1
|
Hoang TD, Van Anh N, Yusuf M, Ali S A M, Subramanian Y, Hoang Nam N, Minh Ky N, Le VG, Thi Thanh Huyen N, Abi Bianasari A, K Azad A. Valorization of Agriculture Residues into Value-Added Products: A Comprehensive Review of Recent Studies. CHEM REC 2024; 24:e202300333. [PMID: 39051717 DOI: 10.1002/tcr.202300333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/08/2024] [Indexed: 07/27/2024]
Abstract
Global agricultural by-products usually go to waste, especially in developing countries where agricultural products are usually exported as raw products. Such waste streams, once converted to "value-added" products could be an additional source of revenue while simultaneously having positive impacts on the socio-economic well-being of local people. We highlight the utilization of thermochemical techniques to activate and convert agricultural waste streams such as rice and straw husk, coconut fiber, coffee wastes, and okara power wastes commonly found in the world into porous activated carbons and biofuels. Such activated carbons are suitable for various applications in environmental remediation, climate mitigation, energy storage, and conversions such as batteries and supercapacitors, in improving crop productivity and producing useful biofuels.
Collapse
Affiliation(s)
- Tuan-Dung Hoang
- School of Chemistry and Life Science, Hanoi University of Science and Technology, No. 1 Dai Co Viet, Hai Ba Trung, Hanoi 10000, Vietnam
- Vietam National Univeristy Hanoi -, School of Interdisciplinary Sciences and Arts, 144 Cau Giay, Hanoi, 10000, Hanoi, Vietnam
| | - Nguyen Van Anh
- School of Chemistry and Life Science, Hanoi University of Science and Technology, No. 1 Dai Co Viet, Hai Ba Trung, Hanoi 10000, Vietnam
| | - Mohammad Yusuf
- Clean Energy Technologies Research Institute (CETRI), Faculty of Engineering and Applied Science, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
- Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, 140401, Punjab, India
| | - Muhammed Ali S A
- Fuel Cell Institute, (CETRI), Universiti Kebangsasn Malaysia, 43600, Bangi, Malaysia
| | - Yathavan Subramanian
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, BE1410, Bandar Seri Begawan, Brunei Darussalam
| | - Nguyen Hoang Nam
- Faculty of Environment, Climate change and Urban Studies, National Economics University, 10000, Hanoi, Vietnam
| | - Nguyen Minh Ky
- Faculty of Environment and Natural Resources, Nong Lam University, Hamlet 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, 700000, Vietnam
| | - Van-Giang Le
- Central Institute for Natural Resources and Environmental Studies, Vietnam National University (CRES-VNU), Hanoi, 111000, Vietnam
| | | | - Alien Abi Bianasari
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, BE1410, Bandar Seri Begawan, Brunei Darussalam
| | - Abul K Azad
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, BE1410, Bandar Seri Begawan, Brunei Darussalam
| |
Collapse
|
2
|
Vaishnavi M, Sathishkumar K, Gopinath KP. Hydrothermal liquefaction of composite household waste to biocrude: the effect of liquefaction solvents on product yield and quality. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:39760-39773. [PMID: 38833053 DOI: 10.1007/s11356-024-33880-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 05/29/2024] [Indexed: 06/06/2024]
Abstract
The hydrothermal liquefaction (HTL) of composite household waste (CHW) was investigated at different temperatures in the range of 240-360 °C, residence times in the range of 30-90 min, and co-solvent ratios of 2-8 ml/g, by utilising ethanol, glycerol, and produced aqueous phase as liquefaction solvents. Maximum biocrude yield of 46.19% was obtained at 340 °C and 75 min, with aqueous phase recirculation ratio (RR) of 5 ml/g. The chemical solvents such as glycerol and ethanol yielded a biocrude percentage of 45.18% and 42.16% at a ratio of 6 ml/g and 8 ml/g, respectively, for 340 °C and 75 min. The usage of co-solvents as hydrothermal medium increased the biocrude yield by 35.30% and decreased the formation of solid residue and gaseous products by 19.82% and 18.74% respectively. Also, the solid residue and biocrude obtained from co-solvent HTL possessed higher carbon and hydrogen content, thus having a H/C ratio and HHV that is 1.01 and 1.23 times higher than that of water as hydrothermal medium. Among the co-solvents, HTL with aqueous phase recirculation resulted in higher carbon and energy recovery percentages of 9.36% and 9.78% for solid residue and 52.09% and 56.75% for biocrude respectively. Further qualitatively, co-solvent HTL in the presence of obtained aqueous phase yielded 33.43% higher fraction of hydrocarbons than the pure water HTL and 7.70-17.01% higher hydrocarbons when compared with ethanol and glycerol HTL respectively. Nitrogen containing compounds, such as phenols and furfurals, for biocrudes obtained from all HTL processes, were found to be present in the range of 8.30-14.40%.
Collapse
Affiliation(s)
- Mahadevan Vaishnavi
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Tamil Nadu, 603110, India
| | - Kannaiyan Sathishkumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Tamil Nadu, 603110, India.
| | - Kannappan Panchamoorthy Gopinath
- Department of Chemical Engineering, Mohamed Sathak Engineering College, Sathak Nagar, SH 49, Keelakarai, Tamil Nadu, 623806, India
| |
Collapse
|
3
|
Kubar AA, Kumar S, Liu W, Cui Y, Zhu F, Xu X, Shao C, Hu X, Prempeh NYA, Huo S. Numerical simulation of vortex flow field generated in a novel nested-bottled photobioreactor to improve Arthrospira platensis growth. BIORESOURCE TECHNOLOGY 2023; 373:128710. [PMID: 36754237 DOI: 10.1016/j.biortech.2023.128710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
In this study, computational fluid dynamics were employed to examined clockwise and anticlockwise vortexes in the rising and down coming sections of novel nested-bottle photobioreactor. The radial velocity was increased by four times which significantly reduced dead zones compared to traditional PBR. The (NB-PBR) comprised of integrated bottles connected by curved tubes (d = 4 cm) that generated dominant vortices as the microalgae solution flows through each section (h = 10 cm). The (NB-PBR) was independent of the inner and outer sections which increased the mixing time and mass-transfer coefficient by 13.33 % and 42.9 %, respectively. Furthermore, the results indicated that the (NB-PBR) showed higher photosynthesis efficiency preventing self-shading and photo-inhibition, resulting in an increase in biomass yield and carbon dioxide fixation by 35 % and 35.9 %, respectively.
Collapse
Affiliation(s)
- Ameer Ali Kubar
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Santosh Kumar
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Wei Liu
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Centre, Jinan 250014, China.
| | - Yi Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Feifei Zhu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| | - Xiangru Xu
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Cong Shao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Xinjuan Hu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | | | - Shuhao Huo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
4
|
Wang Y, Cai J, Li D. Efficient degradation of rice straw through a novel psychrotolerant Bacillus cereus at low temperature. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1394-1403. [PMID: 36138337 DOI: 10.1002/jsfa.12233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Rice straw (RS) is one of the largest sources of lignocellulosic, which is an abundant raw material for biofuels and chemicals. However, the natural degradation of RS under a low temperature environment is the biggest obstacle to returning straw to the field. RESULTS In the present study, one bacillus strain W118 was isolated. Strain W118 was identified as Bacillus cereus through morphological and physiological characterization and 16S rDNA sequencing. The optimum growth temperature and pH of strain W118 were 20 °C and 6.5, respectively. Simultaneously, it was found that the strain W118 grew well at low temperature, even at a temperature of 4 °C (OD600 = 1.40 ± 0.01). The decrease of various compositions of RS after the fermentation process at a temperature of 20 °C and 4 °C for 14 days was 27.00 ± 0.02% and 23.70 ± 0.04%, respectively. The composition of RS decreased to 50.71 ± 0.02% after being fermented at 4 °C for 25 days. The results of scanning electron microscopy, Fourier transform infrared spectroscopy and X-ray diffraction of RS showed that the compositions of RS were significant decreased. CONCLUSION This test suggests that the strain W118 is efficient for degrading RS at low temperature, which has great application potential for straw degradation in a low temperature area. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yu Wang
- Key Laboratory of Marine Resource Chemistry and Food Technology (TUST) Ministry of Education, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, China
| | - Jinling Cai
- Key Laboratory of Marine Resource Chemistry and Food Technology (TUST) Ministry of Education, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, China
| | - Demao Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin Key Laboratory for Industrial Biosystems and Bioprocessing Engineering, Tianjin, China
| |
Collapse
|
5
|
Harisankar S, Prashanth PF, Nallasivam J, Vinu R. Optimal use of glycerol co-solvent to enhance product yield and its quality from hydrothermal liquefaction of refuse-derived fuel. BIOMASS CONVERSION AND BIOREFINERY 2022; 14:1-15. [PMID: 35646507 PMCID: PMC9126101 DOI: 10.1007/s13399-022-02793-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Refuse-derived fuels (RDF) are rich in resources that make them an attractive feedstock for the production of energy and biofuels. Hydrothermal liquefaction (HTL) is a promising thermochemical conversion technology to handle wet feedstocks and convert them to valuable bio-crude, bio-char and aqueous products. This study highlights the advantages of using glycerol as the co-solvent along with water in different proportions to produce bio-crude from RDF via HTL. The ratio of water:glycerol (vol.%:vol.%) was varied for each experiment (100:0, 90:10, 80:20, 70:30, 60:40, 50:50), and the product yields and their quality were studied. The results demonstrate that increasing the proportion of glycerol until 50 vol.% in the solvent enhances the bio-crude yield (36.2 wt.%) and its higher heating value (HHV) (30.9 MJ kg-1). Deoxygenation achieved in the bio-crude was 42%. The production of bio-char was minimum (9.5 wt.%) at 50 vol.% glycerol with HHV of 31.9 MJ kg-1. The selectivity to phenolic compounds in the bio-crude increased, while that of cyclic oxygenates decreased when the glycerol content was more than 20 vol.%. The gas-phase analysis revealed that the major deoxygenation pathway was decarboxylation. The yield of aqueous products drastically increased with the addition of glycerol. The minimum amount of glycerol in the co-solvent that favours an energetically feasible process with low carbon footprint is 30 vol.%. Using 50 vol.% glycerol resulted in the highest energy recovery in the bio-crude and bio-char (80%), the lowest energy consumption ratio (0.43) and lowest environmental factor (0.1). The mass-based process mass intensity factor, calculated based on only bio-crude and bio-char as the valuable products, decreased with an increase in addition of glycerol, while it was close to unity when the aqueous phase is also considered as a valuable product.
Collapse
Affiliation(s)
- S. Harisankar
- Department of Chemical Engineering and National Center for Combustion Research and Development, Indian Institute of Technology Madras, Chennai, 600036 India
| | - P. Francis Prashanth
- Department of Chemical Engineering and National Center for Combustion Research and Development, Indian Institute of Technology Madras, Chennai, 600036 India
| | - Jeganathan Nallasivam
- Department of Chemical Engineering and National Center for Combustion Research and Development, Indian Institute of Technology Madras, Chennai, 600036 India
| | - R. Vinu
- Department of Chemical Engineering and National Center for Combustion Research and Development, Indian Institute of Technology Madras, Chennai, 600036 India
| |
Collapse
|
6
|
Harisankar S, Vishnu Mohan R, Choudhary V, Vinu R. Effect of water quality on the yield and quality of the products from hydrothermal liquefaction and carbonization of rice straw. BIORESOURCE TECHNOLOGY 2022; 351:127031. [PMID: 35314308 DOI: 10.1016/j.biortech.2022.127031] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/13/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
The need for fresh water limits the application and scale-up of hydrothermal technologies to convert waste biomass to energy and chemicals. In an effort to demonstrate the use of wastewater for sustainable process development, this work is focused on hydrothermal liquefaction (HTL) (350 °C, 18 MPa, 30 min) and carbonization (HTC) (200 °C, 7 MPa, 4 h) of rice straw with water from various sources (milli-Q water, tap water, seawater, recycled wastewater and industrial wastewater). The bio-crude yield from HTL was maximum (36.4 wt%) with industrial wastewater, while the yield of hydrochar from HTC was maximum (74.5 wt%) with seawater. The ions like K+, PO43- and NH4+ accumulated in the aqueous phase from rice straw. The hydrochars from HTL experiments contained significantly higher amount of ash compared to that from HTC experiments. Cyclopentenones and phenols were the major constituents of the bio-crude, whose HHV was 26.3 MJ/kg using seawater.
Collapse
Affiliation(s)
- S Harisankar
- Department of Chemical Engineering and National Centre for Combustion Research and Development, Indian Institute of Technology Madras, 600036, India
| | - R Vishnu Mohan
- Department of Chemical Engineering and National Centre for Combustion Research and Development, Indian Institute of Technology Madras, 600036, India
| | - Vaishali Choudhary
- Department of Civil Engineering, Indian Institute of Technology Madras, 600036, India
| | - R Vinu
- Department of Chemical Engineering and National Centre for Combustion Research and Development, Indian Institute of Technology Madras, 600036, India.
| |
Collapse
|
7
|
Ren L, Kong X, Su J, Zhao D, Dong W, Liu C, Liu C, Luo L, Yan B. Oriented conversion of agricultural bio-waste to value-added products - A schematic review towards key nutrient circulation. BIORESOURCE TECHNOLOGY 2022; 346:126578. [PMID: 34953993 DOI: 10.1016/j.biortech.2021.126578] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Agriculture bio-waste is one of the largest sectors for nutrient circulation and resource recovery. This review intends to summarize the possible scheme through coupling chemical conversion of crop straws to biochar and biological conversion of livestock waste to value-added products thus reaching key nutrient circulation. Chemical conversion of crop straws to biochar was reviewed through summarizing the preparation methods and functional modification of biochar. Then, high-solid two-phase anaerobic conversion of agriculture bio-waste to value-added products and improved performance of bio-conversion through byproduct gases reuse and biochar supplementation were reviewed. Finally, high quality compost production through amendment of biochar and residual digestate was proposed with analysis of reduced nitrogen emission and carbon balance. The biological mechanism of synergistic regulation of carbon and nitrogen loss during bio-conversion with biochar was also reviewed. This will provide a model for synergistic conversion of agricultural wastes to value added products pursuing key nutrient circulation.
Collapse
Affiliation(s)
- Liheng Ren
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Xiaoliang Kong
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Jian Su
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Danyang Zhao
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Wenjian Dong
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Chunmiao Liu
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Chao Liu
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Lin Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Binghua Yan
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
8
|
Abstract
Bio-oil, although rich in chemical species, is primarily used as fuel oil, due to its greater calorific power when compared to the biomass from which it is made. The incomplete understanding of how to explore its chemical potential as a source of value-added chemicals and, therefore, a supply of intermediary chemical species is due to the diverse composition of bio-oil. Being biomass-based, making it subject to composition changes, bio-oil is obtained via different processes, the two most common being fast pyrolysis and hydrothermal liquefaction. Different methods result in different bio-oil compositions even from the same original biomass. Understanding which biomass source and process results in a particular chemical makeup is of interest to those concerned with the refinement or direct application in chemical reactions of bio-oil. This paper presents a summary of published bio-oil production methods, origin biomass, and the resulting composition.
Collapse
|
9
|
Xu YH, Li MF. Hydrothermal liquefaction of lignocellulose for value-added products: Mechanism, parameter and production application. BIORESOURCE TECHNOLOGY 2021; 342:126035. [PMID: 34592454 DOI: 10.1016/j.biortech.2021.126035] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Abundant, environmentally friendly, and sustainable lignocellulose is a promising feedstock for replacing fossil fuels, and hydrothermal liquefaction is an effective technology to convert it into liquid fuels and high-value chemicals. This review summarizes and discusses the reaction mechanism, main influence factor and the production application of hydrothermal liquefaction. Particular attention has been paid to the reaction mechanism of the structural components of lignocellulose, i.e., cellulose, hemicellulose, and lignin. In addition, the influence factors including types of lignocellulose, temperature, heating rate, retention time, pressure, solid-to-liquid ratio, and catalyst are discussed in detail. The limitations in the hydrothermal liquefaction of lignocellulose and the prospects are proposed. This provides deep knowledge for understanding the process as well as the development of advanced products from lignocellulose.
Collapse
Affiliation(s)
- Ying-Hong Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Ming-Fei Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
10
|
Mahesh D, Ahmad S, Kumar R, Chakravarthy SR, Vinu R. Hydrothermal liquefaction of municipal solid wastes for high quality bio-crude production using glycerol as co-solvent. BIORESOURCE TECHNOLOGY 2021; 339:125537. [PMID: 34293686 DOI: 10.1016/j.biortech.2021.125537] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
This study is focused on the valorization of heterogeneous municipal solid waste collected from the landfill using hydrothermal liquefaction process using glycerol as a co-solvent. The effects of temperature (300-350 °C) and residence time (15-45 min) on the yields and quality of the product fractions were investigated at 8 wt% solid loading. The yield of bio-crude significantly increased from 15.2 wt% with water as the solvent, to 58 wt% with water-glycerol (1:1 v/v) as the solvent possessing an energy content of 35.6 MJ/kg at 350 °C, 30 min. The quality of the bio-crude obtained using glycerol was comparable to that using tetralin as a hydrogen donor co-solvent. Phenolic compounds and cyclooxygenates were the major compounds in the bio-crude, and aliphatic hydrocarbons increased with residence time. Maximum energy recovery of 95% was achieved in the products with an energy consumption ratio of 0.43 for the bio-crude signifying the energetic feasibility of the process.
Collapse
Affiliation(s)
- Danam Mahesh
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | - Shamshad Ahmad
- Department of Aerospace Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | - Rajnish Kumar
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | - S R Chakravarthy
- Department of Aerospace Engineering, Indian Institute of Technology Madras, Chennai 600036, India; National Center for Combustion Research and Development, Indian Institute of Technology Madras, Chennai 600036, India
| | - R Vinu
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, India; National Center for Combustion Research and Development, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
11
|
Marzbali MH, Kundu S, Halder P, Patel S, Hakeem IG, Paz-Ferreiro J, Madapusi S, Surapaneni A, Shah K. Wet organic waste treatment via hydrothermal processing: A critical review. CHEMOSPHERE 2021; 279:130557. [PMID: 33894517 DOI: 10.1016/j.chemosphere.2021.130557] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
There are several recent reviews published in the literature on hydrothermal carbonization, liquefaction and supercritical water gasification of lignocellulosic biomass and algae. The potential of hydrochar, bio-oil or synthesis gas production and applications have also been reviewed individually. The comprehensive review on the hydrothermal treatment of wet wastes (such as municipal solid waste, food waste, sewage sludge, algae) covering carbonization, liquefaction and supercritical water gasification, however, is missing in the literature which formed the basis of the current review paper. The current paper critically reviews the literature around the full spectrum of hydrothermal treatment for wet wastes and establishes a good comparison of the different hydrothermal treatment options for managing wet waste streams. Also, the role of catalysts as well as synthesis of catalysts using hydrothermal treatment of biomass has been critically reviewed. For the first time, efforts have also been made to summarize findings on modelling works as well as techno-economic assessments in the area of hydrothermal treatments of wet wastes. The study concludes with key findings, knowledge gaps and future recommendations to improve the productivity of hydrothermal treatment of wet wastes, helping improve the commercial viability and environmental sustainability.
Collapse
Affiliation(s)
- Mojtaba Hedayati Marzbali
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Sazal Kundu
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Pobitra Halder
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Savankumar Patel
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Ibrahim Gbolahan Hakeem
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Jorge Paz-Ferreiro
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Srinivasan Madapusi
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Aravind Surapaneni
- South East Water, Frankston, Victoria, 3199, Australia; ARC Training Centre on Advance Transformation of Australia's Biosolids Resources, RMIT University, Bundoora, 3083, Australia
| | - Kalpit Shah
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia; ARC Training Centre on Advance Transformation of Australia's Biosolids Resources, RMIT University, Bundoora, 3083, Australia.
| |
Collapse
|
12
|
A Review of Hydrothermal Liquefaction of Biomass for Biofuels Production with a Special Focus on the Effect of Process Parameters, Co-Solvents, and Extraction Solvents. ENERGIES 2021. [DOI: 10.3390/en14164916] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Hydrothermal liquefaction is one of the common thermochemical conversion methods adapted to convert high-water content biomass feedstocks to biofuels and many other valuable industrial chemicals. The hydrothermal process is broadly classified into carbonization, liquefaction, and gasification with hydrothermal liquefaction conducted in the intermediate temperature range of 250–374 °C and pressure of 4–25 MPa. Due to the ease of adaptability, there has been considerable research into the process on using various types of biomass feedstocks. Over the years, various solvents and co-solvents have been used as mediums of conversion, to promote easy decomposition of the lignocellulosic components in biomass. The product separation process, to obtain the final products, typically involves multiple extraction and evaporation steps, which greatly depend on the type of extractive solvents and process parameters. In general, the main aim of the hydrothermal process is to produce a primary product, such as bio-oil, biochar, gases, or industrial chemicals, such as adhesives, benzene, toluene, and xylene. All of the secondary products become part of the side streams. The optimum process parameters are obtained to improve the yield and quality of the primary products. A great deal of the process depends on understanding the underlined reaction chemistry during the process. Therefore, this article reviews the major works conducted in the field of hydrothermal liquefaction in order to understand the mechanism of lignocellulosic conversion, describing the concept of a batch and a continuous process with the most recent state-of-art technologies in the field. Further, the article provides detailed insight into the effects of various process parameters, co-solvents, and extraction solvents, and their effects on the products’ yield and quality. It also provides information about possible applications of products obtained through liquefaction. Lastly, it addresses gaps in research and provides suggestions for future studies.
Collapse
|
13
|
Song C, Zhang C, Zhang S, Lin H, Kim Y, Ramakrishnan M, Du Y, Zhang Y, Zheng H, Barceló D. Thermochemical liquefaction of agricultural and forestry wastes into biofuels and chemicals from circular economy perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 749:141972. [PMID: 33370925 DOI: 10.1016/j.scitotenv.2020.141972] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 08/19/2020] [Accepted: 08/23/2020] [Indexed: 06/12/2023]
Abstract
Waste produced in various fields and activities in society has been increasing, thereby causing immediate environmental harm and a serious-global problem. Recently, the attitude towards waste has changed along with innovations making waste as a new resource. Agricultural and forestry wastes (AFWs) are globally produced in huge amounts and thought to be an important resource to be used for decreasing the dependence on fossil fuels. The central issue is to take use of AFW for different types of products making it a source of energy and at the same time refining it for the production of valuable chemicals. In this review, we present an overview of the composition and pretreatment of AFWs, thermochemical liquefaction including direct liquefaction and indirect liquefaction (liquid products from syngas by gasification) for producing biofuels and/or chemicals. The following two key points were discussed in-depth: the solvent or medium of thermochemical conversion and circular economy of liquid products. The concept of bio-economy entails economic use of waste streams, leading to the widened assessment of biomass use for energy where sustainability is a key issue coined in the circular economy. The smart use of AFWs requires a combination of available waste streams and local technical solutions to meet sustainability criteria.
Collapse
Affiliation(s)
- Chengfang Song
- Zhejiang Province Key Laboratory of Soil Contamination Bioremediation, Zhejiang A&F University, Hangzhou 311300, China
| | - Cheng Zhang
- Zhejiang Province Key Laboratory of Soil Contamination Bioremediation, Zhejiang A&F University, Hangzhou 311300, China
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Hui Lin
- The Institute of Environment, Resources, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yrjälä Kim
- Zhejiang Province Key Laboratory of Soil Contamination Bioremediation, Zhejiang A&F University, Hangzhou 311300, China; Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Muthusamy Ramakrishnan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Yanqiang Du
- National Land Joint Engineering Research Center for Rural Environment Resources Utilization and Remediation, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan Zhang
- Zhejiang Province Key Laboratory of Soil Contamination Bioremediation, Zhejiang A&F University, Hangzhou 311300, China
| | - Huabao Zheng
- Zhejiang Province Key Laboratory of Soil Contamination Bioremediation, Zhejiang A&F University, Hangzhou 311300, China.
| | - Damià Barceló
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, Girona, Spain; Water and Soil Quality Research Group, Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Spain.
| |
Collapse
|
14
|
The Degradation and Repolymerization Analysis on Solvolysis Liquefaction of Corn Stalk. Polymers (Basel) 2020; 12:polym12102337. [PMID: 33066199 PMCID: PMC7650792 DOI: 10.3390/polym12102337] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/10/2020] [Accepted: 10/11/2020] [Indexed: 11/30/2022] Open
Abstract
One of the most effective and renewable utilization methods for lignocellulosic feedstocks is the transformation from solid materials to liquid products. In this work, corn stalk (CS) was liquified with polyethylene glycol 400 (PEG400) and glycerol as the liquefaction solvents, and sulfuric acid as the catalyst. The liquefaction conditions were optimized with the liquefaction yield of 95.39% at the reaction conditions of 150 °C and 120 min. The properties of CS and liquefaction residues (LRs) were characterized using ATR–FTIR, TG, elemental analysis and SEM. The chemical components of liquefied product (LP) were also characterized by GC–MS. The results indicated that the depolymerization and repolymerization reaction took place simultaneously in the liquefaction process. The depolymerization of CS mainly occurred at the temperature of <150 °C, and the repolymerization of biomass derivatives dominated at a higher temperature of 170 °C by the lignin derivatives repolymerization with cellulose derivatives, hemicellulose derivatives and PEG400 and self-condensation of lignin derivatives. The solvolysis liquefaction of CS could be classified into the mechanism of electrophilic substitution reaction attacked by the hydrogen cation.
Collapse
|
15
|
Ma Y, Shen Y, Liu Y. State of the art of straw treatment technology: Challenges and solutions forward. BIORESOURCE TECHNOLOGY 2020; 313:123656. [PMID: 32561106 DOI: 10.1016/j.biortech.2020.123656] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 05/28/2023]
Abstract
Straw as an agricultural byproduct has been recognized as a potential resource. However, open-field straw burning is still the main mean in many regions of the world, which causes the wasting of resource and air pollution. Recently, many technologies have been developed for energy and resource recovery from straw, of which the biological approach has attracted growing interests because of its economically viable and eco-friendly nature. However, pretreatment of straw prior to biological processes is essential, and largely determines the process feasibility, economic viability and environmental sustainability. Thus, this review attempts to offer a critical and holistic analysis of current straw pretreatment technologies and management practices. Specifically, an integrated biological processes coupled with microbial degradation and enzymatic hydrolysis was proposed, and its potential benefits, limitations and challenges associated with future large-scale straw treatment were also elaborated, together with the perspectives and directions forward.
Collapse
Affiliation(s)
- Yingqun Ma
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Yanqing Shen
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Yu Liu
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| |
Collapse
|
16
|
Cui Z, Cheng F, Jarvis JM, Brewer CE, Jena U. Roles of Co-solvents in hydrothermal liquefaction of low-lipid, high-protein algae. BIORESOURCE TECHNOLOGY 2020; 310:123454. [PMID: 32388353 DOI: 10.1016/j.biortech.2020.123454] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 06/11/2023]
Abstract
Valorization of algal biomass is often limited by its low lipid content. Here, different alcohols: ethanol, isopropanol, and glycerol, were studied as co-solvents to improve the conversion efficiency of a lipid-poor microalgae, Galdieria sulphuraria, by hydrothermal liquefaction. Bio-crude oil yield increases, from 13 to 73 wt% (on dry algae basis), were attributed to the alcohols facilitating the transfer of algal protein-derived fragments from the aqueous phase into the oil phase. A series of characterization results showed that bio-crude oil formation was mainly the result of alcohols reacting with algal fragments via Maillard reactions, alkylation, and esterification, respectively. Insights into the synergistic effect of low-lipid feed and alcohol provide mechanistic support for choosing an alcohol-rich waste, crude glycerol, to improve bio-crude oil production from HTL of wastewater-grown G. sulphuraria. Promising improvements in yield and energy recovery indicates competitive economics for a low-lipid biomass waste-to-biofuel conversion technique.
Collapse
Affiliation(s)
- Zheng Cui
- Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, NM 88003, USA
| | - Feng Cheng
- Department of Chemical Engineering, Worcester Polytechnic Institute, MA 01609, USA
| | - Jacqueline M Jarvis
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM 88003 USA
| | - Catherine E Brewer
- Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, NM 88003, USA
| | - Umakanta Jena
- Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, NM 88003, USA.
| |
Collapse
|
17
|
Abstract
Hydrothermal liquefaction (HTL) is a promising thermochemical process to treat wet feedstocks and convert them to chemicals and fuels. In this study, the effects of final temperature (300, 325, and 350 °C), reaction time (30 and 60 min), rice-straw-to-water ratio (1:1, 1:5, 1:10, and 1:15 (wt./wt.)), methanol-to-water ratio (0:100, 25:75, 50:50, and 75:25 (vol.%/vol.%)), and alkali catalysts (KOH, NaOH, and K2CO3) on product yields, composition of bio-crude, higher heating value (HHV) of bio-crude and bio-char, and energy recovery on HTL of rice straw are investigated. At the optimal processing condition corresponding to the final temperature of 300 °C, 60 min reaction time, and rice-straw-to-water ratio of 1:10 at a final pressure of 18 MPa, the bio-crude yield was 12.3 wt.% with low oxygen content (14.2 wt.%), high HHV (35.3 MJ/kg), and good energy recovery (36%). The addition of methanol as co-solvent to water at 50:50 vol.%/vol.% improved the yield of bio-crude up to 36.8 wt.%. The selectivity to phenolic compounds was high (49%–58%) when only water was used as the solvent, while the addition of methanol reduced the selectivity to phenolics (13%–22%), and improved the selectivity to methyl esters (51%–73%), possibly due to esterification reactions. The addition of KOH further improved the yield of bio-crude to 40 wt.% in an equal composition of methanol:water at the optimal condition. The energy-consumption ratio was less than unity for the methanol and catalyst system, suggesting that the process is energetically feasible in the presence of a co-solvent.
Collapse
|
18
|
Fan L, Zhang H, Li J, Wang Y, Leng L, Li J, Yao Y, Lu Q, Yuan W, Zhou W. Algal biorefinery to value-added products by using combined processes based on thermochemical conversion: A review. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101819] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
19
|
Effects of some material parameters on lignin biopolymer liquefaction by microwave heating. IRANIAN POLYMER JOURNAL 2020. [DOI: 10.1007/s13726-019-00780-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
20
|
Abstract
This study reviewed and summarized the literature regarding the use of alcohols during hydrothermal liquefaction (HTL) of algal biomass feedstocks. The use of both pure alcohols and alcohol-water co-solvents were considered. Based upon this review, laboratory experiments were conducted to investigate the impacts of different alcohol co-solvents (ethanol, isopropanol, ethylene glycol, and glycerol) on the HTL treatment of a specific saltwater microalga (Tetraselmis sp.) at two temperatures: 300 °C and 350 °C. Based on their performance, two co-solvents, isopropanol and ethylene glycol, were selected to explore the effects of varying solvent concentrations and reaction temperatures on product yields and biocrude properties. The type and amount of added alcohol did not significantly affect the biocrude yield or composition. Biocrude yields were in the range of 30–35%, while a nearly constant yield of 21% insoluble products was observed, largely resulting from ash constituents within the algal feedstock. The benefits of using alcohol co-solvents (especially isopropanol) were the reduced viscosity of the biocrude products and reduced rates of viscosity increase with biocrude aging. These effects were attributed mainly to the physical properties of the co-solvent mixtures (solubility, polarity, density, etc.) rather than chemical processes. Under the reaction conditions used, there was no evidence that the co-solvents participated in biocrude production by means of hydrogen donation or other chemical processes. Recovery and recycling of the co-solvent present various challenges, depending upon the type and amount of the co-solvent that is used. For example, glycol solvents are recovered nearly completely within the aqueous product stream, whereas simple alcohols are partitioned between the biocrude and aqueous product streams. In commercial applications, the slight benefits provided by the use of co-solvents must be balanced by the challenges of co-solvent recovery and recycling.
Collapse
|
21
|
Ding YJ, Zhao CX, Liu ZC. Catalytic hydrothermal liquefaction of rice straw for production of monomers phenol over metal supported mesoporous catalyst. BIORESOURCE TECHNOLOGY 2019; 294:122097. [PMID: 31539853 DOI: 10.1016/j.biortech.2019.122097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 06/10/2023]
Abstract
The catalytic (SBA-15, Ni/SBA-15, Al/SBA-15 and Ni-Al/SBA-15) hydrothermal liquefaction (HTL) of rice straw biomass was examined at different temperature with different amount of catalyst in the presence of different solvents. In comparison with water solvent liquefaction, the bio-oil yield significantly increased under alcoholic solvent (ethanol and methanol). The highest bio-oil yield was observed for water (44.3 wt%) with Ni-Al/SBA-15, while for ethanol (56.2 wt%), and for methanol (48.1 wt%) with, Ni/SBA-15 catalyst. The loading of Ni and Al on SBA-15, the acid strength of the catalyst enhanced. Bio-oils yield were analyzed with the help of GC-MS, FT-IR, NMR, GPC and CHNS. From the GC-MS analysis, the main monomeric phenolic compounds were produced, phenol, 4-ethyl-phenol, 2-methoxy-phenol, 2-methoxy-4-ethyl-phenol and Vanillin. It was observed by CHNS and GPC analysis of the bio-oil, compared to the non-catalytic liquefaction reaction, the catalytic liquefaction reaction promotes the hydrogenation/hydrodeoxygenation and produced lower molecular weight bio-oils.
Collapse
Affiliation(s)
- Yong-Jie Ding
- College of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhouou 466001, China.
| | - Chun-Xiang Zhao
- College of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhouou 466001, China
| | - Zeng-Chen Liu
- College of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhouou 466001, China
| |
Collapse
|
22
|
Cao Y, Chen SS, Zhang S, Ok YS, Matsagar BM, Wu KCW, Tsang DCW. Advances in lignin valorization towards bio-based chemicals and fuels: Lignin biorefinery. BIORESOURCE TECHNOLOGY 2019; 291:121878. [PMID: 31377047 DOI: 10.1016/j.biortech.2019.121878] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/20/2019] [Accepted: 07/22/2019] [Indexed: 05/13/2023]
Abstract
Lignin is one of the most promising renewable sources for aromatic hydrocarbons, while effective depolymerization towards its constituent monomers is a particular challenge because of the structural complexity and stability. Intensive research efforts have been directed towards exploiting effective valorization of lignin for the production of bio-based platform chemicals and fuels. The present contribution aims to provide a critical review of key advances in the identification of exact lignin structure subjected to various fractionation technologies and demonstrate the key roles of lignin structures in depolymerization for unique functionalized products. Various technologies (e.g., thermocatalytic approaches, photocatalytic conversion, and mechanochemical depolymerization) are reviewed and evaluated in terms of feasibility and potential for further upgrading. Overall, advances in pristine lignin structure analysis and conversion technologies can facilitate recovery and subsequent utilization of lignin towards tailored commodity chemicals and fungible fuels.
Collapse
Affiliation(s)
- Yang Cao
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Season S Chen
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Yong Sik Ok
- Korea Biochar Research Center & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Babasaheb M Matsagar
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Kevin C-W Wu
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|
23
|
Chen Y, Cao X, Zhu S, Tian F, Xu Y, Zhu C, Dong L. Synergistic hydrothermal liquefaction of wheat stalk with homogeneous and heterogeneous catalyst at low temperature. BIORESOURCE TECHNOLOGY 2019; 278:92-98. [PMID: 30684728 DOI: 10.1016/j.biortech.2019.01.076] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 06/09/2023]
Abstract
The effect of Na2CO3, Fe and Na2CO3 + Fe during hydrothermal liquefaction (HTL) of wheat stalk with different temperature and reaction time was investigated in this study. The results indicated that Na2CO3 + Fe can promote the cracking of wheat stalk compared with Na2CO3 or Fe. Meanwhile, higher temperature favored the decomposition of wheat stalk and formation of heavy bio-oil. The highest heavy bio-oil yield was 24.25 wt% and the maximum liquefaction conversion rate was 89.45 wt% in system of Na2CO3 + Fe at 270 °C. The analysis results indicated that longer reaction time could promote liquefaction conversion especially for heavy bio-oil with Na2CO3 + Fe during the process of HTL. GC-MS, UPLC-MS and FT-IR analysis indicated that the major organic compounds in heavy bio-oil were aromatic compounds, alcohols, ketones, alkanes, and aldehydes, among of them aromatic compounds were the most prevalent.
Collapse
Affiliation(s)
- Yongxing Chen
- Zhoukou Normal University, School of Chemistry and Chemical Engineering, Wenchang Avenue, Zhoukou, Henan, China.
| | - Xiudi Cao
- Zhoukou Normal University, School of Chemistry and Chemical Engineering, Wenchang Avenue, Zhoukou, Henan, China
| | - Shan Zhu
- Zhoukou Normal University, School of Chemistry and Chemical Engineering, Wenchang Avenue, Zhoukou, Henan, China
| | - Fengshou Tian
- Zhoukou Normal University, School of Chemistry and Chemical Engineering, Wenchang Avenue, Zhoukou, Henan, China
| | - Yongyan Xu
- Zhoukou Normal University, School of Chemistry and Chemical Engineering, Wenchang Avenue, Zhoukou, Henan, China
| | - Chaosheng Zhu
- Zhoukou Normal University, School of Chemistry and Chemical Engineering, Wenchang Avenue, Zhoukou, Henan, China
| | - Lin Dong
- Zhoukou Normal University, School of Chemistry and Chemical Engineering, Wenchang Avenue, Zhoukou, Henan, China
| |
Collapse
|
24
|
Cao L, Yu IKM, Liu Y, Ruan X, Tsang DCW, Hunt AJ, Ok YS, Song H, Zhang S. Lignin valorization for the production of renewable chemicals: State-of-the-art review and future prospects. BIORESOURCE TECHNOLOGY 2018; 269:465-475. [PMID: 30146182 DOI: 10.1016/j.biortech.2018.08.065] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/14/2018] [Accepted: 08/16/2018] [Indexed: 06/08/2023]
Abstract
Lignin is an abundant biomass resource in aromatic structure with a low price in market, which can serve as renewable precursors of value-added products. However, valorization rate of annually produced lignin is less than 2%, suggesting the need for technological advancement to capitalize lignin as a versatile feedstock. In recent years, efficient utilization of lignin has attracted wide attention. This paper summarizes the research advances in the utilization of lignin resources (mainly in the last three years), with a particular emphasis on two major approaches of lignin utilization: catalytic degradation into aromatics and thermochemical treatment for carbon material production. Hydrogenolysis, direct pyrolysis, hydrothermal liquefaction, and hydrothermal carbonization of lignin are discussed in detail. Based on this critical review, future research directions and development prospects are proposed for sustainable and cost-effective lignin valorization.
Collapse
Affiliation(s)
- Leichang Cao
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Iris K M Yu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yaoyu Liu
- School of Environmental and Chemical Engineering, Shanghai University, No.99 Shangda Road, Shanghai 200444, China
| | - Xiuxiu Ruan
- School of Environmental and Chemical Engineering, Shanghai University, No.99 Shangda Road, Shanghai 200444, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Andrew J Hunt
- Materials Chemistry Research Center, Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Yong Sik Ok
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Hocheol Song
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| |
Collapse
|
25
|
Influence of Fe/HZSM-5 catalyst on elemental distribution and product properties during hydrothermal liquefaction of Nannochloropsis sp. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.08.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Cao L, Zhang C, Chen H, Tsang DCW, Luo G, Zhang S, Chen J. Hydrothermal liquefaction of agricultural and forestry wastes: state-of-the-art review and future prospects. BIORESOURCE TECHNOLOGY 2017; 245:1184-1193. [PMID: 28893498 DOI: 10.1016/j.biortech.2017.08.196] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/28/2017] [Accepted: 08/29/2017] [Indexed: 05/22/2023]
Abstract
Hydrothermal liquefaction has been widely applied to obtain bioenergy and high-value chemicals from biomass in the presence of a solvent at moderate to high temperature (200-550°C) and pressure (5-25MPa). This article summarizes and discusses the conversion of agricultural and forestry wastes by hydrothermal liquefaction. The history and development of hydrothermal liquefaction technology for lignocellulosic biomass are briefly introduced. The research status in hydrothermal liquefaction of agricultural and forestry wastes is critically reviewed, particularly for the effects of liquefaction conditions on bio-oil yield and the decomposition mechanisms of main components in biomass. The limitations of hydrothermal liquefaction of agricultural and forestry wastes are discussed, and future research priorities are proposed.
Collapse
Affiliation(s)
- Leichang Cao
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Cheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Huihui Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Gang Luo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| |
Collapse
|
27
|
Hu Y, Feng S, Yuan Z, Xu CC, Bassi A. Investigation of aqueous phase recycling for improving bio-crude oil yield in hydrothermal liquefaction of algae. BIORESOURCE TECHNOLOGY 2017; 239:151-159. [PMID: 28521224 DOI: 10.1016/j.biortech.2017.05.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/05/2017] [Accepted: 05/06/2017] [Indexed: 06/07/2023]
Abstract
In this study, the aqueous phase obtained from catalytic/non-catalytic hydrothermal liquefaction (HTL) of Chlorella vulgaris was recycled as the reaction medium with an aim to reduce water consumption and increase bio-crude oil yield. Although both Na2CO3 and HCOOH catalysts have been proven to be effective for promoting biomass conversion, the bio-crude oil yield obtained from HTL with Na2CO3 (11.5wt%) was lower than that obtained from the non-catalytic HTL in pure water at 275°C for 50min. While, the HCOOH led to almost the same bio-crude yield from HTL (29.4wt%). Interestingly, bio-crude oil yield obtained from non-catalytic or catalytic HTL in recycled aqueous phase was much higher than that obtained from HTL in pure water. Recycling aqueous phase obtained from catalytic HTL experiments resulted in a sharp increase in the bio-crude oil yield by 32.6wt% (Na2CO3-HTL) and 16.1wt% (HCOOH-HTL), respectively.
Collapse
Affiliation(s)
- Yulin Hu
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London N6A 3K7, Canada
| | - Shanghuan Feng
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London N6A 3K7, Canada
| | - Zhongshun Yuan
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London N6A 3K7, Canada
| | - Chunbao Charles Xu
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London N6A 3K7, Canada.
| | - Amarjeet Bassi
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London N6A 3K7, Canada
| |
Collapse
|