1
|
Remmani R, Yılmaz M, Benaoune S, Di Palma L. Optimized pyrolytic synthesis and physicochemical characterization of date palm seed biochar: unveiling a sustainable adsorbent for environmental remediation applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:60065-60079. [PMID: 39367944 DOI: 10.1007/s11356-024-35218-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
This study focuses on the optimization and comprehensive characterization of biochar synthesized from date palm seeds (DPS), a prevalent agricultural waste in arid regions. Using response surface methodology (RSM) with a central composite design (CCD), we optimized the pyrolysis process by investigating the effects of time (1-3 h) and temperature (600-900 °C) on critical properties such as specific surface area, pore volume, and yield. The optimized biochar, produced at 828 °C for 1.7 h, demonstrated a high specific surface area of 654.8 m2/g and well-developed microporosity. Characterization techniques, including XRD, FTIR, SEM-EDS, and BET analyses, revealed an amorphous carbon structure with graphitic domains, diverse surface functionalities, and a heterogeneous porous microstructure. The biochar's point of zero charge at pH 7.58 indicates its potential for selective adsorption of charged contaminants. The close agreement between RSM-predicted and experimental values for specific surface area (652.1 m2/g vs. 654.8 m2/g) and micropore volume (0.191 cm3/g vs. 0.190 cm3/g) validates the effectiveness of the model in optimizing biochar properties. This research highlights the potential of DPS-derived biochar as a sustainable adsorbent for environmental remediation, opening avenues for valorizing agricultural wastes and contributing to circular economy principles.
Collapse
Affiliation(s)
- Rania Remmani
- Matter Science Department, University Mohamed Khider, 07000, Biskra, Algeria.
- Department of Chemical Engineering Materials Environment & UdR INSTM, Sapienza-Università Di Roma, 00184, Rome, Italy.
| | - Murat Yılmaz
- Department of Chemistry and Chemical Processing Technologies, Bahçe Vocational School, Osmaniye Korkut Ata University, 80000, Osmaniye, Turkey
| | - Saliha Benaoune
- Research Laboratory in Civil Engineering, Hydraulics, Sustainable Development and Environment (LAR-GHYDE), University Mohamed Khider, 07000, Biskra, Algeria
| | - Luca Di Palma
- Department of Chemical Engineering Materials Environment & UdR INSTM, Sapienza-Università Di Roma, 00184, Rome, Italy
| |
Collapse
|
2
|
Minello LVP, Kuntzler SG, Lamb TI, Neves CDO, Berghahn E, da Paschoa RP, Silveira V, de Lima JC, Aguzzoli C, Sperotto RA. Rice plants treated with biochar derived from Spirulina ( Arthrospira platensis) optimize resource allocation towards seed production. FRONTIERS IN PLANT SCIENCE 2024; 15:1422935. [PMID: 39359626 PMCID: PMC11444984 DOI: 10.3389/fpls.2024.1422935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024]
Abstract
The use of biofertilizers is becoming an economical and environmentally friendly alternative to promote sustainable agriculture. Biochar from microalgae/cyanobacteria can be applied to enhance the productivity of food crops through soil improvement, slow nutrient absorption and release, increased water uptake, and long-term mitigation of greenhouse gas sequestration. Therefore, the aim of this study was to evaluate the stimulatory effects of biochar produced from Spirulina (Arthrospira platensis) biomass on the development and seed production of rice plants. Biochar was produced by slow pyrolysis at 300°C, and characterization was performed through microscopy, chemical, and structural composition analyses. Molecular and physiological analyses were performed in rice plants submitted to different biochar concentrations (0.02, 0.1, and 0.5 mg mL-1) to assess growth and productivity parameters. Morphological and physicochemical characterization revealed a heterogeneous morphology and the presence of several minerals (Na, K, P, Mg, Ca, S, Fe, and Si) in the biochar composition. Chemical modification of compounds post-pyrolysis and a highly porous structure with micropores were observed. Rice plants submitted to 0.5 mg mL-1 of biochar presented a decrease in root length, followed by an increase in root dry weight. The same concentration influenced seed production, with an increase of 44% in the number of seeds per plant, 17% in the percentage of full seeds per plant, 12% in the weight of 1,000 full seeds, 53% in the seed weight per plant, and 12% in grain area. Differential proteomic analyses in shoots and roots of rice plants submitted to 0.5 mg mL-1 of biochar for 20 days revealed a fine-tuning of resource allocation towards seed production. These results suggest that biochar derived from Arthrospira platensis biomass can stimulate rice seed production.
Collapse
Affiliation(s)
- Luana Vanessa Peretti Minello
- Botany Department, Graduate Program in Plant Physiology, Biology Institute, Federal University of Pelotas, Pelotas, Brazil
| | | | - Thainá Inês Lamb
- Graduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, Brazil
| | | | - Emílio Berghahn
- Graduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, Brazil
| | - Roberta Pena da Paschoa
- Laboratory of Biotechnology, Bioscience and Biotechnology Center, State University of Northern Rio de Janeiro Darcy Ribeiro (UENF), Campos dos Goytacazes, Brazil
| | - Vanildo Silveira
- Laboratory of Biotechnology, Bioscience and Biotechnology Center, State University of Northern Rio de Janeiro Darcy Ribeiro (UENF), Campos dos Goytacazes, Brazil
| | | | - Cesar Aguzzoli
- Area of Knowledge in Exact Sciences and Engineering, Graduate Program in Materials Engineering and Science, University of Caxias do Sul (UCS), Caxias do Sul, Brazil
| | - Raul Antonio Sperotto
- Botany Department, Graduate Program in Plant Physiology, Biology Institute, Federal University of Pelotas, Pelotas, Brazil
| |
Collapse
|
3
|
Yaashikaa PR, Karishma S, Kamalesh R, A S, Vickram AS, Anbarasu K. A systematic review on enhancement strategies in biochar-based remediation of polycyclic aromatic hydrocarbons. CHEMOSPHERE 2024; 355:141796. [PMID: 38537711 DOI: 10.1016/j.chemosphere.2024.141796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 12/25/2023] [Accepted: 03/23/2024] [Indexed: 04/07/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are pervasive ecological pollutants produced essentially during the inadequate burning of organic materials. PAHs are a group of different organic compounds that are made out of various aromatic rings. PAHs pose a serious risk to humans and aquatic ecosystems because of their mutagenic and carcinogenic properties. In this way, there is a critical prerequisite to utilizing successful remediation strategies and methods to limit the dangerous effect of these pollutants on the ecosystem. Biochar has believed of intriguing properties such as simple manufacturing operations and more affordable and more productive materials. Biochar is a sustainable carbonaceous material that has an enormous surface area with bountiful functional groups and pore structure, which has huge potential for the remediation of toxic pollutants. This review emphasizes the occurrence, development, and fate of toxic PAHs in the environment. In the present review, the properties and role of biochar in the removal of PAHs were illustrated, and the influencing factors and an efficient key mechanism of biochar for the remediation of PAHs were discussed in detail. Various surface modification methods can be utilized to improve the biochar properties with the magnetization process; the advancements of modified biochar are pointed out in this review. Finally, the constraints and prospects for the large-scale application of biochar in the remediation of toxic pollutants are highlighted.
Collapse
Affiliation(s)
- P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - S Karishma
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - R Kamalesh
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - Saravanan A
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| | - A S Vickram
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - K Anbarasu
- Department of Bioinformatics, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| |
Collapse
|
4
|
Jiang RQ, Yu GW, Yu LH, Wang Y, Li CJ, Xing ZJ, Xue XM, Wang Y, Yu C. Migration of phosphorus in pig manure during pyrolysis process and slow-release mechanism of biochar in hydroponic application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170116. [PMID: 38232831 DOI: 10.1016/j.scitotenv.2024.170116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 12/10/2023] [Accepted: 01/10/2024] [Indexed: 01/19/2024]
Abstract
Pyrolysis is an effective method for treating of livestock and poultry manure developed in recent years. It can completely decompose pathogens and antibiotics, stabilize heavy metals, and enrich phosphorus (P) in biochar. To elucidate the P migration mechanism under different pig manure pyrolysis temperatures, sequential fractionation, solution 31P nuclear magnetic resonance, X-ray photoelectron spectroscopy, X-ray diffraction, and K-edge X-ray absorption near-edge structure techniques were used to analyze the P species in pig manure biochar (PMB). The results indicated that most of the organic P in the pig manure was converted to inorganic P during pyrolysis. Moreover, the transformation to different P groups pathways was clarified. The phase transition from amorphous to crystalline calcium phosphate was promoted when the temperature was above 600 °C. The content of P extracted by hydrochloric acid, which was the long-term available P for plant uptake, increased significantly. PMB pyrolyzed at 600 °C can be used as a highly effective substitute for P source. It provides the necessary P species (e.g. water-soluble P.) and metal elements for the growth of water spinach plants, and which are slow-release comparing with the Hogland nutrient solution.
Collapse
Affiliation(s)
- Ru-Qing Jiang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guang-Wei Yu
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China.
| | - Lin-Hui Yu
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Yu Wang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Chang-Jiang Li
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Zhen-Jiao Xing
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Xi-Mei Xue
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Yin Wang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Cheng Yu
- Fujian Academy of Building Research, Fuzhou 350025, China
| |
Collapse
|
5
|
Kumar K, Kumar R, Kaushal S, Thakur N, Umar A, Akbar S, Ibrahim AA, Baskoutas S. Biomass waste-derived carbon materials for sustainable remediation of polluted environment: A comprehensive review. CHEMOSPHERE 2023; 345:140419. [PMID: 37848104 DOI: 10.1016/j.chemosphere.2023.140419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/26/2023] [Accepted: 10/09/2023] [Indexed: 10/19/2023]
Abstract
In response to the growing global concern over environmental pollution, the exploration of sustainable and eco-friendly materials derived from biomass waste has gained significant traction. This comprehensive review seeks to provide a holistic perspective on the utilization of biomass waste as a renewable carbon source, offering insights into the production of environmentally benign and cost-effective carbon-based materials. These materials, including biochar, carbon nanotubes, and graphene, have shown immense promise in the remediation of polluted soils, industrial wastewater, and contaminated groundwater. The review commences by elucidating the intricate processes involved in the synthesis and functionalization of biomass-derived carbon materials, emphasizing their scalability and economic viability. With their distinctive structural attributes, such as high surface areas, porous architectures, and tunable surface functionalities, these materials emerge as versatile tools in addressing environmental challenges. One of the central themes explored in this review is the pivotal role that carbon materials play in adsorption processes, which represent a green and sustainable technology for the removal of a diverse array of pollutants. These encompass noxious organic compounds, heavy metals, and organic matter, encompassing pollutants found in soils, groundwater, and industrial wastewater. The discussion extends to the underlying mechanisms governing adsorption, shedding light on the efficacy and selectivity of carbon-based materials in different environmental contexts. Furthermore, this review delves into multifaceted considerations, spanning the spectrum from biomass and biowaste resources to the properties and applications of carbon materials. This holistic approach aims to equip researchers and practitioners with a comprehensive understanding of the synergistic utilization of these materials, ultimately facilitating effective and affordable strategies for combatting industrial wastewater pollution, soil contamination, and groundwater impurities.
Collapse
Affiliation(s)
- Kuldeep Kumar
- Department of Chemistry, Career Point University, Hamirpur, H.P., 176041, India; Centre for Nano-Science and Technology, Career Point University, Hamirpur, H.P., 176041, India.
| | - Ravi Kumar
- Department of Chemistry, Career Point University, Hamirpur, H.P., 176041, India; Centre for Nano-Science and Technology, Career Point University, Hamirpur, H.P., 176041, India
| | - Shweta Kaushal
- Department of Chemistry, Career Point University, Hamirpur, H.P., 176041, India; Centre for Nano-Science and Technology, Career Point University, Hamirpur, H.P., 176041, India
| | - Naveen Thakur
- Department of Physics, Career Point University, Hamirpur, H.P., 176041, India; Centre for Nano-Science and Technology, Career Point University, Hamirpur, H.P., 176041, India
| | - Ahmad Umar
- Department of Chemistry, College of Science and Arts and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, 11001, Kingdom of Saudi Arabia; Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, 43210, USA.
| | - Sheikh Akbar
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Ahmed A Ibrahim
- Department of Chemistry, College of Science and Arts and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, 11001, Kingdom of Saudi Arabia
| | - Sotirios Baskoutas
- Department of Materials Science, University of Patras, 26500, Patras, Greece
| |
Collapse
|
6
|
Zheng G, Wei K, Kang X, Fan W, Ma NL, Verma M, Ng HS, Ge S. A new attempt to control volatile organic compounds (VOCs) pollution - Modification technology of biomass for adsorption of VOCs gas. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122451. [PMID: 37648056 DOI: 10.1016/j.envpol.2023.122451] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023]
Abstract
The detrimental impact of volatile organic compounds on the surroundings is widely acknowledged, and effective solutions must be sought to mitigate their pollution. Adsorption treatment is a cost-effective, energy-saving, and flexible solution that has gained popularity. Biomass is an inexpensive, naturally porous material with exceptional adsorbent properties. This article examines current research on volatile organic compounds adsorption using biomass, including the composition of these compounds and the physical (van der Waals) and chemical mechanisms (Chemical bonding) by which porous materials adsorb them. Specifically, the strategic modification of the surface chemical functional groups and pore structure is explored to facilitate optimal adsorption, including pyrolysis, activation, heteroatom doping and other methods. It is worth noting that biomass adsorbents are emerging as a highly promising strategy for green treatment of volatile organic compounds pollution in the future. Overall, the findings signify that biomass modification represents a viable and competent approach for eliminating volatile organic compounds from the environment.
Collapse
Affiliation(s)
- Guiyang Zheng
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Kexin Wei
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xuelian Kang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wei Fan
- School of Textile Science and Engineering & Key Laboratory of Functional Textile Material and Product of Ministry of Education, Xi'an Polytechnic University, Xi'an, Shanxi 710048, China
| | - Nyuk Ling Ma
- BIOSES Research Interest Group, Faculty of Science & Marine Environment, 21030 Universiti Malaysia Terengganu, Malaysia; Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602105, India
| | - Meenakshi Verma
- University Centre for Research and Development, Department of Chemistry, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Hui Suan Ng
- Centre for Research and Graduate Studies, University of Cyberjaya, Persiaran Bestari, 63000 Cyberjaya, Selangor, Malaysia
| | - Shengbo Ge
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
7
|
Li Y, Gupta R, Zhang Q, You S. Review of biochar production via crop residue pyrolysis: Development and perspectives. BIORESOURCE TECHNOLOGY 2023; 369:128423. [PMID: 36462767 DOI: 10.1016/j.biortech.2022.128423] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Worldwide surge in crop residue generation has necessitated developing strategies for their sustainable disposal. Pyrolysis has been widely adopted to convert crop residue into biochar with bio-oil and gas being two co-products. The review adopts a whole system philosophy and systematically summarises up-to-date knowledge of crop residue pyrolysis processes, influential factors, and biochar applications. Essential process design tools for biochar production e.g., cost-benefit analysis, life cycle assessment, and machine learning methods are also reviewed, which has often been overlooked in prior reviews. Important aspects include (a) correlating techno-economics of biochar production with crop residue compositions, (b) process operating conditions and management strategies, (c) biochar applications including soil amendment, fuel displacement, catalytic usage, etc., (d) data-driven modelling techniques, (e) properties of biochar, and (f) climate change mitigation. Overall, the review will support the development of application-oriented process pipelines for crop residue-based biochar.
Collapse
Affiliation(s)
- Yize Li
- James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK
| | - Rohit Gupta
- James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK; Nanoengineered Systems Laboratory, UCL Mechanical Engineering, University College London, London WC1E 7JE, UK; Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London W1W 7TY, UK
| | - Qiaozhi Zhang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Siming You
- James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
8
|
Qiu J, Fernandes de Souza M, Robles-Aguilar AA, Ghysels S, Ok YS, Ronsse F, Meers E. Improving biochar properties by co-pyrolysis of pig manure with bio-invasive weed for use as the soil amendment. CHEMOSPHERE 2023; 312:137229. [PMID: 36372342 DOI: 10.1016/j.chemosphere.2022.137229] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Over recent years, pyrolysis has grown into a mature technology with added value for producing soil improvers. Further innovations of this technology lie in developing tailor-made products from specific feedstocks (or mixtures thereof) in combination with adjusted mixing ratio-temperature regimes. In this context, co-pyrolysis of pig manure (PM) and the invasive plant Japanese knotweed (JK) at different mixture ratios (w/w) of 3:1 (P3J1), 1:1 (P1J1), and 1:3 (P1J3) and varying temperatures (400-700 °C) was studied to address the low carbon properties and heavy metals (HMs) risks of manure-derive biochars and beneficially ameliorate the bio-invasion situation by creating value from the plant biomass. Co-pyrolysis of PM with JK increased by nearly 1.5 folds the fixed carbon contents in the combined feedstock biochars obtained at 600 °C compared with PM-derived biochar alone, and all combined feedstock biochars met the requirements for soil improvement and carbon sequestration. The total HMs in PM biochars were significantly reduced by adding JK. The combined feedstock biochar P1J1 generated at 600 °C was the most effective in transforming Cu and Zn into more stable forms, accordingly reducing the associated environmental risk of heavy metal leaching from the biochar. In addition, the accumulation of macronutrients can be an added benefit of the co-pyrolysis process, and P1J1-600 was also the biochar that retained the most nutrients (P, Ca, Mg, and K).
Collapse
Affiliation(s)
- Jing Qiu
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Marcella Fernandes de Souza
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Ana A Robles-Aguilar
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Stef Ghysels
- Thermochemical Conversion of Biomass Research Group, Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Frederik Ronsse
- Thermochemical Conversion of Biomass Research Group, Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Erik Meers
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
9
|
Bailon MX, Chaudhary DK, Jeon C, Ok YS, Hong Y. Impact of sulfur-impregnated biochar amendment on microbial communities and mercury methylation in contaminated sediment. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129464. [PMID: 35999716 DOI: 10.1016/j.jhazmat.2022.129464] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/16/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
S-impregnation of biochar through elemental S streaming is known to increase its sorption performance against Hg and methyl mercury (MeHg). However, the effects of %S-loading on biochar's mechanism and sorption capacities for MeHg, and its consequent impact when used as an amendment material for Hg-contaminated sediments, are poorly understood, and thus, were investigated in this work. Our results showed that a minimum sulfur loading of 1% was the most effective in reducing MeHg levels in sediments. At higher %S-loading (3-20%), the reduction in surface area, pore blockage due to unreacted sulfur particles, and presence of poorly bound sulfur species resulted in lowered effectiveness for MeHg control. Increasing S-functionalization during impregnation shifted the sorption process of MeHg from Hg-O to Hg-S in S-impregnated biochar (BCS). Our 60-day slurry experiment showed a significant reduction in pore water THg (40-70%) and MeHg (30-55%), as well as sediment MeHg (50-60%) in biochar-amended sediments. The reduction in the bioavailable Hg resulted in lowered Hg methylation, as supported by the suppression of both the Fe- and SO42--reduction activities in the amended sediments. The microbial community structure in BCS-amended sediments showed a shift towards sulfur-consuming, iron-reducing, thiosulfate-oxidizing, and sulfate-reducing bacterial populations. At the genus level, the overall relative abundance of principal Hg methylators was also lower in the BCS treatment than in the unamended sediments. This study highlights the application of BCS as a promising strategy for remediation of Hg-contaminated sediments.
Collapse
Affiliation(s)
- Mark Xavier Bailon
- Department of Environmental Engineering, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City 30019, South Korea; Department of Science and Technology - Philippines, Philippine Science High School - Central Luzon Campus, Lily Hill, Clark Freeport Zone, Mabalacat City, Pampanga 2010, Philippines
| | - Dhiraj Kumar Chaudhary
- Department of Environmental Engineering, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City 30019, South Korea
| | - Cheolho Jeon
- Research Center for Materials Analysis, Korea Basic Science Institute, Daejeon, South Korea
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, South Korea
| | - Yongseok Hong
- Department of Environmental Engineering, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City 30019, South Korea.
| |
Collapse
|
10
|
Microwave exfoliation of a biochar obtained from updraft retort carbonization for supercapacitor fabrication. Electrochem commun 2022. [DOI: 10.1016/j.elecom.2022.107308] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
11
|
Łapczyńska-Kordon B, Ślipek Z, Słomka-Polonis K, Styks J, Hebda T, Francik S. Physicochemical Properties of Biochar Produced from Goldenrod Plants. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2615. [PMID: 35407947 PMCID: PMC9000654 DOI: 10.3390/ma15072615] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 02/04/2023]
Abstract
Torrefaction is one of the methods of thermal treatment of biomass, which allows obtaining a product of better quality in the form of biochar. The aim of the paper was to analyze the possibility of using goldenrod (Solidago canadensis, Solidago gigantea) for the production of biochar. The torrefaction process involved the vegetative and generative parts as well as the whole plant at temperatures of 250 °C and 275 °C, for 3 h. Next, the physicochemical properties of the raw material and biochar were determined, namely moisture content, ash content, volatile matter content, calorific value, and heat of combustion. The bulk density of raw biomass and biochar was also determined. It was found that after biomass torrefaction, the ash content, calorific value, and heat of combustion increased, while volatile matter content decreased. It has been observed that in both the case of raw biomass and biochar, the plant species and the sampled parts have a significant impact on the ash content, volatile matter content, calorific value, and heat of combustion.
Collapse
Affiliation(s)
- Bogusława Łapczyńska-Kordon
- Department of Mechanical Engineering and Agrophysics, Faculty of Production Engineering and Energetics, University of Agriculture in Krakow, Balicka 120, 30-149 Krakow, Poland; (K.S.-P.); (J.S.); (T.H.); (S.F.)
| | - Zbigniew Ślipek
- Technical Institute, State Higher Vocational School, Staszica 1, 33-300 Nowy Sącz, Poland;
| | - Karolina Słomka-Polonis
- Department of Mechanical Engineering and Agrophysics, Faculty of Production Engineering and Energetics, University of Agriculture in Krakow, Balicka 120, 30-149 Krakow, Poland; (K.S.-P.); (J.S.); (T.H.); (S.F.)
| | - Jakub Styks
- Department of Mechanical Engineering and Agrophysics, Faculty of Production Engineering and Energetics, University of Agriculture in Krakow, Balicka 120, 30-149 Krakow, Poland; (K.S.-P.); (J.S.); (T.H.); (S.F.)
| | - Tomasz Hebda
- Department of Mechanical Engineering and Agrophysics, Faculty of Production Engineering and Energetics, University of Agriculture in Krakow, Balicka 120, 30-149 Krakow, Poland; (K.S.-P.); (J.S.); (T.H.); (S.F.)
| | - Sławomir Francik
- Department of Mechanical Engineering and Agrophysics, Faculty of Production Engineering and Energetics, University of Agriculture in Krakow, Balicka 120, 30-149 Krakow, Poland; (K.S.-P.); (J.S.); (T.H.); (S.F.)
| |
Collapse
|
12
|
Rawat S, Mishra RK, Bhaskar T. Biomass derived functional carbon materials for supercapacitor applications. CHEMOSPHERE 2022; 286:131961. [PMID: 34426294 DOI: 10.1016/j.chemosphere.2021.131961] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/12/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
Biochar produced from the thermochemical conversion of biomass, provides a green and sustainable platform for the preparation of various functional carbon materials (porous carbon, heteroatom doped biochar, carbon nanotubes, graphene, carbon quantum dots, etc.) towards advanced application. Their preparation involves the physical as well as chemical activation of biochar or directly from the biomass. The inherent versatile physicochemical properties of these versatile materials have been explored for the construction of the electrochemical energy storage devices like supercapacitors. In the present review, the various methodologies for the preparation of various biomass-derived carbon materials are summarized. Further utilization of these materials in supercapacitor electrodes and the properties associated with their charge storage ability, along with associated challenges and perspectives are also discussed.
Collapse
Affiliation(s)
- Shivam Rawat
- Thermo-catalytic Process Area, Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Mohkampur, Dehradun, 248005, Uttarakhand, India; Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, 201002, Uttar Pradesh, India
| | - Rakesh K Mishra
- Department of Chemistry, National Institute of Technology, Uttarakhand (NITUK), Srinagar (Garhwal), 246174, Uttarakhand, India
| | - Thallada Bhaskar
- Thermo-catalytic Process Area, Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Mohkampur, Dehradun, 248005, Uttarakhand, India; Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|
13
|
Li Y, Wang Z, Jiang Z, Feng L, Pan J, Zhu M, Ma C, Jing Z, Jiang H, Zhou H, Sun H, Liu H. Bio-based carbon materials with multiple functional groups and graphene structure to boost methane production from ethanol anaerobic digestion. BIORESOURCE TECHNOLOGY 2022; 344:126353. [PMID: 34798256 DOI: 10.1016/j.biortech.2021.126353] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
This study evaluated the effects of bio-based carbon materials on methane production by anaerobic digestion. The results showed that biochar and hydrochar can promote cumulative methane yield by 15% to 29%. However, there was no statistical significance (p > 0.05) between hydrochar and biochar produced at different temperature on methane production. 16S rRNA gene sequencing and bioinformatics analysis showed that biochar and hydrochar enriched microorganism that might participate in direct interspecies electron transfer (DIET) such as Pseudomonadaceae, Bacillaceae, and Clostridiaceae. The the surface properties of the modified biochar were characterized with BET, Raman, FTIR and XPS. Bio-based carbon materials with uniform dispersion provided a stable environment for the DIET of microorganisms and electrons are transferred through aromatic functional groups on the surface of materials. This study reveals bio-based carbon materials surface properties on methane production in anaerobic digestion and provides a new approach to recycling spent coffee grounds.
Collapse
Affiliation(s)
- Yeqing Li
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing (CUPB), Beijing 102249, PR China
| | - Zhenxin Wang
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing (CUPB), Beijing 102249, PR China; Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zhuoliang Jiang
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing (CUPB), Beijing 102249, PR China
| | - Lu Feng
- Norwegian Institute of Bioeconomy Research, Postbox 115, NO-1431 Ås, Norway
| | - Junting Pan
- Institute of Agriculutral Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Mingyu Zhu
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing (CUPB), Beijing 102249, PR China
| | - Chengjie Ma
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing (CUPB), Beijing 102249, PR China
| | - Zhangmu Jing
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing (CUPB), Beijing 102249, PR China
| | - Hao Jiang
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing (CUPB), Beijing 102249, PR China
| | - Hongjun Zhou
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing (CUPB), Beijing 102249, PR China
| | - Hui Sun
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing (CUPB), Beijing 102249, PR China
| | - Hongbin Liu
- Institute of Agriculutral Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| |
Collapse
|
14
|
Understanding the Surface Characteristics of Biochar and Its Catalytic Activity for the Hydrodeoxygenation of Guaiacol. Catalysts 2021. [DOI: 10.3390/catal11121434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Biochar (BCR) was obtained from the pyrolysis of a palm-oil-empty fruit bunch at 773 K for 2 h and used as a catalyst for the hydrodeoxygenation (HDO) of guaiacol (GUA) as a bio-oil model compound. Brunauer–Emmet–Teller surface area analysis, NH3 and CO2-temperature-programmed desorption, scanning electron microscope–dispersive X-ray spectroscopy, CHN analysis and X-ray fluorescence spectroscopy suggested that macroporous and mesoporous structures were formed in BCR with a co-presence of hydrophilic and hydrophobic sites and acid–base behavior. A combination of infrared, Raman and inelastic neutron scattering (INS) was carried out to achieve a complete vibrational assignment of BCR. The CH–OH ratio in BCR is ~5, showing that the hydroxyl functional groups are a minority species. There was no evidence for any aromatic C–H stretch modes in the infrared, but they are clearly seen in the INS and are the majority species, with a ratio of sp3–CH:sp2–CH of 1:1.3. The hydrogen bound to sp2–C is largely present as isolated C–H bonds, rather than adjacent C–H bonds. The Raman spectrum shows the characteristic G band (ideal graphitic lattice) and three D bands (disordered graphitic lattice, amorphous carbon, and defective graphitic lattice) of sp2 carbons. Adsorbed water in BCR is present as disordered layers on the surface rather than trapped in voids in the material and could be removed easily by drying prior to catalysis. Catalytic testing demonstrated that BCR was able to catalyze the HDO of GUA, yielding phenol and cresols as the major products. Phenol was produced both from the direct demethoxylation of GUA, as well as through the demethylation pathway via the formation of catechol as the intermediate followed by deoxygenation.
Collapse
|
15
|
Seto C, Chang BP, Tzoganakis C, Mekonnen TH. Lignin derived nano-biocarbon and its deposition on polyurethane foam for wastewater dye adsorption. Int J Biol Macromol 2021; 185:629-643. [PMID: 34216664 DOI: 10.1016/j.ijbiomac.2021.06.185] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/24/2021] [Accepted: 06/27/2021] [Indexed: 10/21/2022]
Abstract
Historically, lignin has been produced as a waste by-product in industrial processes. In this study, lignosulfonate nanoparticles were fabricated and freeze-dried for use as a precursor material for carbonization. The use of the carbonized lignins for the adsorption of textile effluent as a value-added application is demonstrated. Characterization of the as received lignin (LN) and the developed nano-based freeze-dried lignin (NFLN) were performed prior to and after carbonization at 600, 750, 900 and 1050 °C. Using probe sonication, lignosulfonates were broken down into nanoparticles with lower weight-average molecular weight as verified by dynamic and static light scattering techniques. The difference between the LN and the NFLN was determined to be primarily morphological as the sonication and freeze-drying process imparted a platelet-like shape to the NFLN biocarbons and an increased surface area, while the remaining functionality was similar. The adsorption behaviour of methylene blue (MB), a synthetic cationic dye, was investigated using adsorption isotherm and kinetic models, with the NFLN exhibiting a maximum adsorption capacity of 109.77 mg/g. Overall, electrostatic attraction and hydrogen bonding contribute significantly to the MB adsorption. Further preliminary work was also performed demonstrating the coating of polyurethane foam for the adsorption of MB. These renewable biocarbons show promising properties for use as additive in adsorbent, coating, pigment or as a filler in polymer composite applications.
Collapse
Affiliation(s)
- Curtis Seto
- Department of Chemical Engineering, Institute of Polymer Research, University of Waterloo, Waterloo N2L 3G1, Ontario, Canada
| | - Boon Peng Chang
- Department of Chemical Engineering, Institute of Polymer Research, University of Waterloo, Waterloo N2L 3G1, Ontario, Canada
| | - Costas Tzoganakis
- Department of Chemical Engineering, Institute of Polymer Research, University of Waterloo, Waterloo N2L 3G1, Ontario, Canada
| | - Tizazu H Mekonnen
- Department of Chemical Engineering, Institute of Polymer Research, University of Waterloo, Waterloo N2L 3G1, Ontario, Canada.
| |
Collapse
|
16
|
Liu Q, Jiang S, Su X, Zhang X, Cao W, Xu Y. Role of the biochar modified with ZnCl 2 and FeCl 3 on the electrochemical degradation of nitrobenzene. CHEMOSPHERE 2021; 275:129966. [PMID: 33662731 DOI: 10.1016/j.chemosphere.2021.129966] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/21/2020] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
The Zn/Fe-modified biochar on nitrobenzene (NB) removal during the electrolysis was investigated in this study. Both the Fe and Zn-modified biochar enhanced the NB adsorption compared with the un-modified biochar due to their greater specific surface area and more abundant surface function groups, respectively. The electrolysis under 2-11 V with the assist of both Fe/Zn-modified biochar achieved effective NB removal (>93%). The removal rate under 2 V using Zn/Fe-modified biochar (∼94%) was higher than that of the un-modified biochar (∼80%), whereas the removal was similar for those under 5, 8 and 11 V. The NB removal under 2 and 5 V was attributed to both adsorption and electrochemical decomposition of NB molecules. Electrolysis under 5 V by Fe-modified biochar had a higher degree of NB mineralisation than that using un-modified and Zn-modified biochar. This was likely that the Fe-modified biochar exhibited higher electrocatalytic properties, facilitating the further NB mineralisation. The ∙OH played significant roles in the degradation of NB by Fe-modified and un-modified biochar but did not significantly participated for the test using Zn-modified biochar. This was possibly because the Zn-modified biochar could adsorb greater amounts of ∙OH into the inner pores of Zn-modified biochar via its greater porosity and specific surface area, which may prevent the contact between ∙OH and NB molecules.
Collapse
Affiliation(s)
- Qiang Liu
- School of Environmental & Chemical Engineering, Shanghai University, No. 99 Shangda Road, Shanghai, 200444, China
| | - Shiqi Jiang
- School of Environmental & Chemical Engineering, Shanghai University, No. 99 Shangda Road, Shanghai, 200444, China
| | - Xintong Su
- School of Environmental & Chemical Engineering, Shanghai University, No. 99 Shangda Road, Shanghai, 200444, China
| | - Xiaolei Zhang
- School of Environmental & Chemical Engineering, Shanghai University, No. 99 Shangda Road, Shanghai, 200444, China.
| | - Weimin Cao
- College of Science, Shanghai University, No. 99 Shangda Road, Shanghai, 200444, China.
| | - Yunfeng Xu
- School of Environmental & Chemical Engineering, Shanghai University, No. 99 Shangda Road, Shanghai, 200444, China
| |
Collapse
|
17
|
Min L, Zhang P, Fan M, Xu X, Wang C, Tang J, Sun H. Efficient degradation of p-nitrophenol by Fe@pomelo peel-derived biochar composites and its mechanism of simultaneous reduction and oxidation process. CHEMOSPHERE 2021; 267:129213. [PMID: 33338715 DOI: 10.1016/j.chemosphere.2020.129213] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/19/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
In this study, waste pomelo peels (PP) mixed with iron salts was treated successively with hydrothermal and pyrolyzing carbonization processes to obtain Fe(0) containing biochar composites (Fe@PP-Hy-Py) and the catalytic degradation of p-nitrophenol (PNP) using these Fe@PP-Hy-Py composites was studied. The results showed that the hydrothermal pre-treatment of the mixture of iron salts and pomelo peels was favorable for the incorporation of iron precursor within biomass network, which enabled copolymerization during the following pyrolysis. Through the pyrolysis process, the iron precursor was reduced in situ to amorphous Fe(0) dopped into the carbonaceous matrix, which conversely decreased the defect and disorder degree of pseudo-graphitic carbons and catalyzed the formation of environmental persistent free radicals (EPFRs). Degradation tests showed that the composites obtained at 600 °C with the theoretical Fe mass loading of 10% exhibited the greatest PNP degradation efficiency. Over 90% of 10 mg/L PNP was removed in 2 min under both N2 and air conditions with 1.0 g/L of catalyst level. The degradation kinetics of PNP were all well fitted by the pseudo-first-order kinetics model with kobs of Fe@PP-Hy-Py600 being 0.953 min-1. HPLC-QTOF/MS analysis demonstrated that both oxidation and reduction of PNP occurred as indicated by the detection of 4-aminophenol and ring opening compounds. The Fe(0) on the Fe@PP-Hy-Py was responsible for the reduction of PNP, while oxidation was induced by EPFRs. This study highlights the feasibility of synthesizing active heterogeneous Fe(0)-biochar composites by hydrothermal-pyrolysis route and the associated mechanisms of pollutant degradation.
Collapse
Affiliation(s)
- Lujuan Min
- Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin, 300350, China; MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Peng Zhang
- Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin, 300350, China; MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Mingyi Fan
- Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin, 300350, China; MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Xuejing Xu
- Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin, 300350, China; MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Cuiping Wang
- Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin, 300350, China; MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Jingchun Tang
- Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin, 300350, China; MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Hongwen Sun
- Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin, 300350, China; MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
18
|
Comprehensive comparison of microalgae-derived biochar from different feedstocks: A prospective study for future environmental applications. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.102103] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Spanu D, Binda G, Dossi C, Monticelli D. Biochar as an alternative sustainable platform for sensing applications: A review. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105506] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
20
|
Keerthanan S, Rajapaksha SM, Trakal L, Vithanage M. Caffeine removal by Gliricidia sepium biochar: Influence of pyrolysis temperature and physicochemical properties. ENVIRONMENTAL RESEARCH 2020; 189:109865. [PMID: 32678730 DOI: 10.1016/j.envres.2020.109865] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/14/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
The present study aimed to envisage the effect of physicochemical properties on the performance of Gliricidia sepium biochar (GBC) pyrolyzed at 300, 500, and 700 °C in the removal caffeine (CFN); a pharmaceutical and personal care product, from water. The physicochemical properties of GBC were characterized by proximate and ultimate analysis, BET, SEM, FTIR, and Raman spectroscopy. The adsorption batch experiment was carried out at various pH values (pH 3-10), mixing times (up to 24 h), and initial CFN concentration (10-500 mg/L). The FTIR analysis revealed the loss of polar functional groups on the surface of GBC derived at high temperatures. The red-shifted and blue-shifted Raman peaks indicate the condensation of small molecules on GBC. The GBC derived at 700 °C demonstrated high CFN adsorption capacity (16.26 mg/g) due to its high surface area and aromaticity. The highest adsorption of CFN was occurred at acidic pH range from 3.5 to 4.5 due to the existence of non-specific attraction between CFN and GBC. The kinetics and isotherm experimental data were fitted with Elovich and fractional power kinetic regression, Freundlich, and Temkin isotherm models, which suggested the adsorption of CFN on the GBC by mixed mechanisms; physisorption and chemisorption including π-π interactions, hydrogen bonding, n-π interactions, electrostatic attraction, and electron donor-acceptor attraction. Moreover, both surface area and aromaticity index have demonstrated a high positive correlation for CFN adsorption, signifying the importance of controlling physicochemical properties based on the end-user purpose of biochar.
Collapse
Affiliation(s)
- S Keerthanan
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Suranga M Rajapaksha
- Department of Engineering Technology, Faculty of Technology, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Lukáš Trakal
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha, Suchdol, Czech Republic
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka.
| |
Collapse
|
21
|
Shen X, Zeng J, Zhang D, Wang F, Li Y, Yi W. Effect of pyrolysis temperature on characteristics, chemical speciation and environmental risk of Cr, Mn, Cu, and Zn in biochars derived from pig manure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135283. [PMID: 31822406 DOI: 10.1016/j.scitotenv.2019.135283] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/27/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
The comprehensive analysis of environmental risk for heavy metals in pig manure was essential for optimization of pyrolysis conditions and scientific utilization of pig manure biochars as soil amendment. However, in previous studies, the selected pyrolysis temperature points were limited and temperature interval was large, it's was difficult to accurately verify the effect of pyrolysis temperature on chemical speciation and environmental risk of heavy metals. Therefore, in this study, pig manure was pyrolyzed at 300-700 °C with a small interval of 50 °C to study the effect of pyrolysis temperature on characteristics and environmental risk of Cr, Mn, Cu and Zn in pig manure biochar. Results indicated that the characteristics of biochars (>500 °C) were relatively stable. The biochar obtained at 700 °C exhibited the largest surface area (8.28 m2 g-1) and pore volume (25.17 m3 kg-1), secondly is the biochar derived at 500 °C. The total percentages of exchangeable and acid fraction and reducible fraction decreased from 16.98% to 9.43% for Cr, 85.60% to 65.55% for Mn, 57.26% to 10.61% for Cu, 37.90% to 13.78% for Zn, respectively, suggesting that exchangeable and acid fraction and reducible fraction of Cr, Mn, Cu and Zn in pig manure were transformed into oxidizable and residual fractions after pyrolysis. The leaching rates, risk assessment code and potential ecological risk index values significantly decreased after pyrolysis and presented lower value at 500 and 700 °C. Biochars derived at 300-700 °C conditions posed no phytotoxicity with germination index >80%. Correlation analyses revealed that larger surface area, pore volume and pH values of biochars may help to immobilize heavy metals and reduce bioavailability. These findings demonstrated that bioavailability and toxicity of Cr, Mn, Cu and Zn in pig manure biochar were greatly reduced after pyrolysis and the optimum temperature was 500 °C considering energy cost.
Collapse
Affiliation(s)
- Xiuli Shen
- Shandong Research Center of Engineering and Food Science, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Jianfei Zeng
- Institution of Environment and Sustainable Development in Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Deli Zhang
- Shandong Research Center of Engineering and Food Science, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Fang Wang
- Shandong Research Center of Engineering and Food Science, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Yongjun Li
- Shandong Research Center of Engineering and Food Science, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Weiming Yi
- Shandong Research Center of Engineering and Food Science, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255000, China.
| |
Collapse
|
22
|
Li F, Tang Y, Li C, Zheng Y, Liu X, Feng C, Zhao W, Wang F. Adsorption and sequestration of cadmium ions by polyptychial mesoporous biochar derived from Bacillus sp. biomass. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:23505-23523. [PMID: 31197673 DOI: 10.1007/s11356-019-05610-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/28/2019] [Indexed: 06/09/2023]
Abstract
Bacteria-derived biochars from Bucillus sp. biomass under different pyrolysis temperature (250 °C, 350 °C, 450 °C, and 550 °C, respectively) were prepared, forming polyptychial, mesoporous graphite-like structure. The adsorption and sequestration efficiencies of Cd2+ by these biochars were evaluated, and the underlying mechanisms were then discussed. Cd2+ sorption data could be well described by Langmuir mode while the pseudo-second-order kinetic model and Elovich model best fitted the kinetic data. The functional groups complexation, cation-π interactions, and interaction with minerals (including surface precipitation with phosphorus and ion exchange) jointly contributed to Cd2+ sorption and sequestration on biochar, but the interaction with minerals played a dominant role by forming insoluble cadmium salt composed by polycrystalline and/or amorphous phosphate-bridged ternary complex. The maximum sorption capacity of BBC350 in simulated water phase of soil for Cd2+ was 34.6 mg/g. Furthermore, the addition of bacteria-derived biochars (1%, w/w) decreased the fractions easily absorbed by plants for Cd in the test paddy soils by 1.9-26% in a 10-day time. Results of this study suggest that bacteria-derived biochar would be a promising functional material in environmental and agricultural application.
Collapse
Affiliation(s)
- Feng Li
- College of Environment Science and Resources, Xiangtan University, Xiangtan, 411105, People's Republic of China.
- Hunan Engineering Laboratory for high efficiency purification technology and its application on complex heavy metal wastewater treatment, Xiangtan, 411105, People's Republic of China.
| | - Yixin Tang
- College of Environment Science and Resources, Xiangtan University, Xiangtan, 411105, People's Republic of China
- Hunan Engineering Laboratory for high efficiency purification technology and its application on complex heavy metal wastewater treatment, Xiangtan, 411105, People's Republic of China
| | - Chengcheng Li
- College of Environment Science and Resources, Xiangtan University, Xiangtan, 411105, People's Republic of China
- Hunan Engineering Laboratory for high efficiency purification technology and its application on complex heavy metal wastewater treatment, Xiangtan, 411105, People's Republic of China
| | - Yang Zheng
- College of Environment Science and Resources, Xiangtan University, Xiangtan, 411105, People's Republic of China
- Hunan Engineering Laboratory for high efficiency purification technology and its application on complex heavy metal wastewater treatment, Xiangtan, 411105, People's Republic of China
| | - Xingwang Liu
- College of Environment Science and Resources, Xiangtan University, Xiangtan, 411105, People's Republic of China
- Hunan Engineering Laboratory for high efficiency purification technology and its application on complex heavy metal wastewater treatment, Xiangtan, 411105, People's Republic of China
| | - Chuang Feng
- College of Environment Science and Resources, Xiangtan University, Xiangtan, 411105, People's Republic of China
- Hunan Engineering Laboratory for high efficiency purification technology and its application on complex heavy metal wastewater treatment, Xiangtan, 411105, People's Republic of China
| | - Wan Zhao
- College of Environment Science and Resources, Xiangtan University, Xiangtan, 411105, People's Republic of China
- Hunan Engineering Laboratory for high efficiency purification technology and its application on complex heavy metal wastewater treatment, Xiangtan, 411105, People's Republic of China
| | - Fang Wang
- College of Environment Science and Resources, Xiangtan University, Xiangtan, 411105, People's Republic of China
- Hunan Engineering Laboratory for high efficiency purification technology and its application on complex heavy metal wastewater treatment, Xiangtan, 411105, People's Republic of China
| |
Collapse
|
23
|
Chen W, Wei R, Ni J, Yang L, Qian W, Yang Y. Sorption of chlorinated hydrocarbons to biochars in aqueous environment: Effects of the amorphous carbon structure of biochars and the molecular properties of adsorbates. CHEMOSPHERE 2018; 210:753-761. [PMID: 30036823 DOI: 10.1016/j.chemosphere.2018.07.071] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/11/2018] [Accepted: 07/13/2018] [Indexed: 06/08/2023]
Abstract
Currently, the role of amorphous carbon structure (ACS) in sorption of chlorinated hydrocarbons (CHs) to biochars remains little known. Therefore, three CHs (1,1,2,2-tetrachloroethane, 1,3,5-trichlorobenzene and γ-hexachlorocyclohexane) with different molecular properties were selected as model adsorbates to investigate the effect of ACS on sorption of CHs to biochars produced at seven different pyrolysis temperatures (300-900 °C). There were two main mechanisms for ACS controlling the sorption of CHs. First, the polar sites on ACS are hydrophilic, CHs with greater polarity could strongly compete with the water molecule for the hydrophilic sites. Second, ACS of low temperature (300-400 °C) produced biochars possessing the natural organic matter (NOM)-like structure occupied some hydrophobic sites on condensed graphitic structure (CGS) of biochars. CHs with great hydrophobicity possibly seized the hydrophobic sorption sites on CGS from the NOM-like structure. Therefore, ACS of biochar was more benefit for sorption of strong polar CHs (1,1,2,2-tetrachloroethane: π∗ = 0.95; LogKow = 2.39) or strong hydrophobic CHs (1,3,5-trichlorobenzene: π∗ = 0.70; LogKow = 4.19) than CHs (γ-hexachlorocyclohexane: π∗ = 0.68; LogKow = 3.72) with relatively low polarity and hydrophobicity. The result reflects that the interaction between NOM and natural black carbon/biochars in soil and water environment possibly plays the similar role in controlling the environmental behavior of various polar or hydrophobic organic pollutants. Moreover, with increasing concentration of adsorbate (Ce), the first mechanism enhanced, while the second mechanism weakened. This study gives a deep insight into the roles of ACS of biochars in controlling the fate and availability of CHs with different molecular properties in environment.
Collapse
Affiliation(s)
- Weifeng Chen
- Ministry of Education Key Laboratory of Humid Subtropical Eco-geographical Process, Fujian Provincial Key Laboratory for Plant Eco-physiology, College of Geographical Science, Fujian Normal University, Fuzhou, Fujian 350007, China.
| | - Ran Wei
- Ministry of Education Key Laboratory of Humid Subtropical Eco-geographical Process, Fujian Provincial Key Laboratory for Plant Eco-physiology, College of Geographical Science, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Jinzhi Ni
- Ministry of Education Key Laboratory of Humid Subtropical Eco-geographical Process, Fujian Provincial Key Laboratory for Plant Eco-physiology, College of Geographical Science, Fujian Normal University, Fuzhou, Fujian 350007, China.
| | - Liuming Yang
- Ministry of Education Key Laboratory of Humid Subtropical Eco-geographical Process, Fujian Provincial Key Laboratory for Plant Eco-physiology, College of Geographical Science, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Wei Qian
- Ministry of Education Key Laboratory of Humid Subtropical Eco-geographical Process, Fujian Provincial Key Laboratory for Plant Eco-physiology, College of Geographical Science, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Yusheng Yang
- Ministry of Education Key Laboratory of Humid Subtropical Eco-geographical Process, Fujian Provincial Key Laboratory for Plant Eco-physiology, College of Geographical Science, Fujian Normal University, Fuzhou, Fujian 350007, China
| |
Collapse
|
24
|
Rahman A, El Hayek E, Blake JM, Bixby RJ, Ali AM, Spilde M, Otieno AA, Miltenberger K, Ridgeway C, Artyushkova K, Atudorei V, Cerrato JM. Metal Reactivity in Laboratory Burned Wood from a Watershed Affected by Wildfires. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:8115-8123. [PMID: 30020776 DOI: 10.1021/acs.est.8b00530] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We investigated interfacial processes affecting metal mobility by wood ash under laboratory-controlled conditions using aqueous chemistry, microscopy, and spectroscopy. The Valles Caldera National Preserve in New Mexico experiences catastrophic wildfires of devastating effects. Wood samples of Ponderosa Pine, Colorado Blue Spruce, and Quaking Aspen collected from this site were exposed to temperatures of 60, 350, and 550 °C. The 350 °C Pine ash had the highest content of Cu (4997 ± 262 mg kg-1), Cr (543 ± 124 mg kg-1), and labile dissolved organic carbon (DOC, 11.3 ± 0.28 mg L-1). Sorption experiments were conducted by reacting 350 °C Pine, Spruce, and Aspen ashes separately with 10 μM Cu(II) and Cr(VI) solutions. Up to a 94% decrease in Cu(II) concentration was observed in solution while Cr(VI) concentration showed a limited decrease (up to 13%) after 180 min of reaction. X-ray photoelectron spectroscopy (XPS) analyses detected increased association of Cu(II) on the near surface region of the reacted 350 °C Pine ash from the sorption experiments compared to the unreacted ash. The results suggest that dissolution and sorption processes should be considered to better understand the potential effects of metals transported by wood ash on water quality that have important implications for postfire recovery and response strategies.
Collapse
Affiliation(s)
- Asifur Rahman
- Department of Civil Engineering, MSC01 1070 , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| | - Eliane El Hayek
- Department of Chemistry, MSC03 2060 , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| | - Johanna M Blake
- U.S. Geological Survey , 6700 Edith Blvd. NE , Albuquerque , New Mexico 87113 , United States
| | - Rebecca J Bixby
- Department of Biology and Museum of Southwestern Biology, MSC03 2020 , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| | - Abdul-Mehdi Ali
- Department of Earth and Planetary Sciences, MSC03 2040 , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| | - Michael Spilde
- Department of Earth and Planetary Sciences, MSC03 2040 , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| | - Amanda A Otieno
- Water Resources Program, MSC05 3110 , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| | - Keely Miltenberger
- Department of Earth and Planetary Sciences, MSC03 2040 , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| | - Cyrena Ridgeway
- Department of Civil Engineering , New Mexico State University , Las Cruces , New Mexico 88001 , United States
| | - Kateryna Artyushkova
- Department of Chemical and Biological Engineering, MSC01 1120 , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| | - Viorel Atudorei
- Department of Earth and Planetary Sciences, MSC03 2040 , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| | - José M Cerrato
- Department of Civil Engineering, MSC01 1070 , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| |
Collapse
|
25
|
Zeng ZW, Tan XF, Liu YG, Tian SR, Zeng GM, Jiang LH, Liu SB, Li J, Liu N, Yin ZH. Comprehensive Adsorption Studies of Doxycycline and Ciprofloxacin Antibiotics by Biochars Prepared at Different Temperatures. Front Chem 2018; 6:80. [PMID: 29637067 PMCID: PMC5880934 DOI: 10.3389/fchem.2018.00080] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/12/2018] [Indexed: 11/13/2022] Open
Abstract
This paper comparatively investigated the removal efficiency and mechanisms of rice straw biochars prepared under three pyrolytic temperatures for two kinds of tetracycline and quinolone antibiotics (doxycycline and ciprofloxacin). The influencing factors of antibiotic adsorption (including biochar dosage, pH, background electrolytes, humic acid, initial antibiotics concentration, contact time, and temperature) were comprehensively studied. The results suggest that biochars produced at high-temperature [i.e., 700°C (BC700)], have higher adsorption capacity for the two antibiotics than low-temperature (i.e., 300-500°C) biochars (BC300 and BC500). Higher surface area gives rise to greater volume of micropores and mesopores, and higher graphitic surfaces of the BC700 contributed to its higher functionality. The maximum adsorption capacity was found to be in the following order: DOX > CIP. The π-π EDA interaction and hydrogen bonding might be the predominant adsorption mechanisms. Findings in this study highlight the important roles of high-temperature biochars in controlling the contamination of tetracycline and quinolone antibiotics in the environment.
Collapse
Affiliation(s)
- Zhi-Wei Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, China.,Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, China.,College of Architecture and Urban Planning, Hunan City University, Yiyang, China
| | - Xiao-Fei Tan
- College of Environmental Science and Engineering, Hunan University, Changsha, China.,Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, China
| | - Yun-Guo Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, China.,Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, China
| | - Si-Rong Tian
- College of Environmental Science and Engineering, Hunan University, Changsha, China.,Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, China
| | - Guang-Ming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, China.,Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, China
| | - Lu-Hua Jiang
- College of Environmental Science and Engineering, Hunan University, Changsha, China.,Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, China
| | - Shao-Bo Liu
- School of Metallurgy and Environment, Central South University, Changsha, China.,College of Environmental Science and Engineering Research, Central South University of Forestry and Technology, Changsha, China
| | - Jiang Li
- College of Environmental Science and Engineering, Hunan University, Changsha, China.,Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, China
| | - Ni Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, China.,Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, China
| | - Zhi-Hong Yin
- College of Environmental Science and Engineering, Hunan University, Changsha, China.,Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, China
| |
Collapse
|
26
|
Zeng ZW, Tan XF, Liu YG, Tian SR, Zeng GM, Jiang LH, Liu SB, Li J, Liu N, Yin ZH. Comprehensive Adsorption Studies of Doxycycline and Ciprofloxacin Antibiotics by Biochars Prepared at Different Temperatures. Front Chem 2018. [PMID: 29637067 DOI: 10.3389/fchem.2018.0008010.3389/fchem.2018.00080.s001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023] Open
Abstract
This paper comparatively investigated the removal efficiency and mechanisms of rice straw biochars prepared under three pyrolytic temperatures for two kinds of tetracycline and quinolone antibiotics (doxycycline and ciprofloxacin). The influencing factors of antibiotic adsorption (including biochar dosage, pH, background electrolytes, humic acid, initial antibiotics concentration, contact time, and temperature) were comprehensively studied. The results suggest that biochars produced at high-temperature [i.e., 700°C (BC700)], have higher adsorption capacity for the two antibiotics than low-temperature (i.e., 300-500°C) biochars (BC300 and BC500). Higher surface area gives rise to greater volume of micropores and mesopores, and higher graphitic surfaces of the BC700 contributed to its higher functionality. The maximum adsorption capacity was found to be in the following order: DOX > CIP. The π-π EDA interaction and hydrogen bonding might be the predominant adsorption mechanisms. Findings in this study highlight the important roles of high-temperature biochars in controlling the contamination of tetracycline and quinolone antibiotics in the environment.
Collapse
Affiliation(s)
- Zhi-Wei Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, China
- College of Architecture and Urban Planning, Hunan City University, Yiyang, China
| | - Xiao-Fei Tan
- College of Environmental Science and Engineering, Hunan University, Changsha, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, China
| | - Yun-Guo Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, China
| | - Si-Rong Tian
- College of Environmental Science and Engineering, Hunan University, Changsha, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, China
| | - Guang-Ming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, China
| | - Lu-Hua Jiang
- College of Environmental Science and Engineering, Hunan University, Changsha, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, China
| | - Shao-Bo Liu
- School of Metallurgy and Environment, Central South University, Changsha, China
- College of Environmental Science and Engineering Research, Central South University of Forestry and Technology, Changsha, China
| | - Jiang Li
- College of Environmental Science and Engineering, Hunan University, Changsha, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, China
| | - Ni Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, China
| | - Zhi-Hong Yin
- College of Environmental Science and Engineering, Hunan University, Changsha, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, China
| |
Collapse
|