's Republic of China
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education of the People's Republic of China, Guangzhou, Guangdong 510006, People's Republic of China
| | - Ruoting Zhan
- Research Center of Chinese Herbal Resource Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, People's Republic of China
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education of the People's Republic of China, Guangzhou, Guangdong 510006, People's Republic of China
| | - Sidi Wang
- College of Fundamental Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, People's Republic of China
| | - Kui Wang
- Research Center of Chinese Herbal Resource Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, People's Republic of China
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education of the People's Republic of China, Guangzhou, Guangdong 510006, People's Republic of China
| |
Collapse
|
10
|
Siebert M, Krings U, Günther T, Fragalas A, Berger RG. Enzymatic hydrolysis of kaempferol 3-O-(2‴-O-sinapoyl-β-sophoroside), the key bitter compound of rapeseed (Brassica napus L.) protein isolate. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2179-2182. [PMID: 34580868 DOI: 10.1002/jsfa.11547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 08/30/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The use of rapeseed protein for human nutrition is primarily limited by its strong bitterness, which is why the key bitter compound, kaempferol 3-O-(2‴-O-sinapoyl-β-sophoroside), is enzymatically degraded. RESULTS Mass spectrometry analyses of an extract from an untreated rapeseed protein isolate gave three signals for m/z 815 [M-H]. The predominant compound among the three compounds was confirmed as kaempferol-3-O-(2‴-O-sinapoyl-β-sophoroside). Enzymatic hydrolysis of this key bitter compound was achieved using a sinapyl ester cleaving side activity of a ferulic acid esterase (FAE) from the basidiomycete Schizophyllum commune (ScoFAE). Recombinant ferulic acid esterases from Streptomyces werraensis (SwFAE) and from Pleurotus eryngii (PeFAE) possessed better cleavage activity towards methyl sinapate but did not hydrolyze the sinapyl ester linkage of the bitter kaempferol sophoroside. CONCLUSION Kaempferol-3-O-(2‴-O-sinapoyl-β-sophoroside) was successfully degraded by enzymatic treatment with ScoFAE, which may provide a means to move the status of rapeseed protein from feed additive to food ingredient. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Mareike Siebert
- Institute of Food Chemistry, Gottfried Wilhelm Leibniz University, Hannover, Germany
| | - Ulrich Krings
- Institute of Food Chemistry, Gottfried Wilhelm Leibniz University, Hannover, Germany
| | - Thorben Günther
- Institute of Food Chemistry, Gottfried Wilhelm Leibniz University, Hannover, Germany
| | | | - Ralf G Berger
- Institute of Food Chemistry, Gottfried Wilhelm Leibniz University, Hannover, Germany
| |
Collapse
|
11
|
Fu Z, Zhu Y, Teng C, Fan G, Li X. Biochemical characterization of a novel feruloyl esterase from Burkholderia pyrrocinia B1213 and its application for hydrolyzing wheat bran. 3 Biotech 2022; 12:24. [PMID: 35036272 PMCID: PMC8695398 DOI: 10.1007/s13205-021-03066-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 11/15/2021] [Indexed: 01/03/2023] Open
Abstract
In this study, a novel feruloyl esterase (BpFae) from Burkholderia pyrrocinia B1213 was purified, biochemically characterized, and applied in releasing ferulic acid from wheat bran. The molecular mass of BpFae was approximately 60 kDa by SDS-PAGE, and the enzyme was a homomultimer in solution. BpFae displayed maximum activity at pH 4.5-5.0 and was stable at pH 3.0-7.0. The optimal temperature for BpFae was 50 °C. BpFae activity was not affected by most metal ions tested and was significantly increased by Tween-20 and Triton-100. Purified BpFae exhibited a preference for methyl ferulate (41.78 U mg-1) over methyl p-coumarate (38.51 U mg-1) and methyl caffeate (35.36 U mg-1) and had the lowest activity on methyl sinapate (1.79 U mg-1). Under the optimum conditions, the K m and V max for methyl ferulate were 0.53 mM and 86.74 U mg-1, respectively. Residues Ser209, His492, and Glu245 in the catalytic pocket of BpFae could form hydrogen bonds with the substrate and were crucial for catalytic activity and substrate specificity. When G11 xylanase XynA and BpFae were used separately for hydrolyzing de-starched wheat bran (DSWB), the ferulic acid released was undetectable and 1.78%, respectively, whereas it was increased to 59.26% using the mixture of the two enzymes. Thus, BpFae is considered an attractive candidate for the production of ferulic acid from agricultural by-products. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-03066-2.
Collapse
Affiliation(s)
- Zhilei Fu
- grid.411615.60000 0000 9938 1755Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), No 11 Fucheng Street, Haidian District, Beijing, 100048 China ,grid.411615.60000 0000 9938 1755School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, 100048 China
| | - Yuting Zhu
- grid.411615.60000 0000 9938 1755Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), No 11 Fucheng Street, Haidian District, Beijing, 100048 China ,grid.411615.60000 0000 9938 1755School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, 100048 China
| | - Chao Teng
- grid.411615.60000 0000 9938 1755Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), No 11 Fucheng Street, Haidian District, Beijing, 100048 China ,grid.411615.60000 0000 9938 1755School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, 100048 China
| | - Guangsen Fan
- grid.411615.60000 0000 9938 1755Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), No 11 Fucheng Street, Haidian District, Beijing, 100048 China ,grid.411615.60000 0000 9938 1755School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, 100048 China
| | - Xiuting Li
- grid.411615.60000 0000 9938 1755Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), No 11 Fucheng Street, Haidian District, Beijing, 100048 China ,grid.411615.60000 0000 9938 1755School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, 100048 China ,grid.411615.60000 0000 9938 1755Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, 100048 China
| |
Collapse
|
12
|
Liu S, Soomro L, Wei X, Yuan X, Gu T, Li Z, Wang Y, Bao Y, Wang F, Wen B, Xin F. Directed evolution of feruloyl esterase from Lactobacillus acidophilus and its application for ferulic acid production. BIORESOURCE TECHNOLOGY 2021; 332:124967. [PMID: 33845316 DOI: 10.1016/j.biortech.2021.124967] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
Producing ferulic acid (FA) from the natural substrate with feruloyl esterase is promising in industries, screening and engineering new enzymes with high efficiency to increase the FA yield is of great concern. Here, the feruloyl esterase of Lactobacillus acidophilus (FAELac) was heterologous expressed and the FAELac with different oligomerization states was separated. Interestingly, the activity of dimer was 37-fold higher than high-polymer. To further enhance the efficiency of FAELac, eight mutants were generated based on the simulated structure, of which Q198A, Q134T enhanced the catalytic efficiency by 5.4- and 4.3-fold in comparison with the wild type. Moreover, higher yields of FA (2.21, 6.60, and 1.67 mg/g substrate, respectively) were released by the mutants from de-starched wheat bran, insoluble wheat arabinoxylan, and steam-exploded corn stover. These results indicated that improving the purification process, engineering new FAELac and substrates bias studies hold great potential for increasing FA production yield.
Collapse
Affiliation(s)
- Shujun Liu
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lubna Soomro
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xue Wei
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xufeng Yuan
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Tianyi Gu
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhen Li
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yulu Wang
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuming Bao
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fengzhong Wang
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Boting Wen
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Fengjiao Xin
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
13
|
Alternative Routes for the Production of Natural 4-Vinylguaiacol from Sugar Beet Fiber Using Basidiomycetous Enzymes. Catalysts 2021. [DOI: 10.3390/catal11050631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Traditional smoking generates not only the impact flavor compound 4-vinylguaiacol, but concurrently many unwanted and potent toxic compounds such as polycyclic aromatic hydrocarbons. Enzyme technology provides a solution without any side-product formation. A feruloyl esterase from Rhizoctonia solani (RspCAE) liberated ferulic acid from low-priced sugar beet fiber. Decarboxylation of ferulic acid to 4-vinylguaiacol was achieved by a second enzyme from Schizophyllum commune (ScoFAD). Both enzymes were covalently immobilized on agarose to enable reusability in a fixed-bed approach. The two enzyme cascades showed high conversion rates with yields of 0.8 and 0.95, respectively, and retained activity for nearly 80 h of continuous operation. The overall productivity of the model process with bed volumes of 300 µL and a substrate flow rate of 0.25 mL min−1 was 3.98 mg 4-vinylguaiacol per hour. A cold online solid phase extraction using XAD4 was integrated into the bioprocess and provided high recovery rates during multiple elution steps. Attempting to facilitate the bioprocess, a fused gene coding for the two enzymes and a set of different linker lengths and properties was constructed and introduced into Komagataella phaffii. Longer and rigid linkers resulted in higher activity of the fusion protein with a maximum of 67 U L−1.
Collapse
|
14
|
Li JS, Lau YQ, Sun TY, Chen CS. Purification and biochemical characterization of an alkaline feruloyl esterase from Penicillium sumatrense NCH-S2 using rice bran as substrate. CYTA - JOURNAL OF FOOD 2021. [DOI: 10.1080/19476337.2020.1844300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Jia-Shiun Li
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Yie-Qie Lau
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Tzu-Ying Sun
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Chin-Shuh Chen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan, ROC
| |
Collapse
|
15
|
Detering T, Mundry K, Berger RG. Generation of 4-vinylguaiacol through a novel high-affinity ferulic acid decarboxylase to obtain smoke flavours without carcinogenic contaminants. PLoS One 2020; 15:e0244290. [PMID: 33347481 PMCID: PMC7751879 DOI: 10.1371/journal.pone.0244290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/08/2020] [Indexed: 11/18/2022] Open
Abstract
Traditional smoke flavours bear the risk of containing a multitude of contaminating carcinogenic side-products. Enzymatic decarboxylation of ferulic acid released from agro-industrial side-streams by ferulic acid esterases (FAE) enables the sustainable generation of pure, food grade 4-vinylguaiacol (4-VG), the impact compound of smoke flavour. The first basidiomycetous ferulic acid decarboxylase (FAD) was isolated from Schizophyllum commune (ScoFAD) and heterologously produced by Komagataella phaffii. It showed a molecular mass of 21 kDa, catalytic optima at pH 5.5 and 35°C, and a sequence identity of 63.6% to its next relative, a FAD from the ascomycete Cordyceps farinosa. The ScoFAD exhibited a high affinity to its only known substrate ferulic acid (FA) of 0.16 mmol L-1 and a turnover number of 750 s-1. The resulting catalytic efficiency kcat KM-1 of 4,779 L s-1 mmol-1 exceeded the next best known enzyme by more than a factor of 50. Immobilised on AminoLink Plus Agarose, ScoFAD maintained its activity for several days. The combination with FAEs and agro-industrial side-streams paves the way for a new generation of sustainable, clean, and safe smoke flavours.
Collapse
Affiliation(s)
- Thorben Detering
- Institut of Food Chemistry, Gottfried Wilhelm Leibniz Universität Hannover, Hanover, Lower Saxony, Germany
- * E-mail:
| | - Katharina Mundry
- Institut of Food Chemistry, Gottfried Wilhelm Leibniz Universität Hannover, Hanover, Lower Saxony, Germany
| | - Ralf G. Berger
- Institut of Food Chemistry, Gottfried Wilhelm Leibniz Universität Hannover, Hanover, Lower Saxony, Germany
| |
Collapse
|
16
|
Evaluating Feruloyl Esterase—Xylanase Synergism for Hydroxycinnamic Acid and Xylo-Oligosaccharide Production from Untreated, Hydrothermally Pre-Treated and Dilute-Acid Pre-Treated Corn Cobs. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10050688] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Agricultural residues are considered the most promising option as a renewable feedstock for biofuel and high valued-added chemical production due to their availability and low cost. The efficient enzymatic hydrolysis of agricultural residues into value-added products such as sugars and hydroxycinnamic acids is a challenge because of the recalcitrant properties of the native biomass. Development of synergistic enzyme cocktails is required to overcome biomass residue recalcitrance, and achieve high yields of potential value-added products. In this study, the synergistic action of two termite metagenome-derived feruloyl esterases (FAE5 and FAE6), and an endo-xylanase (Xyn11) from Thermomyces lanuginosus, was optimized using 0.5% (w/v) insoluble wheat arabinoxylan (a model substrate) and then applied to 1% (w/v) corn cobs for the efficient production of xylo-oligosaccharides (XOS) and hydroxycinnamic acids. The enzyme combination of 66% Xyn11 and 33% FAE5 or FAE6 (protein loading) produced the highest amounts of XOS, ferulic acid, and p-coumaric acid from untreated, hydrothermal, and acid pre-treated corn cobs. The combination of 66% Xyn11 and 33% FAE6 displayed an improvement in reducing sugars of approximately 1.9-fold and 3.4-fold for hydrothermal and acid pre-treated corn cobs (compared to Xyn11 alone), respectively. The hydrolysis product profiles revealed that xylobiose was the dominant XOS produced from untreated and pre-treated corn cobs. These results demonstrated that the efficient production of hydroxycinnamic acids and XOS from agricultural residues for industrial applications can be achieved through the synergistic action of FAE5 or FAE6 and Xyn11.
Collapse
|
17
|
Wang R, Yang J, Jang JM, Liu J, Zhang Y, Liu L, Yuan H. Efficient ferulic acid and xylo-oligosaccharides production by a novel multi-modular bifunctional xylanase/feruloyl esterase using agricultural residues as substrates. BIORESOURCE TECHNOLOGY 2020; 297:122487. [PMID: 31812598 DOI: 10.1016/j.biortech.2019.122487] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 06/10/2023]
Abstract
Liberating high value-added compounds ferulic acid (FA) and xylo-oligosaccharides (XOSs) from agricultural residues is a promising strategy for the utilization of lignocellulose. In this study, a bifunctional xylanase/feruloyl esterase from bacterial consortium EMSD5 was heterogeneously expressed in Escherichia coli. Depending on the inter-domain synergism of the recombinant enzyme rXyn10A/Fae1A, high yields of FA (2.78, 1.82, 1.15 and 7.31 mg/g substrate, respectively) were obtained from 20 mg in-soluble wheat arabinoxylan, de-starched wheat bran, ultrafine-grinding corn stover and steam-exploded corncob. Meanwhile, 3.210, 1.235, 1.215 and 0.823 mg xylose/XOSs were also released. For cost-saving enzyme production, we firstly constructed a recombinant E. coli, which could secrete the bifunctional xylanase/feruloyl esterase out of cells. When the recombinant E. coli was cultured in medium containing 200 mg de-starched wheat bran, 474 μg FA and 18.2 mg xylose/XOSs were also detected. Hence, rXyn10A/Fae1A and the recombinant strain showed great applied potential for FA and XOSs production.
Collapse
Affiliation(s)
- Ruonan Wang
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jinshui Yang
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jin Myong Jang
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China; School of Lifesciences, Kim Il Sung University, Pyongyang, Democratic People's Republic of Korea
| | - Jiawen Liu
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yu Zhang
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Liang Liu
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hongli Yuan
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China.
| |
Collapse
|
18
|
Abstract
The native extractable arabinoxylans (AX) from wheat bran were cross-linked by the commercial laccase C (LccC) and self-produced laccases from Funalia trogii (LccFtr) and Pleurotus pulmonarius (LccPpu) (0.04 U/µg FA, each). Dynamic oscillation measurements of the 6% AX gels demonstrated a storage modulus of 9.4 kPa for LccC, 9.8 kPa for LccFtr, and 10.0 kPa for LccPpu. A loss factor ≤ 0.6 was recorded in the range from 20 to 80 Hz for all three laccases, and remained constant for four weeks of storage, when LccFtr and LccPpu were used. Arabinoxylan gel characteristics, including high water holding capacity, swelling ratio in saliva, and heat resistance indicated a covalently cross-linked network. Neither the mediator compounds caffeic acid and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS), nor citrus pectin, enhanced the elastic properties of the gels. Using laccases as an oxidant provided gels with a solid and stable texture, comparable in firmness to traditional gelatin gels. Thus, AX gels can be presented in the vegan, halal, and kosher food markets. They may also find use in pharmaceutical and other industrial applications.
Collapse
|
19
|
Cross-Linking of Fibrex Gel by Fungal Laccase: Gel Rheological and Structural Characteristics. Processes (Basel) 2019. [DOI: 10.3390/pr8010016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Sugar beet fibre (fibrex) is an abundant side-stream from the sugar refining industry. A self-produced laccase from Funalia trogii (LccFtr) (0.05 U/µg FA) successfully cross-linked fibrex to an edible gel. Dynamic oscillation measurements of the 10% fibrex gels showed a storage modulus of 5.52 kPa and loss factors ≤ 0.36 in the range from 20 to 80 Hz. Comparing storage stability of sweetened 10% fibrex gels with sweetened commercial 6% gelatin gels (10% and 30% d-sucrose) indicated a constant storage modulus and loss factors ≤ 0.7 during four weeks of storage in fibrex gels. Loss factors of sweetened gelatin gels were ≤0.2, and their storage modulus decreased from 9 to 7 kPa after adding d-sucrose and remained steady for four weeks of storage. Fibrex gel characteristics, including high water holding capacity, swelling ratio in saliva, and heat resistance are attributed to a covalently cross-linked network. Vanillin, as a mediator, and citrus pectin did not enhance covalent cross-links and elastic properties of the fibrex gels. Thus, laccase as an oxidative agent provided gels with a solid and stable texture. Fibrex gels may find uses in pharmaceutical and other industrial applications, which require a heat-resistant gel that forms easily at room temperature. They also represent an ethical alternative for manufacturing vegan, halal, and kosher food.
Collapse
|
20
|
Highly Efficient Extraction of Ferulic Acid from Cereal Brans by a New Type A Feruloyl Esterase from Eupenicillium parvum in Combination with Dilute Phosphoric Acid Pretreatment. Appl Biochem Biotechnol 2019; 190:1561-1578. [PMID: 31792788 DOI: 10.1007/s12010-019-03189-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 11/11/2019] [Indexed: 12/13/2022]
Abstract
Feruloyl esterase (FAE) is a critical enzyme in bio-extraction of ferulic acid (FA) from plant cell wall. A new FAE (EpFAE1) encoding gene was isolated from Eupenicillium parvum and heterologously expressed in Pichia pastoris cells. Based on phylogenetic tree analysis, the protein EpFAE1 belongs to type A of the seventh FAE subfamily. Using methyl ferulate as substrate, the optimum temperature and pH for the catalytic activity of EpFAE1 were 50 °C and 5.5, respectively. The enzyme exhibited high stability at 50 °C, in a wide pH range (3.0-11.0), or in the presence of 2 M of NaCl. Together with the endo-xylanase EpXYN1, EpFAE1 released 72.32% and 4.00% of the alkali-extractable FA from de-starched wheat bran (DSWB) or de-starched corn bran (DSCB), respectively. Meanwhile, the substrates were pretreated with 1.75% (for DSWB) or 1.0% (for DSCB) of phosphoric acid (PA) at 90 °C for 12 h, followed by enzymatic hydrolysis of the soluble and insoluble fractions. The release efficiencies of FA were up to 84.64% for DSWB and 66.73% for DSCB. Combined dilute PA pretreatment with enzymatic hydrolysis is a low-cost and highly efficient method for the extraction of FA from cereal brans.
Collapse
|
21
|
Advances in combined enzymatic extraction of ferulic acid from wheat bran. N Biotechnol 2019; 56:38-45. [PMID: 31731038 DOI: 10.1016/j.nbt.2019.10.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 12/15/2022]
Abstract
Wheat bran could be utilised as feedstock for innovative and sustainable biorefinery processes. Here, an enzymatic hydrolysis process for ferulic acid (FA) extraction was optimised step by step for total wheat bran (Tritello) and then also applied to the outer bran layer (Bran 1). Proteins, reducing sugars, total phenols and FA were quantified. The highest FA yields (0.82-1.05 g/kg bran) were obtained either by rehydrating the bran by autoclaving (Tritello) or by steam explosion (Bran 1) using a bran/water ratio of 1:20, followed by enzymatic pre-treatment with Alcalase and Termamyl, to remove protein and sugars, and a final enzymatic hydrolysis with Pentopan and feruloyl esterase to solubilise phenol. FA was recovered from the final digestate via solid phase extraction. A 40-fold scale-up was also performed and the release of compounds along all the process steps and at increasing incubation times was monitored. Results showed that FA was initially present at a minimum level while it was specifically released during the enzymatic treatment. In the final optimized process, the FA extraction yield was higher than that obtained with NaOH control hydrolysis while, in comparison with other FA enzymatic extraction methods, fewer process steps were required and no buffers, strong acid/alkali nor toxic compounds were used. Furthermore, the proposed process may be easily scaled-up, confirming the feasibility of wheat bran valorisation by biorefinery processes to obtain valuable compounds having several areas of potential industrial exploitation.
Collapse
|
22
|
Siebert M, Berger RG, Pfeiffer F. Hydrolysis of chlorogenic acid in apple juice using a p-coumaryl esterase of Rhizoctonia solani. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:6644-6648. [PMID: 31325326 DOI: 10.1002/jsfa.9940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Apple juice is rich in polyphenolic compounds, especially in chlorogenic acid. A sour and bitter taste has been attributed to the compound. Chlorogenic acid in coffee powder was quickly hydrolysed by a p-coumaryl esterase of Rhizoctonia solani (RspCAE) at its optimal pH of 6.0. It was unknown, however, if RspCAE would also degrade chlorogenic acid under the strongly acidic conditions (pH 3.3) present in apple juice. RESULTS Treatment of apple juice with RspCAE led to a chlorogenic acid degradation from 53.38 ± 0.94 mg L-1 to 21.02 ± 1.47 mg L-1 . Simultaneously, the caffeic acid content increased from 6.72 ± 0.69 mg L-1 to 19.33 ± 1.86 mg/L-1 . The aroma profile of the enzymatically treated sample and a control sample differed in only one volatile. Vitispirane had a higher flavour dilution factor in the treated juice. Sensory analysis showed no significant difference in the taste profile ( p < 0.05). CONCLUSION These results demonstrated a high stability and substrate specificity of RspCAE. An increase in caffeic acid and a concurrent decrease in chlorogenic acid concentration may exert a beneficial effect on human health. © 2019 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Mareike Siebert
- Institut für Lebensmittelchemie, Leibniz Universität Hannover, Callinstraße, 530167 Hannover, Germany
| | - Ralf Günter Berger
- Institut für Lebensmittelchemie, Leibniz Universität Hannover, Callinstraße, 530167 Hannover, Germany
| | - Franziska Pfeiffer
- Institut für Lebensmittelchemie, Leibniz Universität Hannover, Callinstraße, 530167 Hannover, Germany
| |
Collapse
|
23
|
Almási É, Sahu N, Krizsán K, Bálint B, Kovács GM, Kiss B, Cseklye J, Drula E, Henrissat B, Nagy I, Chovatia M, Adam C, LaButti K, Lipzen A, Riley R, Grigoriev IV, Nagy LG. Comparative genomics reveals unique wood-decay strategies and fruiting body development in the Schizophyllaceae. THE NEW PHYTOLOGIST 2019; 224:902-915. [PMID: 31257601 DOI: 10.1111/nph.16032] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/24/2019] [Indexed: 06/09/2023]
Abstract
Agaricomycetes are fruiting body-forming fungi that produce some of the most efficient enzyme systems to degrade wood. Despite decades-long interest in their biology, the evolution and functional diversity of both wood-decay and fruiting body formation are incompletely known. We performed comparative genomic and transcriptomic analyses of wood-decay and fruiting body development in Auriculariopsis ampla and Schizophyllum commune (Schizophyllaceae), species with secondarily simplified morphologies, an enigmatic wood-decay strategy and weak pathogenicity to woody plants. The plant cell wall-degrading enzyme repertoires of Schizophyllaceae are transitional between those of white rot species and less efficient wood-degraders such as brown rot or mycorrhizal fungi. Rich repertoires of suberinase and tannase genes were found in both species, with tannases restricted to Agaricomycetes that preferentially colonize bark-covered wood, suggesting potential complementation of their weaker wood-decaying abilities and adaptations to wood colonization through the bark. Fruiting body transcriptomes revealed a high rate of divergence in developmental gene expression, but also several genes with conserved expression patterns, including novel transcription factors and small-secreted proteins, some of the latter which might represent fruiting body effectors. Taken together, our analyses highlighted novel aspects of wood-decay and fruiting body development in an important family of mushroom-forming fungi.
Collapse
Affiliation(s)
- Éva Almási
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, HAS, Szeged, 6726, Hungary
| | - Neha Sahu
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, HAS, Szeged, 6726, Hungary
| | - Krisztina Krizsán
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, HAS, Szeged, 6726, Hungary
| | - Balázs Bálint
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, HAS, Szeged, 6726, Hungary
| | - Gábor M Kovács
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Budapest, 1117, Hungary
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, 1022, Hungary
| | - Brigitta Kiss
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, HAS, Szeged, 6726, Hungary
| | | | - Elodie Drula
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Université Aix-Marseille, 163 Avenue de Luminy, 13288, Marseille, France
- INRA, USC 1408 AFMB, 13288, Marseille, France
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Université Aix-Marseille, 163 Avenue de Luminy, 13288, Marseille, France
- INRA, USC 1408 AFMB, 13288, Marseille, France
- Department of Biological Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - István Nagy
- Seqomics Ltd. Mórahalom, Mórahalom, 6782, Hungary
| | - Mansi Chovatia
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - Catherine Adam
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - Kurt LaButti
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - Robert Riley
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - László G Nagy
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, HAS, Szeged, 6726, Hungary
| |
Collapse
|
24
|
Xu Z, Wang T, Zhang S. Extracellular secretion of feruloyl esterase derived from Lactobacillus crispatus in Escherichia coli and its application for ferulic acid production. BIORESOURCE TECHNOLOGY 2019; 288:121526. [PMID: 31129518 DOI: 10.1016/j.biortech.2019.121526] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/18/2019] [Accepted: 05/20/2019] [Indexed: 06/09/2023]
Abstract
A feruloyl esterase producing strain was isolated and identified as Lactobacillus crispatus S524. Its putative feruloyl esterase was heterogeneously expressed in Escherichia coli BL21 (DE3). Interestingly, the feruloyl esterase (FaeLcr) could be secreted into the culture medium with a relative high purity of 201.7 mg/L. FaeLcr was purified from the cell-free culture supernatant and appeared as a single protein band with the molecular mass of 28 kDa by SDS-PAGE. The optimal temperature and pH were determined as 65 °C and 7.0, and it showed prominent thermo-stability and alkali-stability. Furthermore, the purified FarLcr could release a maximal amount of 199 µg ferulic acid from 0.2 g de-starched wheat bran. Meanwhile, when cultured this recombinant E. coli strain in medium supplemented with 2 g de-starched wheat bran, 1.86 mg ferulic acid was also detected. These results suggested that the recombinant strain has a great potential application in feruloyl esterase and ferulic acid production.
Collapse
Affiliation(s)
- Zhenshang Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, PR China; Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, PR China
| | - Ting Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, PR China; Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, PR China
| | - Susu Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China.
| |
Collapse
|
25
|
Karnaouri A, Antonopoulou I, Zerva A, Dimarogona M, Topakas E, Rova U, Christakopoulos P. Thermophilic enzyme systems for efficient conversion of lignocellulose to valuable products: Structural insights and future perspectives for esterases and oxidative catalysts. BIORESOURCE TECHNOLOGY 2019; 279:362-372. [PMID: 30685134 DOI: 10.1016/j.biortech.2019.01.062] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/12/2019] [Accepted: 01/15/2019] [Indexed: 06/09/2023]
Abstract
Thermophilic enzyme systems are of major importance nowadays in all industrial processes due to their great performance at elevated temperatures. In the present review, an overview of the current knowledge on the properties of thermophilic and thermotolerant carbohydrate esterases and oxidative enzymes with great thermostability is provided, with respect to their potential use in biotechnological applications. A special focus is given to the lytic polysaccharide monooxygenases that are able to oxidatively cleave lignocellulose through the use of oxygen or hydrogen peroxide as co-substrate and a reducing agent as electron donor. Structural characteristics of the enzymes, including active site conformation and surface properties are discussed and correlated with their substrate specificity and thermostability properties.
Collapse
Affiliation(s)
- Anthi Karnaouri
- Biochemical Process Engineering, Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden.
| | - Io Antonopoulou
- Biochemical Process Engineering, Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden
| | - Anastasia Zerva
- Biotechnology Laboratory, Department of Synthesis and Development of Industrial Processes, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Maria Dimarogona
- Section of Process and Environmental Engineering, Department of Chemical Engineering, University of Patras, 26504 Rio, Patras, Greece
| | - Evangelos Topakas
- Biotechnology Laboratory, Department of Synthesis and Development of Industrial Processes, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Ulrika Rova
- Biochemical Process Engineering, Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden
| | - Paul Christakopoulos
- Biochemical Process Engineering, Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden.
| |
Collapse
|
26
|
Oliveira DM, Mota TR, Oliva B, Segato F, Marchiosi R, Ferrarese-Filho O, Faulds CB, Dos Santos WD. Feruloyl esterases: Biocatalysts to overcome biomass recalcitrance and for the production of bioactive compounds. BIORESOURCE TECHNOLOGY 2019; 278:408-423. [PMID: 30704902 DOI: 10.1016/j.biortech.2019.01.064] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/14/2019] [Accepted: 01/16/2019] [Indexed: 05/25/2023]
Abstract
Ferulic acid and its hydroxycinnamate derivatives represent one of the most abundant forms of low molecular weight phenolic compounds in plant biomass. Feruloyl esterases are part of a microorganism's plant cell wall-degrading enzymatic arsenal responsible for cleaving insoluble wall-bound hydroxycinnamates and soluble cytosolic conjugates. Stimulated by industrial requirements, accelerating scientific discoveries and knowledge transfer, continuous improvement efforts have been made to identify, create and repurposed biocatalysts dedicated to plant biomass conversion and biosynthesis of high-added value molecules. Here we review the basic knowledge and recent advances in biotechnological characteristics and the gene content encoding for feruloyl esterases. Information about several enzymes is systematically organized according to their function, biochemical properties, substrate specificity, and biotechnological applications. This review contributes to further structural, functional, and biotechnological R&D both for obtaining hydroxycinnamates from agricultural by-products as well as for lignocellulose biomass treatments aiming for production of bioethanol and other derivatives of industrial interest.
Collapse
Affiliation(s)
- Dyoni M Oliveira
- Department of Biochemistry, State University of Maringá, Maringá, Paraná, Brazil.
| | - Thatiane R Mota
- Department of Biochemistry, State University of Maringá, Maringá, Paraná, Brazil
| | - Bianca Oliva
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo, Brazil
| | - Fernando Segato
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo, Brazil
| | - Rogério Marchiosi
- Department of Biochemistry, State University of Maringá, Maringá, Paraná, Brazil
| | | | - Craig B Faulds
- Aix-Marseille Université, INRA UMR 1163 Biodiversité et Biotechnologie Fongiques (BBF), 13009 Marseille, France
| | | |
Collapse
|
27
|
Tovar-Herrera OE, Martha-Paz AM, Pérez-LLano Y, Aranda E, Tacoronte-Morales JE, Pedroso-Cabrera MT, Arévalo-Niño K, Folch-Mallol JL, Batista-García RA. Schizophyllum commune: An unexploited source for lignocellulose degrading enzymes. Microbiologyopen 2018; 7:e00637. [PMID: 29785766 PMCID: PMC6011954 DOI: 10.1002/mbo3.637] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 03/09/2018] [Accepted: 03/09/2018] [Indexed: 02/01/2023] Open
Abstract
Lignocellulose represents the most abundant source of carbon in the Earth. Thus, fraction technology of the biomass turns up as an emerging technology for the development of biorefineries. Saccharification and fermentation processes require the formulation of enzymatic cocktails or the development of microorganisms (naturally or genetically modified) with the appropriate toolbox to produce a cost‐effective fermentation technology. Therefore, the search for microorganisms capable of developing effective cellulose hydrolysis represents one of the main challenges in this era. Schizophyllum commune is an edible agarical with a great capability to secrete a myriad of hydrolytic enzymes such as xylanases and endoglucanases that are expressed in a high range of substrates. In addition, a large number of protein‐coding genes for glycoside hydrolases, oxidoreductases like laccases (Lacs; EC 1.10.3.2), as well as some sequences encoding for lytic polysaccharide monooxygenases (LPMOs) and expansins‐like proteins demonstrate the potential of this fungus to be applied in different biotechnological process. In this review, we focus on the enzymatic toolbox of S. commune at the genetic, transcriptomic, and proteomic level, as well as the requirements to be employed for fermentable sugars production in biorefineries. At the end the trend of its use in patent registration is also reviewed.
Collapse
Affiliation(s)
- Omar Eduardo Tovar-Herrera
- Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Ciudad Universitaria, San Nicolás de los Garza, Nuevo León, México
| | - Adriana Mayrel Martha-Paz
- Laboratorio de Micología y Fitopatología, Unidad de manipulación genética, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Ciudad Universitaria, San Nicolás de los Garza, Nuevo León, México
| | - Yordanis Pérez-LLano
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Elisabet Aranda
- Instituto del Agua, Universidad de Granada, Granada, Granada, Spain
| | | | | | - Katiushka Arévalo-Niño
- Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Ciudad Universitaria, San Nicolás de los Garza, Nuevo León, México
| | - Jorge Luis Folch-Mallol
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Ramón Alberto Batista-García
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| |
Collapse
|
28
|
Fungal feruloyl esterases: Functional validation of genome mining based enzyme discovery including uncharacterized subfamilies. N Biotechnol 2018; 41:9-14. [DOI: 10.1016/j.nbt.2017.11.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 12/21/2022]
|
29
|
A type D ferulic acid esterase from Streptomyces werraensis affects the volume of wheat dough pastries. Appl Microbiol Biotechnol 2017; 102:1269-1279. [PMID: 29188331 DOI: 10.1007/s00253-017-8637-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 11/03/2017] [Accepted: 11/13/2017] [Indexed: 01/04/2023]
Abstract
A type D ferulic acid esterase (FAE) was identified in the culture supernatant of Streptomyces werraensis, purified, sequenced, and heterologously produced in E. coli BL21(DE3)Star by co-expressing chaperones groES-groEL (69 U L-1). The unique enzyme with a mass of about 48 kDa showed no similarity to other FAEs, and only moderate homology (78.5%) to a Streptomycete β-xylosidase. The purified reSwFAED exhibited a temperature optimum of 40 °C, a pH optimum in the range from pH seven to eight and a clear preference for bulky natural substrates, such as 5-O-trans-feruloyl-L-arabinofuranose (FA) and β-D-xylopyranosyl-(1→2)-5-O-trans-feruloyl-L-arabinofuranose (FAX), compared to the synthetic standard substrate methyl ferulate. Treatment of wheat dough with as little as 0.03 U or 0.3 U kg-1 reSwFAED activity resulted in a significant increase of the bun volume (8.0 or 9.7%, resp.) after baking when combined with polysaccharide-degrading enzymes from Aspergillus. For the first time, the long-standing, but rarely proven positive effect of a FAE in baking was confirmed.
Collapse
|
30
|
Totaro G, Sisti L, Celli A, Askanian H, Hennous M, Verney V, Leroux F. Chain extender effect of 3-(4-hydroxyphenyl)propionic acid/layered double hydroxide in PBS bionanocomposites. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.06.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
31
|
Nieter A, Kelle S, Linke D, Berger RG. A p-coumaroyl esterase from Rhizoctonia solani with a pronounced chlorogenic acid esterase activity. N Biotechnol 2017; 37:153-161. [DOI: 10.1016/j.nbt.2017.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 01/19/2017] [Indexed: 12/29/2022]
|