1
|
Bianco F, Race M, Papirio S, Oleszczuk P, Esposito G. Coupling of desorption of phenanthrene from marine sediments and biodegradation of the sediment washing solution in a novel biochar immobilized-cell reactor. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119621. [PMID: 35709914 DOI: 10.1016/j.envpol.2022.119621] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/03/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
The recurrent dredging of marine sediments needs the use of ex-situ technologies such as sediment washing (SW) to effectively remove polycyclic aromatic hydrocarbons. Notwithstanding, the large volumes of generated spent SW effluents require adequate treatment by employing highly-efficient, inexpensive and environmentally-friendly solutions. This study proposes the phenanthrene (PHE) desorption from sediments using Tween® 80 (TW80) as extracting agent and the treatment of the resulting spent SW solution in a biochar (BC) immobilized-cell bioreactor. The SW process reached the highest PHE removal of about 91% using a surfactant solution containing 10,800 mg L-1 of TW80. The generated amount of spent PHE-polluted SW solution can be controlled by keeping a solid to liquid ratio of 1:4. A PHE degradation of up to 96% was subsequently achieved after 43 days of continuous reactor operation, aerobically treating the TW80 solution in the BC immobilized-cell bioreactor with a hydraulic retention time of 3.5 days. Brevundimonas, Chryseobacterium, Dysgonomonas, Nubsella, and both uncultured Weeksellaceae and Xanthobacteraceae genera were mainly involved in PHE biodegradation. A rough economic study showed a total cost of 342.60 € ton-1 of sediment, including the SW operations, TW80 and BC supply and the biological treatment of the SW solution.
Collapse
Affiliation(s)
- Francesco Bianco
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio 43, 03043, Cassino, Italy.
| | - Marco Race
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio 43, 03043, Cassino, Italy
| | - Stefano Papirio
- Department of Civil, Architectural and Environmental Engineering, University of Napoli Federico II, Via Claudio 21, 80125, Napoli, Italy
| | - Patryk Oleszczuk
- Department of Radiochemistry and Environmental Chemistry, Maria Curie-Skłodowska University, 3 Maria Curie-Skłodowska Square, 20031, Lublin, Poland
| | - Giovanni Esposito
- Department of Civil, Architectural and Environmental Engineering, University of Napoli Federico II, Via Claudio 21, 80125, Napoli, Italy
| |
Collapse
|
2
|
Mahto KU, Das S. Bacterial biofilm and extracellular polymeric substances in the moving bed biofilm reactor for wastewater treatment: A review. BIORESOURCE TECHNOLOGY 2022; 345:126476. [PMID: 34864174 DOI: 10.1016/j.biortech.2021.126476] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/27/2021] [Accepted: 11/28/2021] [Indexed: 06/13/2023]
Abstract
Among the several biofilm-based bioreactors, moving bed biofilm reactors (MBBR) have been extensively used for wastewater treatment due to low operational costs, technical feasibility, and stability. Biofilm forming strains, e.g., Stenotrophomonas maltophila DQ01, achieved 94.21% simultaneous nitrification and denitrification (SND) and 94.43% removal of total nitrogen (TN) at a cycle time of 7 h, and a biofilm consortium consisting of Chryseobacteriumsp. andRhodobactersp. achieved 86.8% removal of total organic carbon (TOC) at hydraulic retention time (HRT) of 24 h using lab-scale MBBR. Modifications in the surface properties of the biocarrier materials achieved 99.5 ± 1.1% chemical oxygen demand (COD) and 93.6 ± 2.3% NH4+-N removal, significantly higher than the conventional commercial carrier. This review article summarizes the application of MBBR technology for wastewater treatment. The importance of bacterial biofilm and extracellular polymeric substances (EPS), anammox-n-DAMO coupled processes, and carrier surface modifications in MBBR technology have also been discussed.
Collapse
Affiliation(s)
- Kumari Uma Mahto
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769 008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769 008, Odisha, India.
| |
Collapse
|
3
|
Sonwani RK, Kim KH, Zhang M, Tsang YF, Lee SS, Giri BS, Singh RS, Rai BN. Construction of biotreatment platforms for aromatic hydrocarbons and their future perspectives. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125968. [PMID: 34492879 DOI: 10.1016/j.jhazmat.2021.125968] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 04/05/2021] [Accepted: 04/22/2021] [Indexed: 06/13/2023]
Abstract
Aromatic hydrocarbons (AHCs) are one of the major environmental pollutants introduced from both natural and anthropogenic sources. Many AHCs are well known for their toxic, carcinogenic, and mutagenic impact on human health and ecological systems. Biodegradation is an eco-friendly and cost-effective option as microorganisms (e.g., bacteria, fungi, and algae) can efficiently breakdown or transform such pollutants into less harmful and simple metabolites (e.g., carbon dioxide (aerobic), methane (anaerobic), water, and inorganic salts). This paper is organized to offer a state-of-the-art review on the biodegradation of AHCs (monocyclic aromatic hydrocarbons (MAHs) and polycyclic aromatic hydrocarbons (PAHs)) and associated mechanisms. The recent progress in biological treatment using suspended and attached growth bioreactors for the biodegradation of AHCs is also discussed. In addition, various substrate growth and inhibition models are introduced along with the key factors governing their biodegradation kinetics. The growth and inhibition models have helped gain a better understanding of substrate inhibition in biodegradation. Techno-economic analysis (TEA) and life cycle assessment (LCA) aspects are also described to assess the technical, economical, and environmental impacts of the biological treatment system.
Collapse
Affiliation(s)
- Ravi Kumar Sonwani
- Department of Chemical Engineering & Technology Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| | - Ming Zhang
- Department of Environmental Engineering, China Jiliang University, Hangzhou 310018, China
| | - Yiu Fai Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories 999077, Hong Kong
| | - Sang Soo Lee
- Department of Environmental Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Balendu Shekher Giri
- Department of Chemical Engineering & Technology Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Ram Sharan Singh
- Department of Chemical Engineering & Technology Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Birendra Nath Rai
- Department of Chemical Engineering & Technology Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
4
|
Sonwani RK, Giri BS, Jaiswal RP, Singh RS, Rai BN. Performance evaluation of a continuous packed bed bioreactor: Bio-kinetics and external mass transfer study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110860. [PMID: 32563162 DOI: 10.1016/j.ecoenv.2020.110860] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 06/11/2023]
Abstract
The biodegradation of naphthalene using low-density polyethylene (LDPE) immobilized Exiguobacterium sp. RKS3 (MG696729) in a packed bed bioreactor (PBBR) was studied. The performance of a continuous PBBR was evaluated at different inlet flow rates (IFRs) (20-100 mL/h) under 64 days of operation. The maximum naphthalene removal efficiency (RE) was found at low IFR, and it further decreased with increasing IFRs. In a continuous PBBR, the external mass transfer (EMT) aspect was analysed at various IFRs, and experimental data were interrelated between Colburn factor (JD) and Reynolds number (NRe) as [Formula: see text] . A new correlation [Formula: see text] was obtained to predict the EMT aspect of naphthalene biodegradation. Andrew-Haldane model was used to evaluate the bio-kinetic parameters of naphthalene degradation, and kinetic constant νmax, Js, and Ji were found as 0.386 per day, 13.6 mg/L, and 20.54 mg/L, respectively.
Collapse
Affiliation(s)
- Ravi Kumar Sonwani
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, Uttar Pradesh, India
| | - Balendu Shekhar Giri
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, Uttar Pradesh, India
| | - Ravi Prakash Jaiswal
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, Uttar Pradesh, India
| | - Ram Sharan Singh
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, Uttar Pradesh, India
| | - Birendra Nath Rai
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
5
|
Mangwani N, Kumari S, Das S. Taxonomy and Characterization of Biofilm Forming Polycyclic Aromatic Hydrocarbon Degrading Bacteria from Marine Environments. Polycycl Aromat Compd 2019. [DOI: 10.1080/10406638.2019.1666890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Neelam Mangwani
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Supriya Kumari
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| |
Collapse
|
6
|
Sonwani RK, Swain G, Giri BS, Singh RS, Rai BN. A novel comparative study of modified carriers in moving bed biofilm reactor for the treatment of wastewater: Process optimization and kinetic study. BIORESOURCE TECHNOLOGY 2019; 281:335-342. [PMID: 30831512 DOI: 10.1016/j.biortech.2019.02.121] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 06/09/2023]
Abstract
In this work, modified plastic carriers; polypropylene (PP), low-density polyethylene- polypropylene (LDPE-PP), and polyurethane foam-polypropylene (PUF-PP) were developed and used in moving bed bioreactor (MBBR) for the wastewater treatment containing naphthalene. To optimized the process parameters using response surface methodology (RSM), two numerical variables; pH (5.0-9.0) and hydraulic retention time (HRT) (1.0-5.0 day) along with the type of carriers (PP, LDPE-PP, and PUF-PP) were selected as a categorical factor. At 7.0 pH and 5 days HRT, maximum removal efficiencies were observed to be 72.4, 84.4, and 90.2% for MBBR packed with PP, LDPE-PP, and PUF-PP carriers, respectively. Gas chromatography-mass spectrometry (GC-MS) analysis reveals catechol and 2-naphthol were observed as intermediate metabolites for naphthalene degradation. Modified Stover-Kincannon model was applied for biodegradation kinetic and constants were observed as Umax: 0.476, 0.666, and 0.769 g/L.day and KB: 0.565, 0.755, and 0.874 g/L.day for PP, LDPE-PP, PUF-PP, respectively.
Collapse
Affiliation(s)
- Ravi Kumar Sonwani
- Department of Chemical Engineering & Technology Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Ganesh Swain
- Department of Chemical Engineering & Technology Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Balendu Shekhar Giri
- Department of Chemical Engineering & Technology Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Ram Sharan Singh
- Department of Chemical Engineering & Technology Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Birendra Nath Rai
- Department of Chemical Engineering & Technology Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India.
| |
Collapse
|
7
|
Wang Z, Wang W, Li Y, Yang Q. Co-metabolic degradation of naphthalene and pyrene by acclimated strain and competitive inhibition kinetics. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2019; 54:505-513. [PMID: 30909840 DOI: 10.1080/03601234.2019.1586033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A dominant strain named Ochrobactrum sp. was isolated from soils contaminated with coal tar. The batch experiments were carried out to study the co-metabolic degradation of pyrene by Ochrobactrum MB-2 with naphthalene as the main substrate and the effects of several significant parameters such as naphthalene concentration, pH and temperature on removal efficiency were explored. The results showed that Ochrobactrum MB-2 effectively degraded naphthalene and that the addition of naphthalene favored the degradation of pyrene. The maximum elimination efficiency of naphthalene (10 mg L-1) and pyrene (1 mg L-1) was achieved at pH 7 and 25 °C, and the corresponding values were 99 and 41%, respectively. A competitive inhibition model based on the Michaelis-Menten equation was used to characterize the inhibitory effect of pyrene on naphthalene degradation. The values of the half-saturation coefficient for naphthalene (KS) and dissociation constant of enzyme-inhibitor complex (KC) were determined to be 4.93 and 1.38 mg L-1, respectively.
Collapse
Affiliation(s)
- Zhen Wang
- a School of Water Resources and Environment , China University of Geosciences , Beijing , China
- b Beijing Key Laboratory of Water Resource & Environmental Engineering , China University of Geosciences , Beijing , China
| | - Wenjing Wang
- a School of Water Resources and Environment , China University of Geosciences , Beijing , China
- b Beijing Key Laboratory of Water Resource & Environmental Engineering , China University of Geosciences , Beijing , China
| | - Yalong Li
- a School of Water Resources and Environment , China University of Geosciences , Beijing , China
- b Beijing Key Laboratory of Water Resource & Environmental Engineering , China University of Geosciences , Beijing , China
| | - Qi Yang
- a School of Water Resources and Environment , China University of Geosciences , Beijing , China
- b Beijing Key Laboratory of Water Resource & Environmental Engineering , China University of Geosciences , Beijing , China
| |
Collapse
|
8
|
Sonwani R, Giri B, Das T, Singh R, Rai B. Biodegradation of fluorene by neoteric LDPE immobilized Pseudomonas pseudoalcaligenes NRSS3 in a packed bed bioreactor and analysis of external mass transfer correlation. Process Biochem 2019. [DOI: 10.1016/j.procbio.2018.11.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
9
|
Zhao L, Zhang C, Li H, Bao M, Sun P. Regulation of different electron acceptors on petroleum hydrocarbon biotransformation to final products in activated sludge biosystems. Bioprocess Biosyst Eng 2019; 42:643-655. [DOI: 10.1007/s00449-019-02070-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/03/2019] [Indexed: 10/27/2022]
|
10
|
Tang B, Zhao Y, Bin L, Huang S, Fu F. Variation of the characteristics of biofilm on the semi-suspended bio-carrier produced by a 3D printing technique: Investigation of a whole growing cycle. BIORESOURCE TECHNOLOGY 2017; 244:40-47. [PMID: 28777989 DOI: 10.1016/j.biortech.2017.07.132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 07/20/2017] [Accepted: 07/23/2017] [Indexed: 06/07/2023]
Abstract
The presented investigation focused on exploring the characteristics of the biofilm formed on a novel semi-suspended bio-carrier and revealing their variation during the whole growing cycle. This used semi-suspended bio-carrier was designed to be a spindle shape, and then fabricated by using a 3D printing technique. Results indicated the bio-carrier provided a suitable environment for the attachment of diverse microorganisms. During the experimental period lasted for 45days, the biofilm quickly attached on the surface of the bio-carrier and grew to maturity, but its characteristics, including the chemical compositions, adhesion force, surface roughness, structure of microbial communities, varied continuously along with the operational time, which greatly influenced the performance of the bioreactor. The shape and structure of bio-carrier, and the shearing force caused by the aeration are important factors that influence the microbial community and its structure, and also heavily affect the formation and growth of biofilm.
Collapse
Affiliation(s)
- Bing Tang
- School of Environmental Science and Engineering and Institute of Environmental Health and Pollution Control, Guangdong University of Technology, 510006 Guangzhou, PR China.
| | - Yiliang Zhao
- School of Environmental Science and Engineering and Institute of Environmental Health and Pollution Control, Guangdong University of Technology, 510006 Guangzhou, PR China
| | - Liying Bin
- School of Environmental Science and Engineering and Institute of Environmental Health and Pollution Control, Guangdong University of Technology, 510006 Guangzhou, PR China
| | - Shaosong Huang
- School of Environmental Science and Engineering and Institute of Environmental Health and Pollution Control, Guangdong University of Technology, 510006 Guangzhou, PR China
| | - Fenglian Fu
- School of Environmental Science and Engineering and Institute of Environmental Health and Pollution Control, Guangdong University of Technology, 510006 Guangzhou, PR China
| |
Collapse
|