1
|
Francesca D, Elisa R, Alessandro DF, Emilio M, Tonia T, Debora F. Modelling of technical, environmental, and economic evaluations of the effect of the organic loading rate in semi-continuous anaerobic digestion of pre-treated organic fraction municipal solid waste. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123417. [PMID: 38253163 DOI: 10.1016/j.envpol.2024.123417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/18/2023] [Accepted: 01/19/2024] [Indexed: 01/24/2024]
Abstract
The study concerned technical feasibility, economic profitability, and carbon footprint (CF) analysis of semi-continuous anaerobic digestion (sAD) of organic fraction of municipal solid waste (OFMSW). The research assessed the pre-treatment effect on sAD by varying organic loading rates (OLR) from 3.38 to 6.75 kgvs/m3d. Three sAD configurations were investigated: hydrodynamic-cavitated (HC-OFMSW), enzymatically pre-treated (EN-OFMSW), and non-pre-treated (AD-OFMSW). Principal Component Analysis and Supervised Kohonen's Self-Organizing Maps combined the experimental, economic, and environmental evaluations. The sAD configurations were grouped predominantly according to the OLR however, within each OLR group the configurations were clustered according to the pre-treatments. The finding highlighted that pre-treatments offset inhibition in sAD of OFMSW due to the OLR increase, being economically profitable and CF negative up to 4.50 kgvs/m3d for EN-OFMSW and to 5.40 kgvs/m3d for HC-OFMSW. Whereas sAD-OFMSW remained economically and environmentally viable only up to 3.87 kgvs/m3d. HC-OFMSW reached the highest performance. In detail, for HC-OFMSW the NPV and CF ranged from 17679.30 to 43827.12 euros and from -51.08 to -407.210 kg CO2eq/1 MWh daily produced, by decreasing the OLR from 5.40 to 3.87 kgvs/m3d. These results are fundamental since pre-treatment is usually expensive due to additional energy or chemical requirements.
Collapse
Affiliation(s)
- Demichelis Francesca
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129, Torino, Italy.
| | - Robotti Elisa
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Viale Michel 11, 15121, Alessandria, Italy
| | - Deorsola Fabio Alessandro
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129, Torino, Italy
| | - Marengo Emilio
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Viale Michel 11, 15121, Alessandria, Italy
| | - Tommasi Tonia
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129, Torino, Italy
| | - Fino Debora
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129, Torino, Italy
| |
Collapse
|
2
|
Zupanc M, Humar BB, Dular M, Gostiša J, Hočevar M, Repinc SK, Krzyk M, Novak L, Ortar J, Pandur Ž, Stres B, Petkovšek M. The use of hydrodynamic cavitation for waste-to-energy approach to enhance methane production from waste activated sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119074. [PMID: 37804635 DOI: 10.1016/j.jenvman.2023.119074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/30/2023] [Accepted: 08/30/2023] [Indexed: 10/09/2023]
Abstract
Anaerobic digestion in wastewater treatment plants converts its unwanted end product - waste activated sludge into biogas. Even if the process is well established, pre-treatment of the sludge can further improve its efficiency. In this study, four treatment regimes for increasing methane production through prior sludge disintegration were investigated using lab-scale cavitation generator and real sludge samples. Three different cavitating (attached cavitation regime, developed cloud shedding cavitation regime and cavitation in a wake regime) and one non-cavitating regime at elevated static pressure were studied in detail for their effectiveness on physical and chemical properties of sludge samples. Volume-weighted mean diameter D[4,3] of sludge's particles decreased by up to 92%, specific surface area increased by up to 611%, while viscosity (at a shear rate of 3.0 s-1) increased by up to 39% in the non-cavitating and decreased by up to 24% in all three cavitating regimes. Chemical changes were more pronounced in cavitating regimes, where released soluble chemical oxygen demand (sCOD) and increase of dissolved organic matter (DOM) compounds by up to 175% and 122% were achieved, respectively. Methane production increased in all four cases, with the highest increase of 70% corresponding to 312 mL CH4 g-1 COD. However, this treatment was not particularly efficient in terms of energy consumption. The best energy balance was found for the regime with a biochemical methane potencial increase of 43%.
Collapse
Affiliation(s)
- Mojca Zupanc
- Faculty of Mechanical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | | | - Matevž Dular
- Faculty of Mechanical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Jurij Gostiša
- Faculty of Mechanical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Marko Hočevar
- Faculty of Mechanical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Sabina Kolbl Repinc
- Faculty of Civil and Geodetic Engineering, University of Ljubljana, Ljubljana, Slovenia; National Institute of Chemistry, Hajdrihova Ulica 19, 1000 Ljubljana Slovenia
| | - Mario Krzyk
- Faculty of Civil and Geodetic Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Lovrenc Novak
- Faculty of Mechanical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Jernej Ortar
- Faculty of Mechanical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Žiga Pandur
- Faculty of Mechanical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Blaž Stres
- Faculty of Civil and Geodetic Engineering, University of Ljubljana, Ljubljana, Slovenia; National Institute of Chemistry, Hajdrihova Ulica 19, 1000 Ljubljana Slovenia; Jozef Stefan Institute, Department of Automation, Biocybernetics and Robotics, Ljubljana, Slovenia
| | - Martin Petkovšek
- Faculty of Mechanical Engineering, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
3
|
Garlicka A, Kupidura P, Krawczyk P, Umiejewska K, Muszyński A. Re-flocculation reduces the effectiveness of sewage sludge pretreatment through hydrodynamic disintegration prior to anaerobic digestion. CHEMOSPHERE 2023; 328:138522. [PMID: 36990362 DOI: 10.1016/j.chemosphere.2023.138522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/28/2023] [Accepted: 03/25/2023] [Indexed: 06/19/2023]
Abstract
Circular economy model, based on the "make, use, reuse, remake, recycle" approach, is an alternative to progressive depletion of non-renewable fossil fuels. Sewage sludge can be a source of renewable energy obtained through the anaerobic conversion of their organic fraction into biogas. This process is mediated by highly complex microbial communities and its efficiency depends on the availability of substrates to microorganisms. Disintegration of the feedstock in the pre-treatment step may intensify the anaerobic digestion, but re-flocculation of disintegrated sludge (reassembly of the released fractions into larger agglomerates) may result in a reduced availability of the released organic compounds for microbes. Pilot-scale studies on re-flocculation of disintegrated sludge were conducted to select parameters for scaling-up the pre-treatment and intensifying the anaerobic digestion process in two large Polish wastewater treatment plants (WWTPs). Samples of thickened excess sludge from full-scale WWTPs were subjected to hydrodynamic disintegration at three energy density levels of 10 kJ/L, 35 kJ/L and 70 kJ/L. Microscopic analyses of disintegrated sludge samples were carried out twice: i) immediately after the disintegration process at a given energy density level, ii) and after 24-h incubation at 4 °C following the disintegration. Micro-photographs of 30 randomly selected fields of view were taken for each analysed sample. A method of the image analysis was developed as a tool to measure dispersion of sludge flocs to assess the re-flocculation degree. Re-flocculation of the thickened excess sludge occurred within 24 h after hydrodynamic disintegration. This was evidenced by a very high re-flocculation degree, reaching up to 86%, depending on the origin of the sludge and the energy density levels used for the hydrodynamic disintegration.
Collapse
Affiliation(s)
- Agnieszka Garlicka
- Research and New Technologies Office, Municipal Water Supply and Sewerage Company in the Capital City of Warsaw Joint Stock Company, Koszykowa 81, 00-454, Warsaw, Poland
| | - Przemysław Kupidura
- Faculty of Geodesy and Cartography, Warsaw University of Technology, Plac Politechniki 1, 00-661, Warsaw, Poland
| | - Piotr Krawczyk
- Orbitile Sp. z o.o., Potułkały 6B, 02-971, Warsaw, Poland
| | - Katarzyna Umiejewska
- Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, Nowowiejska 20, 00-653, Warsaw, Poland
| | - Adam Muszyński
- Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, Nowowiejska 20, 00-653, Warsaw, Poland.
| |
Collapse
|
4
|
Pongraktham K, Somnuk K. Continuous double-step acid catalyzed esterification production of sludge palm oil using 3D-printed rotational hydrodynamic cavitation reactor. ULTRASONICS SONOCHEMISTRY 2023; 95:106374. [PMID: 37004412 PMCID: PMC10457588 DOI: 10.1016/j.ultsonch.2023.106374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Sludge palm oil (SPO) with high free fatty acid (FFA) content was processed using a continuous and double-step esterification production process in a rotor-stator-type hydrodynamic cavitation reactor. Three-dimensional printed rotor was made of plastic filament and acted as a major element in minimizing the FFA content in SPO. To evaluate the reduced level of FFAs using both methods, five independent factors were varied: methanol content, sulphuric acid content (H2SO4), hole diameter, hole depth, and rotor speed. The first-step conditions for the esterification process included 60.8 vol% methanol content, 7.2 vol% H2SO4 content, 5.0 mm diameter of the hole, 6.1 mm depth of the hole, and 3000 rpm speed of the rotor. The initial free fatty acid content decreased from 89.16 wt% to 35.00 wt% by the predictive model, while 36.69 wt% FFA level and 94.4 vol% washed first-esterified oil yield were obtained from an actual experiment. In the second-step, 1.0 wt% FFA was achieved under the following conditions: 44.5 vol% methanol content, 3.0 vol% H2SO4 content, 4.6 mm hole diameter, 5.8 mm hole depth, and 3000 rpm rotor speed. The actual experiment produced 0.94 wt% FFA content and 93.9 vol% washed second-esterified oil yield. The entire process required an average electricity of 0.137 kWh/L to reduce the FFA level in the SPO below 1 wt%.
Collapse
Affiliation(s)
- Kritsakon Pongraktham
- Department of Mechanical and Mechatronics Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Krit Somnuk
- Department of Mechanical and Mechatronics Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Energy Technology Research Center, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| |
Collapse
|
5
|
Garlicka A, Umiejewska K, Halkjær Nielsen P, Muszyński A. Hydrodynamic disintegration of thickened excess sludge and maize silage to intensify methane production: Energy effect and impact on microbial communities. BIORESOURCE TECHNOLOGY 2023; 376:128829. [PMID: 36889601 DOI: 10.1016/j.biortech.2023.128829] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
The aim of this project was to study the combination of two methods to increase methane production: feedstock pretreatment by hydrodynamic disintegration and co-digestion of maize silage (MS) with thickened excess sludge (TES). Disintegration of TES alone resulted in a 15% increase in specific methane production from 0.192 Nml/gVS (TES + MS) to 0.220 Nml/gVS (pretreated TES + MS). The energy balance revealed additional energy (0.14 Wh) would cover only the energy expenditure for the mechanical pretreatment and would not allow for net energy profit. Identification of the methanogenic consortia by 16S rRNA gene amplicon sequencing revealed that Chloroflexi, Bacteroidota, Firmicutes, Proteobacteria and Actinobacteriota were five most abundant bacteria phyla, with Methanothrix and Methanolinea as the dominant methanogens. Principal component analysis did not show any effect of feedstock pretreatment on methanogenic consortia. Instead, the composition of inoculum was the decisive factor in shaping the microbial community structure.
Collapse
Affiliation(s)
- Agnieszka Garlicka
- Research and New Technologies Office, Municipal Water Supply and Sewerage Company in the Capital City of Warsaw Joint Stock Company, Warsaw, Poland
| | - Katarzyna Umiejewska
- Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Per Halkjær Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Adam Muszyński
- Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, Warsaw, Poland.
| |
Collapse
|
6
|
Nagarajan S, Ranade VV. Pretreatment of milled and unchopped sugarcane bagasse with vortex based hydrodynamic cavitation for enhanced biogas production. BIORESOURCE TECHNOLOGY 2022; 361:127663. [PMID: 35872276 DOI: 10.1016/j.biortech.2022.127663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/16/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
Anaerobic digestion can potentially valorise sugarcane bagasse to biogas and fertiliser. Pretreatment is however required to overcome recalcitrance and enhance the biogas yields. Literature reporting the investigation of various biomass pretreatments often use milled biomass as substrate rather than as-received fibrous biomass. This does not establish the true influence of the pretreatment type on biogas generation. Additionally, milling energy is also ignored when calculating net energy gains from enhanced biogas yields and are thus misleading. In this work, a vortex-based hydrodynamic cavitation device was used to enhance the biomethane yields from fibrous as-received biomass for the first time. Clear justification on why milled biomass must not be used as substrates for demonstrating the effect of pretreatment on biogas production is also discussed. The net energy gain from milled hydrodynamic cavitation pre-treated bagasse can be similar to as-received bagasse only when the specific milling energy is ≤700 kWh/ton.
Collapse
Affiliation(s)
- Sanjay Nagarajan
- School of Chemistry & Chemical Engineering, Queens University Belfast, BT9 5AG, UK; Sustainable Environment Research Centre, University of South Wales, CF37 4BB, UK
| | - Vivek V Ranade
- School of Chemistry & Chemical Engineering, Queens University Belfast, BT9 5AG, UK; Bernal Institute, University of Limerick, V94T9PX, Ireland.
| |
Collapse
|
7
|
Romio C, Vedel Wegener Kofoed M, Bjarne Møller H. Effect of ultrasonic and electrokinetic post-treatments on methane yield and viscosity of agricultural digestate. BIORESOURCE TECHNOLOGY 2022; 358:127388. [PMID: 35644450 DOI: 10.1016/j.biortech.2022.127388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/21/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
The impact of post-treatment of digestate prior to its recirculation to the digester has been evaluated with industrial-scale ultrasonication and electrokinetic treatment units. Residual methane yields of untreated digestate samples from four biogas plants varied between 99 and 134 ml/g of volatile solids (after 97 days of digestion). At the tested conditions (1.90-7.60 kWh/t for ultrasonication and 4.37-6.06 kWh/t for electrokinetic disintegration), no significant increase in methane yields were obtained. Increases in maximum methane production rates of up to 42% were observed in samples from one of the biogas plants, resulting in net energy gains between 1.06 and 7.04 kWh/t (after 26 and 66 days of digestion). Both treatments significantly reduced digestate viscosities, especially of highly viscous samples. Lower viscosities could reduce the energy demand for pumping and stirring in the digester, enabling the potential for increased organic loading and increased methane production.
Collapse
Affiliation(s)
- Cristiane Romio
- Department of Biological and Chemical Engineering, Aarhus University, Hangøvej 2, 8200 Aarhus N, Denmark.
| | | | - Henrik Bjarne Møller
- Department of Biological and Chemical Engineering, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark
| |
Collapse
|
8
|
Lanfranchi A, Tassinato G, Valentino F, Martinez GA, Jones E, Gioia C, Bertin L, Cavinato C. Hydrodynamic cavitation pre-treatment of urban waste: Integration with acidogenic fermentation, PHAs synthesis and anaerobic digestion processes. CHEMOSPHERE 2022; 301:134624. [PMID: 35439492 DOI: 10.1016/j.chemosphere.2022.134624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/18/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
Urban waste can be valorized within a biorefinery approach, producing platform chemicals, biopolymers and energy. In this framework, hydrodynamic cavitation (HC) is a promising pre-treatment for improving biodegradability due to its high effectiveness and low cost. This paper deals with the effect of HC pre-treatment on the acidogenic co-fermentation process of thickened sewage sludge from a WWTP and seasonal vegetable waste from a wholesale market. Specifically, HC was assessed by testing two sets of parameters (i.e., treatment time of 30 and 50 min; vacuum pressure 1.4 and 2.0 bar; applied power 8 and 17 kW) to determine its effectiveness as a pre-treatment of the mixture. The highest increase in sCOD (+83%) and VFAs (from 1.93 to 17.29 gCODVFA L-1) was gained after 50 min of cavitation. Fermentations were conducted with not cavitated and cavitated mixtures at 37 °C on 4 L reactors in batch mode, then switched to semi-continuous with OLR of 8 kgTVS m-3 d-1 and HRT of 5-6.6 d. Good VFAs concentrations (12.94-18.27 gCODVFA L-1) and yields (0.44-0.53 gCODVFA gVS(0)-1) were obtained, which could be enhanced by pre-treatment optimization and pH control. The organic acid rich broth obtained was then assessed as a substrate for PHAs storage by C. necator. It yielded 0.37 g g-1 of polyhydroxybutyrate, such biopolymer resulted to have analogous physicochemical characteristics of commercial equivalent. The only generated side-stream would be the solid-rich fraction of the fermented effluent, which valorization was assessed through BMP tests, showing a higher SGP of 0.42 Nm3 kgTVS-1 for the cavitated.
Collapse
Affiliation(s)
- A Lanfranchi
- Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca' Foscari Venezia, Mestre, 30174, Italy.
| | - G Tassinato
- Green Propulsion Laboratory, Veritas s.p.a., Fusina, VE, 30175, Italy
| | - F Valentino
- Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca' Foscari Venezia, Mestre, 30174, Italy
| | - G A Martinez
- Dipartimento di Ingegneria Civile, Chimica, Ambientale e dei Materiali (DICAM), Università di Bologna, Via Terracini, 28, I-40131, Bologna, Italy
| | - E Jones
- Dipartimento di Ingegneria Civile, Chimica, Ambientale e dei Materiali (DICAM), Università di Bologna, Via Terracini, 28, I-40131, Bologna, Italy
| | - C Gioia
- Dipartimento di Ingegneria Civile, Chimica, Ambientale e dei Materiali (DICAM), Università di Bologna, Via Terracini, 28, I-40131, Bologna, Italy
| | - L Bertin
- Dipartimento di Ingegneria Civile, Chimica, Ambientale e dei Materiali (DICAM), Università di Bologna, Via Terracini, 28, I-40131, Bologna, Italy
| | - C Cavinato
- Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca' Foscari Venezia, Mestre, 30174, Italy
| |
Collapse
|
9
|
Intensification of Acidogenic Fermentation for the Production of Biohydrogen and Volatile Fatty Acids—A Perspective. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8070325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Utilising ‘wastes’ as ‘resources’ is key to a circular economy. While there are multiple routes to waste valorisation, anaerobic digestion (AD)—a biochemical means to breakdown organic wastes in the absence of oxygen—is favoured due to its capacity to handle a variety of feedstocks. Traditional AD focuses on the production of biogas and fertiliser as products; however, such low-value products combined with longer residence times and slow kinetics have paved the way to explore alternative product platforms. The intermediate steps in conventional AD—acidogenesis and acetogenesis—have the capability to produce biohydrogen and volatile fatty acids (VFA) which are gaining increased attention due to the higher energy density (than biogas) and higher market value, respectively. This review hence focusses specifically on the production of biohydrogen and VFAs from organic wastes. With the revived interest in these products, a critical analysis of recent literature is needed to establish the current status. Therefore, intensification strategies in this area involving three main streams: substrate pre-treatment, digestion parameters and product recovery are discussed in detail based on literature reported in the last decade. The techno-economic aspects and future pointers are clearly highlighted to drive research forward in relevant areas.
Collapse
|
10
|
Cazaudehore G, Guyoneaud R, Evon P, Martin-Closas L, Pelacho AM, Raynaud C, Monlau F. Can anaerobic digestion be a suitable end-of-life scenario for biodegradable plastics? A critical review of the current situation, hurdles, and challenges. Biotechnol Adv 2022; 56:107916. [PMID: 35122986 DOI: 10.1016/j.biotechadv.2022.107916] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 12/18/2022]
Abstract
Growing concern regarding non-biodegradable plastics and the impact of these materials on the environment has promoted interest in biodegradable plastics. The intensification of separate biowastes collection in most European countries has also contributed to the development of biodegradable plastics, and the subject of their end-of-life is becoming a key issue. To date, there has been relatively little research to evaluate the biodegradability of biodegradable plastics by anaerobic digestion (AD) compared to industrial and home composting. However, anaerobic digestion is a particularly promising strategy for treating biodegradable organic wastes in the context of circular waste management. This critical review aims to provide an in-depth update of anaerobic digestion of biodegradable plastics by providing a summary of the literature regarding process performances, parameters affecting biodegradability, the microorganisms involved, and some of the strategies (e.g., pretreatment, additives, and inoculum acclimation) used to enhance the degradation rate of biodegradable plastics. In addition, a critical section is dedicated to suggestions and recommendations for the development of biodegradable plastics sector and their treatment in anaerobic digestion.
Collapse
Affiliation(s)
- G Cazaudehore
- APESA, Pôle Valorisation, Cap Ecologia, 64230 Lescar, France; Université de Pau et des Pays de l'Adour/E2S UPPA/CNRS, IPREM UMR5254, Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Matériaux, Chimie et Microbiologie de l'Environnement, 64000 Pau, France
| | - R Guyoneaud
- Université de Pau et des Pays de l'Adour/E2S UPPA/CNRS, IPREM UMR5254, Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Matériaux, Chimie et Microbiologie de l'Environnement, 64000 Pau, France
| | - P Evon
- Laboratoire de Chimie Agro-industrielle (LCA), Université de Toulouse, ENSIACET, INRAE, INPT, 4 Allée Émile Monso, 31030 Toulouse Cedex 4, France
| | - L Martin-Closas
- Dept. Horticulture, Botany and Gardening, University of Lleida, Avda, Alcalde Rovira Roure 191, 25198 Lleida, Spain
| | - A M Pelacho
- Dept. Horticulture, Botany and Gardening, University of Lleida, Avda, Alcalde Rovira Roure 191, 25198 Lleida, Spain
| | - C Raynaud
- CATAR CRITT Agroressources, ENSIACET, 4 Allée Émile Monso, 31030 Toulouse Cedex 4, France
| | - F Monlau
- APESA, Pôle Valorisation, Cap Ecologia, 64230 Lescar, France.
| |
Collapse
|
11
|
Sun X, Liu S, Zhang X, Tao Y, Boczkaj G, Yoon JY, Xuan X. Recent advances in hydrodynamic cavitation-based pretreatments of lignocellulosic biomass for valorization. BIORESOURCE TECHNOLOGY 2022; 345:126251. [PMID: 34728352 DOI: 10.1016/j.biortech.2021.126251] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Recently, the hydrodynamic cavitation (HC)-based pretreatment has shown high effectiveness in laboratories and even in industrial productions for conversion of lignocellulosic biomass (LCB) into value-added products. The pretreatment capability derives from the extraordinary conditions of pressures at ∼500 bar, local hotspots with ∼5000 K, and oxidation (hydroxyl radicals) created by HC at room conditions. To promote this emerging technology, the present review summarizes the recent advances in the HC-based pretreatment of LCB. The principle of HC including the sonochemical effect and hydrodynamic cavitation reactor is introduced. The effectiveness of HC on the delignification of LCB as well as subsequent fermentation, paper production, and other applications is evaluated. Several key operational factors (i.e., reaction environment, duration, and feedstock characteristics) in HC pretreatments are discussed. The enhancement mechanism of HC including physical and chemical effects is analyzed. Finally, the perspectives on future research on the HC-based pretreatment technology are highlighted.
Collapse
Affiliation(s)
- Xun Sun
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China.
| | - Shuai Liu
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Xinyan Zhang
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, School of Energy and Power Engineering, Shandong University, Jinan 250061, PR China
| | - Yang Tao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Grzegorz Boczkaj
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk 80-233, Poland
| | - Joon Yong Yoon
- Department of Mechanical Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Xiaoxu Xuan
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| |
Collapse
|
12
|
Bimestre TA, Júnior JAM, Canettieri EV, Tuna CE. Hydrodynamic cavitation for lignocellulosic biomass pretreatment: a review of recent developments and future perspectives. BIORESOUR BIOPROCESS 2022; 9:7. [PMID: 38647820 PMCID: PMC10991952 DOI: 10.1186/s40643-022-00499-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/18/2022] [Indexed: 02/02/2023] Open
Abstract
The hydrodynamic cavitation comes out as a promising route to lignocellulosic biomass pretreatment releasing huge amounts of energy and inducing physical and chemical transformations, which favor lignin-carbohydrate matrix disruption. The hydrodynamic cavitation process combined with other pretreatment processes has shown an attractive alternative with high pretreatment efficiency, low energy consumption, and easy setup for large-scale applications compared to conventional pretreatment methods. This present review includes an overview of this promising technology and a detailed discussion on the process of parameters that affect the phenomena and future perspectives of development of this area.
Collapse
Affiliation(s)
- Thiago Averaldo Bimestre
- Chemistry and Energy Department, School of Engineering, São Paulo State University UNESP, Guaratinguetá, SP, 12516-410, Brazil.
| | - José Antonio Mantovani Júnior
- Center for Weather Forecasting and Climate Studies, National Institute for Space Research CPTEC/INPE, Cachoeira Paulista, SP, 12630-000, Brazil
| | - Eliana Vieira Canettieri
- Chemistry and Energy Department, School of Engineering, São Paulo State University UNESP, Guaratinguetá, SP, 12516-410, Brazil
| | - Celso Eduardo Tuna
- Chemistry and Energy Department, School of Engineering, São Paulo State University UNESP, Guaratinguetá, SP, 12516-410, Brazil
| |
Collapse
|
13
|
Nagarajan S, Ranade VV. Valorizing Waste Biomass via Hydrodynamic Cavitation and Anaerobic Digestion. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03177] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Sanjay Nagarajan
- Multiphase Reactors and Intensification Group, School of Chemistry and Chemical Engineering, Queen’s University Belfast, Belfast BT9 5AG, U.K
| | - Vivek V. Ranade
- Multiphase Reactors and Intensification Group, School of Chemistry and Chemical Engineering, Queen’s University Belfast, Belfast BT9 5AG, U.K
- Bernal Institute, University of Limerick, Limerick V94T9PX, Ireland
| |
Collapse
|
14
|
Zubrowska-Sudol M, Walczak J, Garlicka A, Sytek-Szmeichel K, Umiejewska K. How to assess the efficiency of the agro waste disintegration process. ENVIRONMENTAL TECHNOLOGY 2021; 42:3963-3973. [PMID: 32475224 DOI: 10.1080/09593330.2020.1775710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
The objective of the study was to verify whether the method of determining the efficiency of sewage sludge disintegration, i.e. the disintegration degree (DD), can also be used to assess agro-waste disintegration. The following types of agro waste were tested: remains of fruits, sugar beet pulp and sugar beet pulp in the form of pellets. It was shown that DD as used for sewage sludge can also be a useful tool in assessing the disintegration efficiency of agro waste, although it requires the following modifications: (a) a methodology of chemical hydrolysis for each type of agro waste in order to determine the total amount of soluble COD (SCOD) that can be released from the sample and (b) possible changes in the SCOD value that may occur in the sample left in ambient conditions for a time period corresponding to the duration of the disintegration process. DD of agro waste determined according to the formula adopted for sewage sludge resulted in a considerable overestimation of the value in comparison to the formula proposed by the authors, i.e. DD determined for an energy density of 35 kJ L-1 was higher by 55.9 ± 21.5%, and for an energy density of 140 kJ L-1 it was higher by as much as 73.8 ± 28.1%. Taking into account the differences in the determined disintegration degree values that result from the methodology of conducting the chemical hydrolysis, it is recommended, in order to assess the efficiency of disintegration of agro waste, to use the efficiency of organic compound release.
Collapse
Affiliation(s)
- Monika Zubrowska-Sudol
- Department of Water Supply and Wastewater Treatment, Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Justyna Walczak
- Department of Water Supply and Wastewater Treatment, Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Agnieszka Garlicka
- Department of Water Supply and Wastewater Treatment, Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Katarzyna Sytek-Szmeichel
- Department of Water Supply and Wastewater Treatment, Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Katarzyna Umiejewska
- Department of Water Supply and Wastewater Treatment, Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, Warsaw, Poland
| |
Collapse
|
15
|
Nagarajan S, Prasad Sarvothaman V, Knörich M, Ranade VV. A simplified model for simulating anaerobic digesters: Application to valorisation of bagasse and distillery spent wash. BIORESOURCE TECHNOLOGY 2021; 337:125395. [PMID: 34130231 DOI: 10.1016/j.biortech.2021.125395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 06/12/2023]
Abstract
Current anaerobic digestion (AD) design methods rely on crude empirical models or sophisticated anaerobic digestion models (like ADM1) requiring a large number of parameters which are difficult to obtain experimentally. A simplified model for simulating AD was developed in this work. The model requires knowledge of CH4/CO2 ratio in biogas or indigestible fraction in substrate and batch biomethane potential (BMP) data for estimating three kinetic parameters (maximum specific growth rate, half velocity constant and cell death rate). Reported lab scale BMP data of sugarcane bagasse and spent wash were used to first estimate the kinetics and then to simulate corresponding largescale AD. Simulated results of specific methane yield and digester performance were consistent with available largescale AD data. The potential of the model to simulate single and multi-stage AD were illustrated. The presented approach and model will be useful for effectively valorising a variety of complex biomass substrates to biogas.
Collapse
Affiliation(s)
- Sanjay Nagarajan
- Multiphase Flows, Reactors and Intensification Group, School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast BT9 5AG, United Kingdom
| | - Varaha Prasad Sarvothaman
- Multiphase Flows, Reactors and Intensification Group, School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast BT9 5AG, United Kingdom
| | - Martin Knörich
- Department of Chemistry, Technical University of Munich, Munich, Germany
| | - Vivek V Ranade
- Multiphase Flows, Reactors and Intensification Group, School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast BT9 5AG, United Kingdom; Bernal Institute, University of Limerick, Limerick V94T9PX, Ireland.
| |
Collapse
|
16
|
Cellulose Recovery from Agri-Food Residues by Effective Cavitational Treatments. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11104693] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Residual biomass from agri-food production chain and forestry are available in huge amounts for further valorisation processes. Delignification is usually the crucial step in the production of biofuels by fermentation as well as in the conversion of cellulose into high added-value compounds. High-intensity ultrasound (US) and hydrodynamic cavitation (HC) have been widely exploited as effective pretreatment techniques for biomass conversion and in particular for cellulose recovery. Due to their peculiar mechanisms, cavitational treatments promote an effective lignocellulosic matrix dismantling with delignification at low temperature (35–50 °C). Cavitation also promotes cellulose decrystallization due to a partial depolymerization. The aim of this review is to highlight recent advances in US and HC-assisted delignification and further cellulose recovery and valorisation.
Collapse
|
17
|
Ranade NV, Nagarajan S, Sarvothaman V, Ranade VV. ANN based modelling of hydrodynamic cavitation processes: Biomass pre-treatment and wastewater treatment. ULTRASONICS SONOCHEMISTRY 2021; 72:105428. [PMID: 33383539 PMCID: PMC7803855 DOI: 10.1016/j.ultsonch.2020.105428] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/30/2020] [Accepted: 12/11/2020] [Indexed: 05/06/2023]
Abstract
We have developed artificial neural network (ANN) based models for simulating two application examples of hydrodynamic cavitation (HC) namely, biomass pre-treatment to enhance biogas and degradation of organic pollutants in water. The first case reports data on influence of number of passes through HC reactor on bio-methane generation from bagasse. The second case reports data on influence of HC reactor scale on degradation of dichloroaniline (DCA). Similar to most of the HC based applications, the availability of experimental data for these two applications is rather limited. In this work a systematic methodology for developing ANN model is presented. The models were shown to describe the experimental data very well. The ANN models were then evaluated for their ability to interpolate and extrapolate. Despite the limited data, the ANN models were able to simulate and interpolate the data for two very different and complex HC applications very well. The extrapolated results of biomethane generation in terms of number of passes were consistent with the intuitive understanding. The extrapolated results in terms of elapsed time were however not consistent with the intuitive understanding. The ANN model was able to generate intuitively consistent extrapolated results for degradation of DCA in terms of number of passes as well as scale of HC reactor. The results will be useful for developing quantitative models of complex HC applications.
Collapse
Affiliation(s)
- Nanda V Ranade
- Hollyheath, 14 Derryvolgie Avenue, Belfast BT9 6FB Multiphase Reactors & Intensification Group (mRING), Ireland
| | - Sanjay Nagarajan
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast BT9 5AG, Northern Ireland, UK
| | - Varaha Sarvothaman
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast BT9 5AG, Northern Ireland, UK
| | - Vivek V Ranade
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast BT9 5AG, Northern Ireland, UK; Bernal Institute, University of Limerick, Limerick, Ireland.
| |
Collapse
|
18
|
Mature Landfill Leachate as a Medium for Hydrodynamic Cavitation of Brewery Spent Grain. ENERGIES 2021. [DOI: 10.3390/en14041150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this study, we evaluate the usefulness of mature landfill leachate (MLL) as a carrier allowing hydrodynamic cavitation (HD) of brewery spent grain (BSG). The HD experiments were conducted using an orifice plate with a conical concentric hole of 3/10 mm (inlet/outlet diameter) as a constriction in the cavitation device. The initial pressure was 7 bar and the number of recirculation passes through the cavitation zone reached 30. The results showed that complex organic matter was degraded and solubilized when cavitating the MLL and BSG mixture. The biochemical oxygen demand (BOD5) increased by 45% and the BOD5/total chemical oxygen demand (COD) ratio increased by 69%, whereas the COD, total solids, and nutrient concentration dropped noticeably. However, Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS) revealed the generation of possibly toxic HD byproducts such as aromatic compounds. This seems to indicate that MLL could not be regarded as a suitable carrier for BSG cavitation.
Collapse
|
19
|
Performance of a Full-Scale Biogas Plant Operation in Greece and Its Impact on the Circular Economy. WATER 2020. [DOI: 10.3390/w12113074] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Biogas plants have been started to expand recently in Greece and their positive contribution to the economy is evident. A typical case study is presented which focuses on the long-term monitoring (lasting for one year) of a 500 kW mesophilic biogas plant consisting of an one-stage digester. The main feedstock used was cow manure, supplemented occasionally with chicken manure, corn silage, wheat/ray silage, glycerine, cheese whey, molasses and olive mill wastewater. The mixture of the feedstocks was adjusted based on their availability, cost and biochemical methane potential. The organic loading rate (OLR) varied at 3.42 ± 0.23 kg COD m−3 day−1 (or 2.74 ± 0.18 kg VS m−3 day−1) and resulted in a stable performance in terms of specific biogas production rate (1.27 ± 0.12 m3 m−3 day−1), biogas yield (0.46 ± 0.05 m3 kg−1 VS, 55 ± 1.3% in methane) and electricity production rate (12687 ± 1140 kWh day−1). There were no problems of foaming, nor was there a need for trace metal addition. The digestate was used by the neighboring farmers who observed an improvement in their crop yield. The profit estimates per feedstock indicate that chicken manure is superior to the other feedstocks, while molasses, silages and glycerin result in less profit due to the long distance of the biogas plant from their production source. Finally, the greenhouse gas emissions due to the digestate storage in the open air seem to be minor (0.81% of the methane consumed).
Collapse
|
20
|
Innovative Hydrodynamic Disintegrator Adjusted to Agricultural Substrates Pre-treatment Aimed at Methane Production Intensification—CFD Modelling and Batch Tests. ENERGIES 2020. [DOI: 10.3390/en13164256] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The study objective was to adjust the hydrodynamic disintegrator dedicated to sewage sludge pre-treatment (HDS) to work with agricultural substrate. This involved the development and implementation of a mathematical model of flow via the device’s domain. An innovative disintegrator (HAD—hydrodynamic disintegrator for agriculture) was designed, built, and tested based on the obtained results. The main improvements to the HDS include the implementation of shredding knives in order to overcome clogging by crushed substrate, and the application of ribs in the recirculation zone, contributing to the development of an additional structure damage zone. The challenge of this study was also to determine the operating parameters of the HDA that would provide for an increase in methane production with positive energy balance. The testing procedures, for which maize silage was selected, involved batch disintegration tests and biochemical methane potential tests. No clogging of rotor or spontaneous shutting off of the device, in other words, problems that had occurred in the HDS, were observed. The applied pre-treatment method permitted an increase in the methane potential of maize silage by 34.4%, 27.0%, and 21.6%, respectively for samples disintegrated at energy densities of 10 kJ/L, 20 kJ/L, and 35 kJ/L with net energy profit.
Collapse
|
21
|
Mancuso G, Langone M, Andreottola G. A critical review of the current technologies in wastewater treatment plants by using hydrodynamic cavitation process: principles and applications. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2020; 18:311-333. [PMID: 32399243 PMCID: PMC7203374 DOI: 10.1007/s40201-020-00444-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 01/14/2020] [Indexed: 05/22/2023]
Abstract
In the last decade, hydrodynamic cavitation (HC) was increasingly used in the field of wastewater treatment. Due to its oxidative capability, HC was applied to treat aqueous effluents polluted by organic, toxic and bio-refractory contaminants, whereas its mechanical and chemical effects have allowed to disintegrate cells of microorganisms in biological applications. Due to their geometries, HC can be detected in some reactors, in which a variation of hydraulic parameters in the fluid such as flow pressure and flow velocity is induced. HC process involves the formation, growth, implosion and subsequent collapse of cavities, occurring in a very short period of time and releasing large magnitudes of power. In this paper, the vast literature on HC is critically reviewed, focusing on the basic principles behind it, in terms of process definition and analysis of governing mechanisms of both HC generation and pollutants degradation. The influence of various parameters on HC effectiveness was assessed, considering fluid properties, construction features of HC devices and technological aspects of processes. The synergetic effect of HC combined with chemicals or other techniques was discussed. An overview of the main devices used for HC generation and different existing methods to evaluate the cavitation effectiveness was provided. Knowledge buildup and optimization for such complex systems from mathematical modeling was highlighted.
Collapse
Affiliation(s)
- Giuseppe Mancuso
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, viale Giuseppe Fanin 50, 40127 Bologna, Italy
| | - Michela Langone
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, via Mesiano 77, 38123 Trento, Italy
| | - Gianni Andreottola
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, via Mesiano 77, 38123 Trento, Italy
| |
Collapse
|
22
|
Controlled Hydrodynamic Cavitation: A Review of Recent Advances and Perspectives for Greener Processing. Processes (Basel) 2020. [DOI: 10.3390/pr8020220] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The 20th century has witnessed a remarkable enhancement in the demand for varieties of consumer products, ranging from food, pharmaceutical, cosmetics, to other industries. To enhance the quality of the product and to reduce the production cost, industries are gradually inclined towards greener processing technologies. Cavitation-based technologies are gaining interest among processing technologies due to their cost effectiveness in operation, minimization of toxic solvent usage, and ability to obtain superior processed products compared to conventional methods. Also, following the recent advancements, cavitation technology with large-scale processing applicability is only denoted to the hydrodynamic cavitation (HC)-based method. This review includes a general overview of hydrodynamic cavitation-based processing technologies and a detailed discussion regarding the process effectiveness. HC has demonstrated its usefulness in food processing, extraction of valuable products, biofuel synthesis, emulsification, and waste remediation, including broad-spectrum contaminants such as pharmaceuticals, bacteria, dyes, and organic pollutants of concern. Following the requirement of a specific process, HC has been implemented either alone or in combination with other process-intensifying steps, for example, catalyst, surfactant, ultraviolet (UV), hydrogen peroxide (H2O2), and ozone (O3), for better performance. The reactor set-up of HC includes orifice, slit venturi, rotor-stator, and sonolator type constrictions that initiate and control the formation of bubbles. Moreover, the future directions have also been pointed out with careful consideration of specific drawbacks.
Collapse
|
23
|
Saxena S, Saharan VK, George S. Modeling & simulation studies on batch anaerobic digestion of hydrodynamically cavitated tannery waste effluent for higher biogas yield. ULTRASONICS SONOCHEMISTRY 2019; 58:104692. [PMID: 31450286 DOI: 10.1016/j.ultsonch.2019.104692] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/04/2019] [Accepted: 07/14/2019] [Indexed: 06/10/2023]
Abstract
This study describes the efficacy of the pretreatment method of tannery waste effluent (TWE) by hydrodynamic cavitation (HC) prior to anaerobic digestion (AD) using a slit venturi cavitating device operated at 5 bar pressure for 2 h. The HC effect caused faster disintegration and solubilization of larger organic molecules into smaller ones, so that it could be easily digested by the microbial cells resulting in higher degradation rates, lower acclimatization time, higher COD reduction of the TWE and higher biogas generation. The biogas yield and % COD reduction was almost twice higher in HC treated TWE compared to raw TWE. Biogas yield of 68.57 mL/g volatile solids with 43.17% COD reduction was obtained during AD of HC treated TWE in 2 L bioreactor with 10% seed dosage. 'AD' Simulator developed in MATLAB represented the AD performance for both raw and HC treated TWE feed and predicted for concentrations of organic polymers, monomers, VFA and biogas produced, in which model parameter optimization was done by validations using methane production data from bioreactors. The AD simulator estimated higher hydrolysis rate constants for HC treated TWE than for raw TWE as observed in the experiments. Biogas production increased up to 7.8 and 11.8 folds for raw and HC treated TWE samples respectively by adding food waste to TWE feed with organic loading rate of 48 h. Cost estimations proved that cost of excess biogas produced by anaerobic digestion of HC treated TWE mixed with food waste, recovers the extra cost of HC pretreatment when compared to raw TWE alone, establishing HC as an effective pre-treatment tool prior to AD.
Collapse
Affiliation(s)
- Shivendu Saxena
- Department of Chemical Engineering, MNIT, Jaipur 302017, India
| | | | - Suja George
- Department of Chemical Engineering, MNIT, Jaipur 302017, India.
| |
Collapse
|
24
|
Terán Hilares R, Dionízio RM, Prado CA, Ahmed MA, da Silva SS, Santos JC. Pretreatment of sugarcane bagasse using hydrodynamic cavitation technology: Semi-continuous and continuous process. BIORESOURCE TECHNOLOGY 2019; 290:121777. [PMID: 31319211 DOI: 10.1016/j.biortech.2019.121777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 06/10/2023]
Abstract
Development of new technologies for pretreatment of lignocellulosic biomass is a current research challenge. In this way, hydrodynamic cavitation (HC) was used to assist alkaline hydrogen peroxide pretreatment of sugarcane bagasse (SCB) in sequential batches (SB-HC), semi-continuous (SC-HC) and continuous (C-HC) processes. Pretreatment resulted in compositional modifications in the material, mainly regarding the cellulose and lignin contents. The released sugars after enzymatic hydrolysis resulted, on average, in 42 g and 32-35 g of glucose per 100 g of SCB for samples treated in B-HC (10 min of process) and SC-HC process (7.5 min residence time), respectively. In C-HC process, with an average residence time of 7.5 min and 3.75 min, 38-46 g and 32-38 g of glucose per 100 g of SCB were obtained respectively in enzymatic hydrolysis step. HC technology was shown as a promising alternative for pretreatment of lignocellulosic biomass in all evaluated configurations aiming to produce high value bioproducts.
Collapse
Affiliation(s)
- R Terán Hilares
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, postal code 12602-810 Lorena, Brazil.
| | - R M Dionízio
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, postal code 12602-810 Lorena, Brazil
| | - C A Prado
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, postal code 12602-810 Lorena, Brazil
| | - M A Ahmed
- Graduate School of International Agricultural Technology, Institute of Green-Bio Science and Technology, Seoul National University, PyeongChang 232-916, Republic of Korea
| | - S S da Silva
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, postal code 12602-810 Lorena, Brazil
| | - J C Santos
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, postal code 12602-810 Lorena, Brazil
| |
Collapse
|
25
|
Nagarajan S, Ranade VV. Pretreatment of Lignocellulosic Biomass Using Vortex-Based Devices for Cavitation: Influence on Biomethane Potential. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b00859] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sanjay Nagarajan
- Multiphase Flows, Reactors and Intensification Group, School of Chemistry and Chemical Engineering, Queen’s University Belfast, Belfast BT9 5AG, United Kingdom
| | - Vivek V. Ranade
- Multiphase Flows, Reactors and Intensification Group, School of Chemistry and Chemical Engineering, Queen’s University Belfast, Belfast BT9 5AG, United Kingdom
| |
Collapse
|
26
|
Albanese L, Bonetti A, D'Acqui LP, Meneguzzo F, Zabini F. Affordable Production of Antioxidant Aqueous Solutions by Hydrodynamic Cavitation Processing of Silver Fir ( Abies alba Mill.) Needles. Foods 2019; 8:foods8020065. [PMID: 30759809 PMCID: PMC6406287 DOI: 10.3390/foods8020065] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 01/23/2019] [Accepted: 02/04/2019] [Indexed: 12/15/2022] Open
Abstract
Extracts from parts of coniferous trees have received increased interest due to their valuable bioactive compounds and properties, useful for plenty of experimental and consolidated applications, in fields comprising nutraceutics, cosmetics, pharmacology, food preservation, and stimulation of plant growth. However, the variability of the bioactive properties, the complexity of the extraction methods, and the use of potentially harmful synthetic chemicals, still represent an obstacle to the spreading of such valuable natural compounds. Hydrodynamic cavitation is emerging as a promising innovative technique for the extraction of precious food components and by-products from waste raw material of the agro-food production chain, which can improve processing efficiency, reduce resource consumption, and produce healthy, high-quality products. In this study, a process based on controlled hydrodynamic cavitation was applied for the first time to the production of aqueous solutions of silver fir (Abies alba Mill.) needles with enhanced antioxidant activity. The observed levels of the in vitro antioxidant activity, comparable or higher than those found for reference substances, pure extracts, and other water extracts and beverages, highlight the very good potential of the hydrodynamic cavitation (HC) process for the creation of solvent-free, aqueous solutions endowed with bioactive compounds extracted from silver fir needles.
Collapse
Affiliation(s)
- Lorenzo Albanese
- Institute of Biometeorology, National Research Council, 10 Via Madonna del Piano, I-50019 Sesto Fiorentino (FI), Italy.
| | - Alessandra Bonetti
- Institute for Research on Terrestrial Ecosystems, National Research Council, 10 Via Madonna del Piano, I-50019 Sesto Fiorentino (FI), Italy.
| | - Luigi Paolo D'Acqui
- Institute for Research on Terrestrial Ecosystems, National Research Council, 10 Via Madonna del Piano, I-50019 Sesto Fiorentino (FI), Italy.
| | - Francesco Meneguzzo
- Institute of Biometeorology, National Research Council, 10 Via Madonna del Piano, I-50019 Sesto Fiorentino (FI), Italy.
| | - Federica Zabini
- Institute of Biometeorology, National Research Council, 10 Via Madonna del Piano, I-50019 Sesto Fiorentino (FI), Italy.
| |
Collapse
|
27
|
Garuti M, Langone M, Fabbri C, Piccinini S. Methodological approach for trace elements supplementation in anaerobic digestion: Experience from full-scale agricultural biogas plants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 223:348-357. [PMID: 29936348 DOI: 10.1016/j.jenvman.2018.06.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 06/01/2018] [Accepted: 06/06/2018] [Indexed: 06/08/2023]
Abstract
Trace metals play a very important role on the performance and stability of agricultural biogas digesters. The purpose of this study was to develop a methodological approach to quickly detect limiting conditions due to Trace Elements (TE) concentration in full-scale biogas plants. The work was based on long-term process monitoring in two full-scale agricultural biogas plants and on the correlation between their performance and TE concentration in the digesters. Monitoring and analysis of data from two different case studies allowed to understand the effect of the TE added on biogas plant performance. Furthermore, over-dosage has been avoided, minimizing the risk of biological inhibition and excess of heavy metal concentration in the effluent digestate according to regulation for land fertilization. TE supplementation has been successfully applied to optimize the biogas production, when a slight volatile organic acid accumulation has been detected (from about 3515 mg CH3COOHeq L-1 to 4530 mg CH3COOHeq L-1), and to recover the biogas production after a strong organic acid accumulation (up to 7779 mgCH3COOHeq L-1). Molybdenum, nickel, cobalt, and selenium concentrations above the stimulatory level identified in this study showed similar effects in both case studies: a temporary increase of the methane content in the biogas by 15 - 20% and a provisional improvement of the specific methane production. This allowed to decrease the organic loading rate by 10 - 20%, due to rapid degradation of accumulated volatile organic acids. Further, the residual methane potential of the biogas plant in TE limiting conditions reached values up to 4.8% in comparison to the 1.3% residual methane potential achieved when TE concentration was not a limiting factor, proving that a proper use of TE could help in reducing greenhouse gases emission.
Collapse
Affiliation(s)
- Mirco Garuti
- CRPA - Research Center on Animal Production, Viale Timavo, 43/2, 42121 Reggio Emilia, Italy
| | - Michela Langone
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento, Italy.
| | - Claudio Fabbri
- CRPA - Research Center on Animal Production, Viale Timavo, 43/2, 42121 Reggio Emilia, Italy
| | - Sergio Piccinini
- CRPA - Research Center on Animal Production, Viale Timavo, 43/2, 42121 Reggio Emilia, Italy
| |
Collapse
|
28
|
Langone M, Soldano M, Fabbri C, Pirozzi F, Andreottola G. Anaerobic Digestion of Cattle Manure Influenced by Swirling Jet Induced Hydrodynamic Cavitation. Appl Biochem Biotechnol 2017; 184:1200-1218. [DOI: 10.1007/s12010-017-2612-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/19/2017] [Indexed: 10/18/2022]
|