1
|
Gu Y, Meng J, Duo J, Khim JS, Wang T, Su G, Li Q, Shi B, Sun B, Zhang Y, Ouyang K. Environmental fate and transformation mechanisms of chlorinated organic pollutants from the petrochemical industry: Insights for pollution control and remediation. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136329. [PMID: 39488973 DOI: 10.1016/j.jhazmat.2024.136329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/10/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Chlorinated organic pollutants (Cl-OPs), highly toxic and environmentally persistent, have become the spotlight, particularly from petrochemical industry. This study focuses on environmental fate of Cl-OPs from petrochemical industry, and transformation mechanisms in multi-media, aiming to enhance pollution control and remediation strategies. Emitted from leakage and waste discharge, Cl-OPs, encompassing chlorinated volatile organic compounds (Cl-VOCs), traditional and emerging persistent organic pollutants (POPs), were prevalent with average concentrations of 10-6-103 μg/m3 in the atmosphere, 10-2-105 μg/kg in soil and 100-105 μg/L in groundwater. Significantly, emerging POPs, particularly hexachlorobutadiene (HCBD) and short-chain chlorinated paraffins (SCCPs), with concentrations comparable to Cl-VOCs, urgently need attention. Once into the environment, Cl-OPs are naturally transformed primarily through atmospheric oxidation and water photolysis induced by hydroxyl radical (‧OH), and microbial degradation. Despite challenges in atmospheric complete degradation, ‧OH in water effectively photolytically degrade chlorinated benzenes and paraffins facilitated by dissolved oxygen and organic matter. Microbial degradation, influenced by oxygen, temperature, and pH, is essential for Cl-OPs removal from water and soil, where oxidation make complete mineralization possible whereas dechlorination may generate higher toxic intermediates. Hence, Cl-OPs control necessitates an attentive to leakage and waste management. Furthermore, advanced ‧OH oxidation and microbial treatment are of effective remediation prospect.
Collapse
Affiliation(s)
- Yangyang Gu
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Meng
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jia Duo
- Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang 830011, China
| | - Jong Seong Khim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Tieyu Wang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
| | - Guijin Su
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Qianqian Li
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Shi
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bohua Sun
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Zhang
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaige Ouyang
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang 110168, China
| |
Collapse
|
2
|
Su Q, Dai D, Liao Y, Han H, Wu J, Ren Z. Synthetic microbial consortia to enhance the biodegradation of compost odor by biotrickling filter. BIORESOURCE TECHNOLOGY 2023; 387:129698. [PMID: 37598805 DOI: 10.1016/j.biortech.2023.129698] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Composting generates odorous gases, including ammonia (NH3), hydrogen sulfide (H2S), and volatile organic compounds (VOCs). The Biological Trickling Filter (BTF) is effective for odor treatment, but it may have limitations with hydrophobic VOCs. In this study, a strain of Bacillus subtilis with ammonia-reducing ability, a strain of Bacillus cereus with desulfurization ability and a strain of Schizophyllum commune with the ability to degrade dimethyl disulfide were isolated and screened. The three strains were combined to create synthetic microbial consortia for enhancing odor treatment in the BTF. Compared to the activated sludge control, the BTF with synthetic microbial consortia removed 92.43% ammonia, 92.75% hydrogen sulfide. Furthermore, it demonstrated a significant improvement in the removal rates of p-methyl mercaptan, methyl sulfide, and dimethyl disulfide. High-throughput sequencing was conducted on the fillers of the synthetic microbial consortia-inoculated BTF to analyze the microbial community composition.
Collapse
Affiliation(s)
- Qihang Su
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Dunwu Dai
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Youjun Liao
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongbo Han
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jian Wu
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China.
| | - Zhuqing Ren
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| |
Collapse
|
3
|
Zhao Y, Li W, Chen L, Zhou Y. Characterization of heterotrophic nitrification by a thermotolerant Brevibacillus Agri N2 isolated from sewage sludge composting. ENVIRONMENTAL RESEARCH 2022; 214:113903. [PMID: 35863446 DOI: 10.1016/j.envres.2022.113903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/25/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
A thermotolerant strain isolated from sewage sludge (SS) composting was identified as Brevibacillus Agri N2, which showed the efficient capability for heterotrophic nitrification under high-temperature conditions. Incubation at 60 °C, strain N2 could utilize 45.47% of ammonium nitrogen (99.64 mg/L), 68.89% of hydroxylamine nitrogen (51.14 mg/L) and 76.77% of nitrite nitrogen (55.20 mg/L), with a minor part of nitrogen loss for 1.64%, 2.82% and 5.01%, respectively. The successful detection of ammonia monooxygenase, hydroxylamine oxidase, and nitrate oxidoreductase and PCR amplification of amoA, hao and nxrA genes provided evidence of nitrification ability by strain N2. Furthermore, single-factor experiments indicated that the optimal conditions for efficient nitrification performance by strain N2 were succinate as carbon source, 50 °C, C/N 12, pH 8 and 200 r/min. Strain N2 could perform the complete nitrification process, with minimal nitrogen loss at high temperature conditions, which indicated it had the potential for practical application for reducing nitrogen loss of SS composting.
Collapse
Affiliation(s)
- Yi Zhao
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Weiguang Li
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Li Chen
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yujie Zhou
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
4
|
Yang B, Wang J, Wu M, Shang Q, Zhang H. Effect of rhamnolipids on the biodegradation of m-dichlorobenzene in biotrickling filters: Performance and mechanism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 320:115951. [PMID: 36056502 DOI: 10.1016/j.jenvman.2022.115951] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
In this study, the effect of rhamnolipids (RL) on m-dichlorobenzene (m-DCB) removal and biofilm was investigated in two biotrickling filters (BTF) (BTF1: blank control; BTF2: RL addition). The critical micelle concentration (CMC) value of RL was 75.6 mg L-1, and the RL could significantly improve the solubilization of m-DCB. The results showed that the optimal concentration of RL was 180 mg L-1. The removal efficiency (RE) of m-DCB dropped by 42.4% for BTF1 no fed with RL and only 28.2% for BTF2 fed with RL when the inlet concentration increased from 200 to 1400 mg m-3 at an empty bed time (EBRT) of 60 s. RL increased the secretion of extracellular polymers (EPS) and the ratio of Protein/Polysaccharide, which improved the mass transfer of m-DCB to the biofilm. RL also had a facilitating effect on catechol-1,2-dioxygenase (C12O) enzyme activity. Furthermore, RL increased Zeta potential and facilitated microorganisms to form biofilm. The dominant microorganisms of microbial community were increased and the application of RL promoted the enrichment of them.
Collapse
Affiliation(s)
- Bairen Yang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China.
| | - Jiajie Wang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Menglei Wu
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Qingqing Shang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Hao Zhang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| |
Collapse
|
5
|
Study on Gaseous Chlorobenzene Treatment by a Bio-Trickling Filter: Degradation Mechanism and Microbial Community. Processes (Basel) 2022. [DOI: 10.3390/pr10081483] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Large-flow waste gas generated from the pharmaceutical and chemical industry usually contains low concentrations of VOCs (volatile organic compounds), and it is also the key factor that presents challenges in terms of disposal. To date, due to the limitations of mass transfer rate and microbial degradation ability, the degradation performance of VOCs using the biological method has not been ideal. Therefore, in this study, the sludge from a chlorobenzene-containing wastewater treatment plant was inoculated into our experimental bio-trickling filter (BTF) to explore the feasibility of domestication and degradation of gaseous chlorobenzene by highly active microorganisms. The kinetics of its mass transfer reaction and microbial community dynamics were also discussed. Moreover, the main process parameters of BTF for chlorobenzene degradation were optimized. The results showed that the degradation effect of chlorobenzene reached more than 85% at an inlet concentration of chlorobenzene 700 mg·m−3, oxygen concentration of 10%, and an empty bed retention time (EBRT) of 80 s. The mass transfer kinetic analysis indicated that the process of chlorobenzene degradation in the BTF occurred between the zero-stage reaction and the first-stage reaction. This BTF contributed significantly to the biodegradability of chlorobenzene, overcoming the limitation of gas-to-liquid/solid mass transfer of chlorobenzene. The analysis of the species diversity showed that Thermomonas, Petrimona, Comana, and Ottowia were typical organic-matter-degrading bacteria that degraded chlorobenzene efficiently with xylene present.
Collapse
|
6
|
Chen X, Feng L, Zheng W, Chen S, Yang Y, Xie S. Shifts in structure and function of bacterial community in river and fish pond sediments after a phenol spill. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:14987-14998. [PMID: 34622407 DOI: 10.1007/s11356-021-16514-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Phenol is widely used in industrial processes and has microbial toxicity. However, the effects of a phenol spill on the microbial community are not clear. The present study explored the changes of bacterial communities in river and fish pond sediments after a phenol spill. The bacterial richness and diversity in river sediments were lower on day 30 (36 days after the spill) than on day 0, while they increased in fish pond sediments. The structures and functions of bacterial communities in both river and fish pond sediments were changed, and a more dramatical variation was detected in fish pond sediments. In river sediments, Proteobacteria, Chloroflexi, Acidobacteria, Bacteroidetes, and Nitrospirae were the major bacterial phyla, and Chloroflexi was enriched. In fish pond sediments, genera Brevibacillus dominated bacterial communities initially, and bacterial composition showed a dramatic change on day 30. Most predicted metabolism functions, as well as genetic information processing functions of translation, replication, and repair, were enhanced in both river and fish pond sediments, while they showed an opposite change trend for xenobiotic degradation function. This work could strengthen our understanding of the effects of phenol spills on sediment bacterial communities in both lotic and lentic ecosystems.
Collapse
Affiliation(s)
- Xiuli Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Lishi Feng
- South China Institute of Environmental Sciences (SCIES), Ministry of Ecology and Environment (MEE), Guangzhou, 510655, China
| | - Wenli Zheng
- South China Institute of Environmental Sciences (SCIES), Ministry of Ecology and Environment (MEE), Guangzhou, 510655, China
| | - Sili Chen
- South China Institute of Environmental Sciences (SCIES), Ministry of Ecology and Environment (MEE), Guangzhou, 510655, China.
| | - Yuyin Yang
- South China Institute of Environmental Sciences (SCIES), Ministry of Ecology and Environment (MEE), Guangzhou, 510655, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
7
|
Liu N, Li D, Li K, Wang L, Xu R, Zhang J, Yang B. Enhanced biodegradation of chlorobenzene via combined Fe 3+ and Zn 2+ based on rhamnolipid solubilisation. J Environ Sci (China) 2021; 103:108-118. [PMID: 33743893 DOI: 10.1016/j.jes.2020.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/30/2020] [Accepted: 10/05/2020] [Indexed: 06/12/2023]
Abstract
Biotrickling filters (BTFs) for hydrophobic chlorobenzene (CB) purification are limited by mass transfer and biodegradation. The CB mass transfer rate could be improved by 150 mg/L rhamnolipids. This study evaluated the combined use of Fe3+ and Zn2+ to enhance biodegradation in a BTF over 35 day. The effects of these trace elements were analysed under different inlet concentrations (250, 600, 900, and 1200 mg/L) and empty bed residence times (EBRTs; 60, 45, and 32 sec). Batch experiments showed that the promoting effects of Fe3+/Zn2+ on microbial growth and metabolism were highest for 3 mg/L Fe3+ and 2 mg/L Zn2+, followed by 2 mg/L Zn2+, and lowest at 3 mg/L Fe3+. Compared to BTF in the absence of Fe3+ and Zn2+, the average CB elimination capacity and removal efficiency in the presence of Fe3+ and Zn2+ increased from 61.54 to 65.79 g/(m3⋅hr) and from 80.93% to 89.37%, respectively, at an EBRT of 60 sec. The average removal efficiency at EBRTs of 60, 45, and 32 sec increased by 2.89%, 5.63%, and 11.61%, respectively. The chemical composition (proteins (PN), polysaccharides (PS)) and functional groups of the biofilm were analysed at 60, 81, and 95 day. Fe3+ and Zn2+ significantly enhanced PN and PS secretion, which may have promoted CB adsorption and biodegradation. High-throughput sequencing revealed the promoting effect of Fe3+ and Zn2+ on bacterial populations. The combination of Fe3+ and Zn2+ with rhamnolipids was an efficient method for improving CB biodegradation in BTFs.
Collapse
Affiliation(s)
- Na Liu
- Engineering Research Center of Mine Ecological Construction, Ministry of Education, China University of Mining and Technology, Xuzhou 221116, China
| | - Dan Li
- Engineering Research Center of Mine Ecological Construction, Ministry of Education, China University of Mining and Technology, Xuzhou 221116, China
| | - Kang Li
- Engineering Research Center of Mine Ecological Construction, Ministry of Education, China University of Mining and Technology, Xuzhou 221116, China
| | - Liping Wang
- Engineering Research Center of Mine Ecological Construction, Ministry of Education, China University of Mining and Technology, Xuzhou 221116, China.
| | - Ruiwei Xu
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Jiaming Zhang
- Engineering Research Center of Mine Ecological Construction, Ministry of Education, China University of Mining and Technology, Xuzhou 221116, China
| | - Bairen Yang
- School of Environmental Science and Engineering, Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, China
| |
Collapse
|
8
|
Li K, Yang B, Wang L. Performance evaluation of a biotrickling filter for the removal of gas-phase 1,2-dichlorobenzene: Influence of rhamnolipid and ferric ions. CHEMOSPHERE 2020; 250:126261. [PMID: 32109701 DOI: 10.1016/j.chemosphere.2020.126261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/12/2020] [Accepted: 02/15/2020] [Indexed: 06/10/2023]
Abstract
The aim of this study was to evaluate the influence of rhamnolipid (RL) and ferric ions on the performance of a biotrickling filter (BTF) for the removal of gas-phase 1,2-dichlorobenzene (o-DCB). A comprehensive investigation of microbial growth, pollutant solubility, extracellular polymeric substances (EPS) and enzymatic activity in o-DCB degradation by an isolated strain Bacillus cereus DL-1 with/without RL and Fe3+ were carried out using batch microcosm experiments. In addition, o-DCB removal performance, biofilm morphology, and microbial community structures in two identical lab-scale biotrickling filters (named BTF1 and BTF2) inoculated with strain DL-1 were studied. The batch microcosm experiments demonstrated that 120 mg L-1 RL and 4 mg L-1 Fe3+ could enhance the biodegradation of o-DCB, which may be due to promotion on bacterial growth, o-DCB solubilization, C12O enzyme activity, and polysaccharide (PS) and protein (PN) in EPS. Fourier transform infrared (FTIR) spectra indicated that the addition of RL with Fe3+ had notable effects on the functional groups of PS and PN in EPS. The experimental results in BTFs indicate that the removal efficiency of o-DCB decreased from 100% to 56.4% for BTF1, which was not fed with RL and Fe3+, and from 100% to 80.3% for BTF2, which was fed with RL and Fe3+, when the inlet loading rate increased from 4.88 to 102 g m-3 h-1 at an empty bed residence time of 60 s. In addition, the microbial adhesive strength and the microbial community structure were different among both BTFs, highlighting the positive effects of RL and Fe3+.
Collapse
Affiliation(s)
- Kang Li
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, PR China
| | - Bairen Yang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, PR China; School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, 224000, PR China
| | - Liping Wang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, PR China; Engineering Research Center of Mine Ecological Construction, Ministry of Education, Xuzhou, Jiangsu, 221116, PR China.
| |
Collapse
|
9
|
Xie L, Zhu J, Hu J, Jiang C. Study of the Mass Transfer–Biodegradation Kinetics in a Pilot-Scale Biotrickling Filter for the Removal of H 2S. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00672] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Le Xie
- College of Chemistry and Chemical Engineering, and Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha 410083, Hunan, China
| | - Jundong Zhu
- College of Chemistry and Chemical Engineering, and Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha 410083, Hunan, China
| | - Jiang Hu
- College of Chemistry and Chemical Engineering, and Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha 410083, Hunan, China
| | - Chongwen Jiang
- College of Chemistry and Chemical Engineering, and Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha 410083, Hunan, China
| |
Collapse
|
10
|
Li C, Zhang X, Lu Y, Fan Z, Wang T, Zhang G. Cometabolic degradation of p-chloroaniline by the genus Brevibacillus bacteria with extra carbon sources. JOURNAL OF HAZARDOUS MATERIALS 2020; 383:121198. [PMID: 31541955 DOI: 10.1016/j.jhazmat.2019.121198] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 08/31/2019] [Accepted: 09/09/2019] [Indexed: 06/10/2023]
Abstract
In this study, we discovered and isolated a new genus Brevibacillus strain from effluent of dyeing and finishing factory containing highly toxic p-chloroanilines (PCA). Based on the morphological, physiological and biochemical characteristics, as well as 16S rDNA sequence, the strain was identified and denominated as Brevibacillus S-618. Co-metabolism effect was found with extra carbon sources including sodium succinate, sodium citrate, ammonium chloride and glucose which can efficiently promote the biodegradation process of PCA. Under the optimal growth conditions at temperature of 30 °C, pH˜7 and air-water ratio of 0.3 m3/m3·min, the degradation rate of PCA in a 2 L pilot bioreactor with high concentration of 180 mg/L increased from 86.7% to 100% within 72 h after adding sodium succinate. The release of chloride ions during the growth process of the strain was equivalent to the degradation amount of PCA. Meanwhile, the cleavage pathway of PCA degradation by Brevibacillus S-618 was proposed by analysis of enzyme activities of microorganism and intermediate products in the reaction. Benefiting from excellent degradation ability and unique characters in high pollutant contents, high efficient bioreactor can easily be scale up for industrial application. Our study provides a facile route for cost-effectively and environmental-friendly degrading hazardous chemicals.
Collapse
Affiliation(s)
- Chang Li
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xu Zhang
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yin Lu
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| | - Zheng Fan
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Tiecheng Wang
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Guoliang Zhang
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
11
|
Sun Z, Ding C, Xi J, Lu L, Yang B. Enhancing biofilm formation in biofilters for benzene, toluene, ethylbenzene, and xylene removal by modifying the packing material surface. BIORESOURCE TECHNOLOGY 2020; 296:122335. [PMID: 31732413 DOI: 10.1016/j.biortech.2019.122335] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 06/10/2023]
Abstract
Polyurethane (PU) sponges are popular packing material in biofilters and their smooth and hydrophobic surface often leads to an uneven distribution and detachment of biofilms. In this work, the surface of PU sponge was modified to obtain higher roughness and positive charge. The performances of two biofilters (BF1 with pristine sponge and BF2 with modified sponge) for benzene, toluene, ethylbenzene, and xylene (BTEX) removal were investigated. Total Volatile Organic Compound (TVOC) removal efficiency and CO2 increment were 61% and 804 ppm for BF2 respectively after start-up, compared with 51% and 538 ppm for BF1. Analysis on biofilms showed that the modification of PU sponge significantly improved the microbial growth, viability and adhesive strength in biofilms, reduced extracellular polymeric substance (EPS) and changed the microbial community. These results demonstrate that modified sponge can enhance biofilm formation and BTEX removal in biofilters and may applied in large-scale applications.
Collapse
Affiliation(s)
- Zhuqiu Sun
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Cheng Ding
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Jinying Xi
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084, PR China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China.
| | - Lichao Lu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Bairen Yang
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, PR China
| |
Collapse
|
12
|
Yang M, Lu D, Yang J, Zhao Y, Zhao Q, Sun Y, Liu H, Ma J. Carbon and nitrogen metabolic pathways and interaction of cold-resistant heterotrophic nitrifying bacteria under aerobic and anaerobic conditions. CHEMOSPHERE 2019; 234:162-170. [PMID: 31207421 DOI: 10.1016/j.chemosphere.2019.06.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 06/09/2023]
Abstract
In this study, both the carbon and nitrogen metabolisms of two heterotrophic nitrification bacteria were investigated under aerobic and anaerobic conditions at 2 °C. Similar catabolism and anabolism trends were observed for the two bacteria in stable experimental systems under aerobic and anaerobic conditions. Based on the nitrogen and carbon balance analysis and adenosine triphosphate (ATP) calculation, we proposed the following metabolic pathways: i) aerobic: except for microbial assimilation, the carbon and nitrogen sources were removed through respiration and nitrification, which provided energy for cell synthesis; and ii) anaerobic: the nitrification process almost stopped and most of the carbon sources decomposed into inorganic carbon, which dissolved in the medium. Based on our proposed metabolic pathways, we speculated that the nitrifying process almost stopped under anaerobic conditions and the nitrification bacteria would degrade more carbon contaminants to produce energy and maintain the cell growth. Furthermore, these bacteria may decompose the non-readily biodegradable carbon through anaerobic degradation. To verify these hypotheses, experiments with two types of synthetic wastewater were conducted: i) synthetic wastewater rich in carbon and poor in nitrogen, and higher carbon removal efficiencies of strain J and strain P (∼25%) were obtained under anaerobic conditions compared with aerobic conditions (∼19%); and ii) synthetic wastewater with recalcitrant carbon sources, and carbon removal efficiencies under anaerobic conditions were higher than those under aerobic conditions. The results of the synthetic wastewater experiments were consistent with the hypotheses and thus validated the metabolic pathways proposed for carbon and nitrogen.
Collapse
Affiliation(s)
- Mo Yang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Dongwei Lu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Jiaxuan Yang
- Central & Southern China Municipal Engineering Design and Research Institute Co., Ltd, Wuhan, 430010, China
| | - Yumeng Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Qi Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yan Sun
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Huiling Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
13
|
Li K, Zhou J, Wang L, Mao Z, Xu R. The styrene purification performance of biotrickling filter with toluene-styrene acclimatization under acidic conditions. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2019; 69:944-955. [PMID: 30973304 DOI: 10.1080/10962247.2019.1604450] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/28/2019] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
The obvious disadvantages of biotrickling filters (BTFs) are the long start-up time and low removal efficiency (RE) when treating refractory hydrophobic volatile organic compounds (VOCs), which limits its industrial application. It is worthwhile to investigate how to reduce the start-up period of the BTF for treating hydrophobic VOCs. Here, we present the first study to evaluate the strategy of toluene induction combined with toluene-styrene synchronous acclimatization during start-up in a laboratory-scale BTF inoculated with activated sludge for styrene removal, as well as the effects of styrene inlet concentration (0.279 to 2.659 g·m-3), empty bed residence time (EBRT) (i.e., 136, 90, 68, 45, 34 sec), humidity (7.7% to 88.9%), and pH (i.e., 4, 3, 2.5, 2) on the performance of the BTF system. The experiments were carried out under acidic conditions (pH 4.5) to make fungi dominant in the BTF. The start-up period for styrene in the BTF was shortened to about 28 days. A maximum elimination capacity (ECmax) of 126 g·m-3·hr-1 with an RE of 80% was attained when styrene inlet loading rate (ILR) was below 180 g·m-3·hr-1. The highest styrene RE(s) [of BTF] that could be achieved were 95% and 93.4%, respectively, for humidity of 7.7% and at pH 2. A single dominant fungal strain was isolated and identified as Candida palmioleophila strain MA-M11 based on the 26S ribosomal RNA gene. Overall, the styrene induction with the toluene-styrene synchronous acclimatization could markedly reduce the start-up period and enhance the RE of styrene. The BTF dominated by fungi exhibited good performance under low pH and humidity and great potential in treating styrene with higher inlet concentrations. Implications: The application of the toluene induction combined with toluene-styrene synchronous acclimatization demonstrated to be a promising approach for the highly efficient removal of styrene. The toluene induction can accelerate biofilm formation, and the adaptability of microorganisms to styrene can be improved rapidly by the toluene-styrene synchronous acclimatization. The integrated application of two technologies can shorten the start-up period of biotrickling filters markedly and promote its industrial application.
Collapse
Affiliation(s)
- Kang Li
- a School of Environment Science and Spatial Informatics, China University of Mining and Technology , Xuzhou, Jiangsu, People's Republic of China
| | - Jiazhen Zhou
- b College of Environmental Science and Engineering, Tongji University , Shanghai , People's Republic of China
| | - Liping Wang
- a School of Environment Science and Spatial Informatics, China University of Mining and Technology , Xuzhou, Jiangsu, People's Republic of China
| | - Zhen Mao
- a School of Environment Science and Spatial Informatics, China University of Mining and Technology , Xuzhou, Jiangsu, People's Republic of China
| | - Ruiwei Xu
- c College of Environmental Sciences and Engineering, Peking University , Beijing , People's Republic of China
| |
Collapse
|
14
|
Zhang S, Ying Z, You J, Ye J, Cheng Z, Chen D, Chen J. Superior performance and mechanism of chlorobenzene degradation by a novel bacterium. RSC Adv 2019; 9:15004-15012. [PMID: 35516324 PMCID: PMC9064227 DOI: 10.1039/c9ra01229j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 05/05/2019] [Indexed: 01/08/2023] Open
Abstract
A newly isolated strain was identified as Ochrobactrum sp. by 16S rRNA sequence analysis and named as ZJUTCB-1.
Collapse
Affiliation(s)
- Shihan Zhang
- College of Environment
- Zhejiang University of Technology
- Hangzhou
- China
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province
| | - Zanyun Ying
- College of Environment
- Zhejiang University of Technology
- Hangzhou
- China
| | - Juping You
- College of Environment
- Zhejiang University of Technology
- Hangzhou
- China
| | - Jiexu Ye
- College of Environment
- Zhejiang University of Technology
- Hangzhou
- China
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province
| | - Zhuowei Cheng
- College of Environment
- Zhejiang University of Technology
- Hangzhou
- China
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province
| | - Dongzhi Chen
- College of Environment
- Zhejiang University of Technology
- Hangzhou
- China
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province
| | - Jianmeng Chen
- College of Environment
- Zhejiang University of Technology
- Hangzhou
- China
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province
| |
Collapse
|
15
|
Sun Z, Yang B, Ding C, Li Z, Wang L. Enhanced removal of gaseous 1,3-dichlorobenzene in biotrickling filters by rhamnolipid and Mg (II). JOURNAL OF HAZARDOUS MATERIALS 2018; 360:571-577. [PMID: 30149343 DOI: 10.1016/j.jhazmat.2018.08.054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/12/2018] [Accepted: 08/15/2018] [Indexed: 06/08/2023]
Abstract
In this study, the effect of rhamnolipid and Mg (II) on microbial growth and 1,3-dichlorobenzene removal was investigated in two identical lab-scale biotrickling filters (named BTF1 and BTF2). The contact angle and Henry's constant were detected at various concentrations of rhamnolipid and the results indicated that rhamnolipid is able to effectively improve the solubility of 1,3-dichlorobenzene in medium. The results of the experiments in BTFs showed that the optimal concentrations of rhamnolipid and Mg (II) were 170 mg/L and 2 mg/L, respectively. The removal efficiency (RE) of 1,3-dichlorobenzene decreased from 100% to 57.13% for BTF1 that was not fed with rhamnolipid and Mg (II) and from 100% to 86.26% for BTF2 that was fed with rhamnolipid and Mg (II) when the inlet loading rate increased from 2.87 to 83.83 g/(m3 h) at an empty bed residence time (EBRT) of 60 s. The dissolved oxygen (DO) was analyzed throughout the entire period and the results showed that the two additives can significantly promote oxygen transfer. In addition, the microbial adhesive strength and community were observed and compared to show the positive role of rhamnolipid and Mg (II).
Collapse
Affiliation(s)
- Zhuqiu Sun
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, 224000, PR China; Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Bairen Yang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, 224000, PR China; School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, PR China
| | - Cheng Ding
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, 224000, PR China.
| | - Zhaoxia Li
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, 224000, PR China
| | - Liping Wang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, PR China
| |
Collapse
|
16
|
Peng X, Pan X, Wang X, Li D, Huang P, Qiu G, Shan K, Chu X. Accelerated removal of high concentration p-chloronitrobenzene using bioelectrocatalysis process and its microbial communities analysis. BIORESOURCE TECHNOLOGY 2018; 249:844-850. [PMID: 29136940 DOI: 10.1016/j.biortech.2017.10.068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/09/2017] [Accepted: 10/18/2017] [Indexed: 06/07/2023]
Abstract
p-Chloronitrobenzene (p-CNB) is a persistent refractory and toxic pollutant with a concentration up to 200 mg/L in industrial wastewater. Here, a super-fast removal rate was found at 0.2-0.8 V of external voltage over a p-CNB concentration of 40-120 mg/L when a bioelectrochemical technology is used comparing to the natural biodegradation and electrochemical methods. The reduction kinetics (k) was fitted well according to pseudo-first order model with respect to the different initial concentration, indicating a 1.12-fold decrease from 1.80 to 0.85 h-1 within the experimental range. Meanwhile, the highest k was provided at 0.5 V with the characteristic of energy saving. It was revealed that the functional bacterial (Propionimicrobium, Desulfovibrio, Halanaerobium, Desulfobacterales) was selectively enriched under electro-stimulation, which possibly processed Cl-substituted nitro-aromatics reduction. The possible degradation pathway was also proposed. This work provides the beneficial choice on the rapid treatment of high-concentration p-CNB wastewater.
Collapse
Affiliation(s)
- Xinhong Peng
- Institute of Seawater Desalination and Multipurpose Utilization, State Oceanic Administration (SOA), Nankai District, Tianjin 300192, China; MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China.
| | - Xianhui Pan
- Institute of Seawater Desalination and Multipurpose Utilization, State Oceanic Administration (SOA), Nankai District, Tianjin 300192, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Dongyang Li
- Institute of Seawater Desalination and Multipurpose Utilization, State Oceanic Administration (SOA), Nankai District, Tianjin 300192, China
| | - Pengfei Huang
- Institute of Seawater Desalination and Multipurpose Utilization, State Oceanic Administration (SOA), Nankai District, Tianjin 300192, China
| | - Guanhua Qiu
- Institute of Seawater Desalination and Multipurpose Utilization, State Oceanic Administration (SOA), Nankai District, Tianjin 300192, China
| | - Ke Shan
- Institute of Seawater Desalination and Multipurpose Utilization, State Oceanic Administration (SOA), Nankai District, Tianjin 300192, China
| | - Xizhang Chu
- Institute of Seawater Desalination and Multipurpose Utilization, State Oceanic Administration (SOA), Nankai District, Tianjin 300192, China
| |
Collapse
|
17
|
Sun Z, Yang B, Wang L, Ding C, Li Z. Toluene-styrene secondary acclimation improved the styrene removal ability of biotrickling filter. CHEMICAL SPECIATION & BIOAVAILABILITY 2017. [DOI: 10.1080/09542299.2017.1301219] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Zhuqiu Sun
- School of Environmental Science and Engineering, Yancheng Institute of Technogy, Yancheng, China
| | - Bairen Yang
- School of Environmental Science and Engineering, Yancheng Institute of Technogy, Yancheng, China
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, China
| | - Liping Wang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, China
| | - Cheng Ding
- School of Environmental Science and Engineering, Yancheng Institute of Technogy, Yancheng, China
| | - Zhaoxia Li
- School of Environmental Science and Engineering, Yancheng Institute of Technogy, Yancheng, China
| |
Collapse
|