1
|
Behnami A, Pourakbar M, Ayyar ASR, Lee JW, Gagnon G, Zoroufchi Benis K. Treatment of aqueous per- and poly-fluoroalkyl substances: A review of biochar adsorbent preparation methods. CHEMOSPHERE 2024; 357:142088. [PMID: 38643842 DOI: 10.1016/j.chemosphere.2024.142088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/25/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Per- and poly-fluoroalkyl substances (PFAS) are synthetic chemicals widely used in everyday products, causing elevated concentrations in drinking water and posing a global challenge. While adsorption methods are commonly employed for PFAS removal, the substantial cost and environmental footprint of commercial adsorbents highlight the need for more cost-effective alternatives. Additionally, existing adsorbents exhibit limited effectiveness, particularly against diverse PFAS types, such as short-chain PFAS, necessitating modifications to enhance adsorption capacity. Biochar can be considered a cost-effective and eco-friendly alternative to conventional adsorbents. With abundant feedstocks and favorable physicochemical properties, biochar shows significant potential to be applied as an adsorbent for removing contaminants from water. Despite its effectiveness in adsorbing different inorganic and organic contaminants from water environments, some factors restrict its effective application for PFAS adsorption. These factors are related to the biochar properties, and characteristics of PFAS, as well as water chemistry. Therefore, some modifications have been introduced to overcome these limitations and improve biochar's adsorption capacity. This review explores the preparation conditions, including the pyrolysis process, activation, and modification techniques applied to biochar to enhance its adsorption capacity for different types of PFAS. It addresses critical questions about the adsorption performance of biochar and its composites, mechanisms governing PFAS adsorption, challenges, and future perspectives in this field. The surge in research on biochar for PFAS adsorption indicates a growing interest, making this timely review a valuable resource for future research and an in-depth exploration of biochar's potential in PFAS remediation.
Collapse
Affiliation(s)
- Ali Behnami
- Department of Environmental Health Engineering, Iran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Mojtaba Pourakbar
- Department of Environmental Health Engineering, Maragheh University of Medical Sciences, Maragheh, Iran; Health and Environment Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ji-Woong Lee
- Department of Chemistry, Nano-Science Centre, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk CO2 Research Center, Aarhus, Denmark
| | - Graham Gagnon
- Centre for Water Resources Studies, Department of Civil & Resource Engineering, Dalhousie University, Halifax, NS, Canada
| | - Khaled Zoroufchi Benis
- Department of Process Engineering and Applied Science, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
2
|
Yao C, Wang B, Zhang J, Faheem M, Feng Q, Hassan M, Zhang X, Lee X, Wang S. Formation mechanisms and degradation methods of polycyclic aromatic hydrocarbons in biochar: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 357:120610. [PMID: 38581889 DOI: 10.1016/j.jenvman.2024.120610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/22/2024] [Accepted: 03/10/2024] [Indexed: 04/08/2024]
Abstract
Biochar has been widely used in soil amendment and environmental remediation. Polycyclic aromatic hydrocarbons (PAHs) could be produced in preparation of biochar, which may pose potential risks to the environment and human health. At present, most studies focus on the ecotoxicity potential of biochar, while there are few systematic reviews on the formation mechanisms and mitigation strategies of PAHs in biochar. Therefore, a systematical understanding of the distribution, formation mechanisms, risk assessment, and degradation approaches of PAHs in biochar is highly needed. In this paper, the distribution and content of the total and bioavailable PAHs in biochar are reviewed. Then the formation mechanisms, influencing factors, and potential risk assessment of PAHs in biochar are systematically explored. After that, the effective strategies to alleviate PAHs in biochar are summarized. Finally, suggestions and perspectives for future studies are proposed. This review provides a guide for reducing the formation of biochar-associated PAHs and their toxicity, which is beneficial for the development and large-scale safe use of environmentally friendly biochar.
Collapse
Affiliation(s)
- Canxu Yao
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Bing Wang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou, 550025, China.
| | - Jian Zhang
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou, 550025, China
| | - Muhammad Faheem
- Department of Civil Infrastructure and Environment Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Qianwei Feng
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Masud Hassan
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Xueyang Zhang
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu, 221018, China
| | - Xinqing Lee
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou, 550081, China
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, China
| |
Collapse
|
3
|
Devi P, Dalai AK. Occurrence, distribution, and toxicity assessment of polycyclic aromatic hydrocarbons in biochar, biocrude, and biogas obtained from pyrolysis of agricultural residues. BIORESOURCE TECHNOLOGY 2023:129293. [PMID: 37295478 DOI: 10.1016/j.biortech.2023.129293] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
Occurrence, distribution, and toxicity assessment of polycyclic aromatic hydrocarbons (PAHs) in pyrolysis steams (biochar, biocrude, and biogas) of three agricultural residues was investigated at pyrolysis temperatures of 400-800 °C. Increasing PAHs formation was observed in the narrow temperature range (500-600 °C) in all feedstocks due to temperature-induced dehydration, decarboxylation, and dehydrogenation reactions. Low molecular weight PAHs (naphthalene, phenanthrene) were dominant in all product streams while high molecular weight PAHs were found in negligible concentrations. Leaching studies showed that pyrolyzed biochars produced at lower temperatures are more prone to leaching due to the presence of hydrophilic amorphous uncarbonized structures, while the presence of hydrophobic carbonized matrix with denser and stronger polymetallic complex prevents the leaching of PAHs in the high temperature pyrolyzed biochar. Low leaching potential, low toxic equivalency, and permissible total PAHs values in biochar derived from all three feedstocks warrant the broader application and ensure ecological safety.
Collapse
Affiliation(s)
- Parmila Devi
- UBC Bioreactor Technology Group, School of Engineering, University of British Columbia, Okanagan Campus, 3333 University Way, Kelowna, BC V1V 1V7, Canada; Department of Chemical and Biological Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
| | - Ajay K Dalai
- Department of Chemical and Biological Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada.
| |
Collapse
|
4
|
Gebretatios AG, Kadiri Kanakka Pillantakath AR, Witoon T, Lim JW, Banat F, Cheng CK. Rice husk waste into various template-engineered mesoporous silica materials for different applications: A comprehensive review on recent developments. CHEMOSPHERE 2023; 310:136843. [PMID: 36243081 DOI: 10.1016/j.chemosphere.2022.136843] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/30/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Following the discovery of Stöber silica, the realm of morphology-controlled mesoporous silica nanomaterials like MCM-41, SBA-15, and KCC-1 has been expanded. Due to their high BET surface area, tunable pores, easiness of functionalization, and excellent thermal and chemical stability, these materials take part a vital role in the advancement of techniques and technologies for tackling the world's largest challenges in the area of water and the environment, energy storage, and biotechnology. Synthesizing these materials with excellent physicochemical properties from cost-efficient biomass wastes is a foremost model of sustainability. Particularly, SiO2 with a purity >98% can be obtained from rice husk (RH), one of the most abundant biomass wastes, and can be template engineered into various forms of mesoporous silica materials in an economic and eco-friendly way. Hence, this review initially gives insight into why to valorize RH into value-added silica materials. Then the thermal, chemical, hydrothermal, and biological methods of high-quality silica extraction from RH and the principles of synthesis of mesoporous and fibrous mesoporous silica materials like SBA-15, MCM-41, MSNs, and KCC-1 are comprehensively discussed. The potential applications of rice husk-derived mesoporous silica materials in catalysis, drug delivery, energy, adsorption, and environmental remediation are explored. Finally, the conclusion and the future outlook are briefly highlighted.
Collapse
Affiliation(s)
- Amanuel Gidey Gebretatios
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Abdul Rasheed Kadiri Kanakka Pillantakath
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Center for Catalysis and Separation (CeCaS), Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Thongthai Witoon
- Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, 50 Ngamwongwan Rd., Ladyao, Jatujak Bangkok, 10900, Thailand
| | - Jun-Wei Lim
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Fawzi Banat
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Chin Kui Cheng
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Center for Catalysis and Separation (CeCaS), Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
5
|
Xiang L, Liu S, Ye S, Yang H, Song B, Qin F, Shen M, Tan C, Zeng G, Tan X. Potential hazards of biochar: The negative environmental impacts of biochar applications. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126611. [PMID: 34271443 DOI: 10.1016/j.jhazmat.2021.126611] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Biochar has been widely used as an environmentally friendly material for soil improvement and remediation, water pollution control, greenhouse gas emission reduction, and other purposes because of its characteristics such as a large surface area, porous structure, and abundant surface O-containing functional groups. However, some surface properties (i.e., (i) some surface properties (i.e., organic functional groups and inorganic components), (ii) changes in pH), and (iii) chemical reactions (e.g., aromatic C ring oxidation) that occur between biochar and the application environment may result in the release of harmful components. In this study, biochars with a potential risk to the environment were classified according to their harmful components, surface properties, structure, and particle size, and the potential negative environmental effects of these biochars and the mechanisms inducing these negative effects were reviewed. This article presents a comprehensive overview of the negative environmental impacts of biochar on soil, water, and atmospheric environments. It also summarizes various technical methods of environment-related risk detection and evaluation of biochar application, thereby providing a baseline reference and guiding significance for future biochar selection and toxicity detection, evaluation, and avoidance.
Collapse
Affiliation(s)
- Ling Xiang
- College of Environmental Science and Engineering, Hunan University, and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Shaoheng Liu
- College of Chemistry and Material Engineering, Hunan University of Arts and Science, Changde 415000, Hunan, PR China
| | - Shujing Ye
- College of Environmental Science and Engineering, Hunan University, and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Hailan Yang
- College of Environmental Science and Engineering, Hunan University, and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Biao Song
- College of Environmental Science and Engineering, Hunan University, and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Fanzhi Qin
- College of Environmental Science and Engineering, Hunan University, and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Maocai Shen
- College of Environmental Science and Engineering, Hunan University, and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Chang Tan
- College of Environmental Science and Engineering, Hunan University, and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Xiaofei Tan
- College of Environmental Science and Engineering, Hunan University, and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| |
Collapse
|
6
|
Offiong NAO, Inam EJ, Etuk HS, Essien JP, Ofon UA, Una CC. Biochar and humus sediment mixture attenuates crude oil-derived PAHs in a simulated tropical ultisol. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03744-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
7
|
Tang J, Zhang S, Zhang X, Chen J, He X, Zhang Q. Effects of pyrolysis temperature on soil-plant-microbe responses to Solidago canadensis L.-derived biochar in coastal saline-alkali soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 731:138938. [PMID: 32408208 DOI: 10.1016/j.scitotenv.2020.138938] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/16/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
Because salinity of coastal soils is drastically increasing, the application of biochars to saline-alkali soil amendments has attracted considerable attention. Various Solidago-canadensis-L.-derived biochars prepared through pyrolysis from 400 to 600 °C were applied to coastal saline-alkali soil samples to optimise the biochar pyrolysis temperature and investigate its actual ecological responses. All biochars reduced the soil bulk density and exchangeable sodium stress and increased soil water-holding capacity, cation exchange capacity, and organic matter content. Principal-component-analysis results showed that pyrolysis temperature played an important role in the potential application of biochars to improve the coastal saline-alkali soil, mainly contributed to ameliorating exchangeable sodium stress and decreasing biochar-soluble toxic compounds. Furthermore, soil bulk density and organic matter, as well as carboxylic acids, phenolic acids and amines of biochar were major driving factors for bacterial community composition. Compared to low-temperature biochar (pyrolyzed below 550 °C), which showed higher toxicity for Brassica chinensis L. growth due to the higher content of carboxylic acids, phenols and amines, high-temperature biochar (pyrolyzed at or above 550 °C) possessed less amounts of these toxic functional groups, more beneficial soil bacteria and healthier for plant growth. Therefore, high-temperature biochar could be applied as an effective soil amendment to ameliorate the coastal saline-alkali soil with acceptable environmental risk.
Collapse
Affiliation(s)
- Jiawen Tang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Shudong Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Xiaotong Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Jinhuan Chen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Xinyu He
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Qiuzhuo Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Institute of Eco-Chongming, No. 20 Cuiniao Road, Chen Jiazhen, Shanghai 200062, China.
| |
Collapse
|
8
|
He Y, Chen S, Chen J, Liu D, Ning X, Liu J, Wang T. Consequence of replacing nitrogen with carbon dioxide as atmosphere on suppressing the formation of polycyclic aromatic hydrocarbons in catalytic pyrolysis of sawdust. BIORESOURCE TECHNOLOGY 2020; 297:122417. [PMID: 31759856 DOI: 10.1016/j.biortech.2019.122417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 11/07/2019] [Accepted: 11/09/2019] [Indexed: 06/10/2023]
Abstract
This study evaluates the effect of replacement of N2 with CO2 as atmosphere in catalytic pyrolysis of waste lignocellulosics with acidic and metal-modified zeolites, respectively, on the 16 EPA priority pollutant polycyclic aromatic hydrocarbons (PAHs) in bio-oils. By coupling solid phase extraction pretreatment with single ion monitoring detection, it is found that the replacement alleviates PAHs in bio-oil concerning synchronously abating the 16 PAHs with low, medium and high molecular weights, and the benzo[a]pyrene equivalent toxicity of bio-oil decreases. Meanwhile, CO2 decreases the content of small oxygenates, e.g. furans, ketones, acids, and increases phenolics and aromatics affording more stable and valuable bio-oils. Moreover, CO2 enhances carbon conversion efficiency, especially in combination with Fe-modified zeolite, which presents a synergistic effect. This study indicates the practical application of CO2 as an atmosphere in catalytic pyrolysis to improve the bio-oil quality by suppressing PAHs formation and adjusting compound constituent.
Collapse
Affiliation(s)
- Yao He
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA
| | - Si Chen
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Junjie Chen
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Dongxia Liu
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA
| | - Xunan Ning
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Jingyong Liu
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Tiejun Wang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
9
|
Nguyen VT, Nguyen TB, Chen CW, Hung CM, Vo TDH, Chang JH, Dong CD. Influence of pyrolysis temperature on polycyclic aromatic hydrocarbons production and tetracycline adsorption behavior of biochar derived from spent coffee ground. BIORESOURCE TECHNOLOGY 2019; 284:197-203. [PMID: 30939381 DOI: 10.1016/j.biortech.2019.03.096] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 05/16/2023]
Abstract
The main objective of this study was to evaluate the effect of different pyrolysis temperatures on the formation of polycyclicaromatichydrocarbons (PAHs) in biochar originated spent coffee ground (SCG) and the tetracycline (TC) adsorption behavior of biochar in water. The results showed that biochar synthesized at 500 °C (SCG 500) contained low PAHs (600 µg kg-1) and the highest TC adsorption efficiency. In addition, the characteristics, influencing factors on TC adsorption, and the related mechanisms of SCG 500 were comprehensively investigated. The results showed that the highest efficiency was observed at pH of 7 and the presence of ions in salinity solution reduced the adsorption capacity of SCG 500. The electrostatic interaction, hydrogen bonding, and π-EDA were the major adsorption mechanisms. Safety PAHs level, low-cost, widely material sources and high TC removal capacity suggested that SCG 500 was a promising environmentally friendly effective absorbent.
Collapse
Affiliation(s)
- Van-Truc Nguyen
- Institute of Marine Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Thanh-Binh Nguyen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan.
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan.
| | - Chang-Mao Hung
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Thi-Dieu-Hien Vo
- Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, Viet Nam
| | - Jih-Hsing Chang
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung 41349, Taiwan.
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan.
| |
Collapse
|
10
|
De la Rosa JM, Sánchez-Martín ÁM, Campos P, Miller AZ. Effect of pyrolysis conditions on the total contents of polycyclic aromatic hydrocarbons in biochars produced from organic residues: Assessment of their hazard potential. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 667:578-585. [PMID: 30833256 DOI: 10.1016/j.scitotenv.2019.02.421] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 02/24/2019] [Accepted: 02/26/2019] [Indexed: 05/25/2023]
Abstract
The interest of using biochar, the solid byproduct from organic waste pyrolysis, as soil conditioner is significantly increasing. Nevertheless, persistent organic pollutants, such as polycyclic aromatic hydrocarbons (PAHs), are formed during pyrolysis due to the incomplete combustion of organic matter. Consequently, these pollutants may enter the environment when biochar is incorporated into soil and cause adverse ecological effects. In this study, we examined the content of the 16 United States Environmental Protection Agency (USEPA) PAHs in biochars produced from rice husk, wood, wheat and sewage sludge residues using three different pyrolytic reactors and temperatures (400, 500 and 600 °C). The total concentration of PAHs (∑PAH) ranged from 799 to 6364 μg kg-1, being naphthalene, phenanthrene and anthracene the most abundant PAHs in all the biochars. The maximum amount of PAHs was observed for the rice husk biochar produced in the batch reactor at 400 °C, which decreased with increasing temperature. The ∑PAH value of the wood biochar produced via traditional kilns doubled compared with the wood biochar produced using the other pyrolytic reactors (5330 μg kg-1 in Kiln; 2737 μg kg-1 in batch and 1942 μg kg-1 in the rotary reactor). Looking for a more reliable risk assessment of the potential exposure of PAHs in biochar, the total toxic equivalent concentrations (TTEC) of the 14 produced biochars were calculated. When comparing the same feedstock and temperature, TTEC values indicated that the rotary reactor produced the safest biochars. In contrast, the biochars produced using the batch reactor at 400 and 500 °C have the greatest hazard potential. Our results provide valuable information on the potential risk of biochar application for human and animal health, as well as for the environment due to PAHs contamination.
Collapse
Affiliation(s)
- José M De la Rosa
- Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas (IRNAS-CSIC), Av. Reina Mercedes 10, 41012 Seville, Spain.
| | - Águeda M Sánchez-Martín
- Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas (IRNAS-CSIC), Av. Reina Mercedes 10, 41012 Seville, Spain
| | - Paloma Campos
- Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas (IRNAS-CSIC), Av. Reina Mercedes 10, 41012 Seville, Spain
| | - Ana Z Miller
- Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas (IRNAS-CSIC), Av. Reina Mercedes 10, 41012 Seville, Spain
| |
Collapse
|
11
|
Ko JH, Wang J, Xu Q. Impact of pyrolysis conditions on polycyclic aromatic hydrocarbons (PAHs) formation in particulate matter (PM) during sewage sludge pyrolysis. CHEMOSPHERE 2018; 208:108-116. [PMID: 29864701 DOI: 10.1016/j.chemosphere.2018.05.120] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/10/2018] [Accepted: 05/21/2018] [Indexed: 06/08/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) not only present a risk to human health when released into the air, but also can be precursors to form particulate matter (PM) during sewage sludge pyrolysis. In this study, 16 EPA PAHs in PM (ΣPAHPM) during sewage sludge pyrolysis were investigated with increasing temperature (200oC-1000 °C) and holding time under different operation conditions [inert gas flow rate (IGFR) (200-800 mL/min) and heating rate (5-20 °C/min)]. ΣPAHPM varied with temperature, IGFR, and heating rate, and ranged from 597 (±41) μg/g to 3240 (±868) μg/g. ΣPAHPM decreased with increasing IGFR but increased with rapid heating rate. Among PAHs species in PM, naphthalene (Nap) was commonly detected at low temperature ranges in all tested conditions. Chrysene (CHR), benzo[b]fluoranthene (BbF), benzo[k]fluoranthene (BkF), benzo[a]pyrene (BaP), indeno[1,2,3-cd] pyrene (IND), and benzo[g,h,i]perylene (BghiP) in PM became abundant at high temperature with a low IGFR. At high temperature ranges with high volatile conditions (rapid heating rate and low IGFR), PAH formation and growth reactions were considerable, resulting in the formation of heavy PAHs in PM.
Collapse
Affiliation(s)
- Jae Hac Ko
- Key Laboratory for Eco-Efficient Polysilicate Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, Guangdong, 518055 China
| | - Jingchen Wang
- Key Laboratory for Eco-Efficient Polysilicate Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, Guangdong, 518055 China
| | - Qiyong Xu
- Key Laboratory for Eco-Efficient Polysilicate Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, Guangdong, 518055 China.
| |
Collapse
|
12
|
Dunnigan L, Morton BJ, Ashman PJ, Zhang X, Kwong CW. Emission characteristics of a pyrolysis-combustion system for the co-production of biochar and bioenergy from agricultural wastes. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 77:59-66. [PMID: 30008415 DOI: 10.1016/j.wasman.2018.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 04/29/2018] [Accepted: 05/02/2018] [Indexed: 06/08/2023]
Abstract
The co-production of biochar and bioenergy using pyrolysis-combustion processes can potentially minimize the emission problems associated with conventional methods of agricultural by-product disposal. This approach also provides significant added-value potential through biochar application to soil. Despite these advantages, variations in biomass composition, including sulfur, nitrogen, ash, and volatile matter (VM) content, may significantly influence both the biochar quality and the emissions of harmful particulate matter (PM) and gaseous pollutants (SO2, H2S, NO2, NO). Using a laboratory-scale continuous pyrolysis-combustion facility, the influence of biomass composition (rice husk and grape pruning) and volatile production (pyrolysis) temperature (400-800 °C) on the biochar properties and emissions during combustion of the raw pyrolysis volatiles were evaluated. Utilization of grape pruning resulted in higher energy-based yields of PM10 than the rice husk, the majority of which consisted of the PM1.1 fraction due to the elevated pyrogas content of the volatiles. The PM emissions were found to be independent of the feedstock ash content due to its retainment in the biochar. Greater volatilization of biomass sulfur and nitrogen during pyrolysis at higher temperatures resulted in higher yields of sulfurous and nitrogenous gaseous pollutants. The energy-based yields of NO and NO2 were found to increase by 16% and 50% for rice husk and 21% and 189% for grape pruning respectively between 400 and 800 °C. The same trend was also observed for the emissions of H2S and SO2 for both feedstocks.
Collapse
Affiliation(s)
- Lewis Dunnigan
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Benjamin J Morton
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Peter J Ashman
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Xiangping Zhang
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Chi Wai Kwong
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|