1
|
Hu Z, Li J, Qian J, Liu J, Zhou W. Efficacy and mechanisms of rotating algal biofilm system in remediation of soy sauce wastewater. BIORESOURCE TECHNOLOGY 2024; 406:131047. [PMID: 38942212 DOI: 10.1016/j.biortech.2024.131047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
This study investigated the efficacy of the rotating algal biofilm (RAB) for treating soy sauce wastewater (SW) and its related treatment mechanisms. The RAB system demonstrated superior nutrient removal (chemical oxygen demand, ammonium nitrogen, total nitrogen, and phosphorus for 92 %, 94 %, 91 %, and 82 %, respectively) and biofilm productivity (14 g m-2 d-1) at optimized 5-day harvest time and 2-day hydraulic retention time. This was mainly attributed to the synergistic interactions within the algae-fungi (Apiotrichum)-bacteria (Acinetobacter and Rhizobia) consortium, which effectively assimilated certain extracellular polymeric substances into biomass to enhance algal biofilm growth. Increased algal productivity notably improved protein and essential amino acid contents in the biomass, suggesting a potential for animal feed applications. This study not only demonstrates a sustainable approach for managing SW but also provides insight into the nutrient removal and biomass conversion, offering a viable strategy for large-scale applications in nutrient recovery and wastewater treatment.
Collapse
Affiliation(s)
- Zimin Hu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources & Environment, Nanchang University, Nanchang 330031, China
| | - Jingjing Li
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources & Environment, Nanchang University, Nanchang 330031, China; Center for Algae Innovation & Engineering Research, Nanchang University, Nanchang 330031, China; School of Infrastructure Engineering, Nanchang University, Nanchang 330031, China
| | - Jun Qian
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources & Environment, Nanchang University, Nanchang 330031, China; Center for Algae Innovation & Engineering Research, Nanchang University, Nanchang 330031, China.
| | - Jin Liu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources & Environment, Nanchang University, Nanchang 330031, China; Center for Algae Innovation & Engineering Research, Nanchang University, Nanchang 330031, China
| | - Wenguang Zhou
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources & Environment, Nanchang University, Nanchang 330031, China; Center for Algae Innovation & Engineering Research, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
2
|
Li W, Wang L, Qiang X, Song Y, Gu W, Ma Z, Wang G. Design, construction and application of algae-bacteria synergistic system for treating wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121720. [PMID: 38972186 DOI: 10.1016/j.jenvman.2024.121720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/29/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024]
Abstract
The wastewater treatment technology of algae-bacteria synergistic system (ABSS) is a promising technology which has the advantages of low energy consumption, good treatment effect and recyclable high-value products. In this treatment technology, the construction of an ABSS is a very important factor. At the same time, the emergence of some new technologies (such as microbial fuel cells and bio-carriers, etc.) has further enriched constructing the novel ABSS, which could improve the efficiency of wastewater treatment and the biomass harvesting rate. Thus, this review focuses on the construction of a novel ABSS in wastewater treatment in order to provide useful suggestions for the technology of wastewater treatment.
Collapse
Affiliation(s)
- Weihao Li
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China; CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Lijun Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Xi Qiang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Yuling Song
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China; CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Wenhui Gu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Zengling Ma
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China.
| | - Guangce Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| |
Collapse
|
3
|
Mkpuma VO, Moheimani NR, Ennaceri H. Biofilm and suspension-based cultivation of microalgae to treat anaerobic digestate food effluent (ADFE). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171320. [PMID: 38458453 DOI: 10.1016/j.scitotenv.2024.171320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/10/2024]
Abstract
Anaerobic digestion of organic waste produces effluent (ADE) that requires further treatment. Biofilm-based microalgal cultivation is a favoured approach to ADE treatment. This study compared Chlorella sp. MUR 268 and Scenedesmus sp. MUR 269 in biofilm and suspension cultures to treat anaerobic digestate food effluent (ADFE). Chlorella sp. MUR 268 biofilm had significantly higher biomass (50.38 g m-2) than Scenedesmus sp. biofilm (9.39 g m-2). Conversely, Scenedesmus sp. yielded 1.5 times more biomass (1.2 g L-1) than Chlorella sp. in suspension. Chlorella sp. biofilm had 49.3 % higher areal productivity than suspension, while Scenedesmus sp. showed 87.3 % higher areal growth in suspension. Chlorella sp. MUR 268 and Scenedesmus sp. MUR 269 significantly removed nutrients in ADFE. In suspension, COD, ammoniacal nitrogen, and phosphate were reduced to 94.9, 5.2, and 5.98 mg L-1 for Chlorella sp. MUR 268, and 245, 2.89, and 3.22 mg L-1 for Scenedesmus sp. MUR 269, respectively. In biofilm, Chlorella sp. MUR 268 achieved reductions to 149.9, 1.16, and 3.57 mg L-1, while Scenedesmus sp. MUR 269 achieved 100.2, 6.9 and 2.07 mg L-1. Most of these values are below the recommended effluent discharge standard, highlighting the efficacy of this system in ADFE treatment. Biofilm cultures fixed 68-81 % of removed nitrogen in biomass, while in suspension, only 55-71 % ended in the biomass. Chlorella sp. MUR 268 biofilm fixed 88 % of removed phosphorus, while Scenedesmus sp. MUR 269 suspension fixed more phosphorus (55 %) than the biofilm counterpart (34 %). This biofilm design offers advantages like simplified, cost-effective operation, easy biomass recovery, and reduced water usage.
Collapse
Affiliation(s)
- Victor Okorie Mkpuma
- Algae R&D Centre, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Navid Reza Moheimani
- Algae R&D Centre, Murdoch University, Murdoch, Western Australia 6150, Australia; Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Perth 6150, Australia
| | - Houda Ennaceri
- Algae R&D Centre, Murdoch University, Murdoch, Western Australia 6150, Australia; Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Perth 6150, Australia.
| |
Collapse
|
4
|
Liu W, Qian J, Ding H, Li J, Liu J, Zhou W. Synergistic interactions of light and dark biofilms in rotating algal biofilm system for enhanced aquaculture wastewater treatment. BIORESOURCE TECHNOLOGY 2024; 400:130654. [PMID: 38575095 DOI: 10.1016/j.biortech.2024.130654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/01/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
Aquaculture wastewater management is critical for environmental sustainability. This study investigates the synergistic interactions between light and dark biofilms with a Rotating Algal Biofilm (RAB) system for effective aquaculture wastewater treatment. The RAB system, optimized with a 5-day harvest time and 12-hour hydraulic retention time, demonstrated superior biomass productivity (3.3 g m-2 d-1) and total ammoniacal nitrogen removal (82.3 %). Comparative analysis of light and dark biofilms revealed their complementary roles, with the light side exhibiting higher carbon assimilation and nutrient removal efficiencies, while the dark side contributed significantly to denitrification and phosphorus removal. Microbial community analysis highlighted the dominance of key bacterial genera such as Haliangium, Methyloversatilis and Comamonadaceae, along with the algal genus Chlorella, indicating their crucial roles in nutrient cycling. This study provides insights into the operational dynamics of RAB system for sustainable aquaculture wastewater treatment.
Collapse
Affiliation(s)
- Wenbin Liu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources & Environment, Nanchang University, Nanchang 330031, China
| | - Jun Qian
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources & Environment, Nanchang University, Nanchang 330031, China
| | - Huijun Ding
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources & Environment, Nanchang University, Nanchang 330031, China
| | - Jingjing Li
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources & Environment, Nanchang University, Nanchang 330031, China; School of Infrastructure Engineering, Nanchang University, Nanchang 330031, China
| | - Jin Liu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources & Environment, Nanchang University, Nanchang 330031, China; School of Infrastructure Engineering, Nanchang University, Nanchang 330031, China
| | - Wenguang Zhou
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources & Environment, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
5
|
Mkpuma VO, Moheimani NR, Ennaceri H. Biofilm cultivation of chlorella species. MUR 269 to treat anaerobic digestate food effluent (ADFE): Total ammonia nitrogen (TAN) concentrations effect. CHEMOSPHERE 2024; 354:141688. [PMID: 38484996 DOI: 10.1016/j.chemosphere.2024.141688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/06/2024] [Accepted: 03/10/2024] [Indexed: 03/17/2024]
Abstract
Microalgal-based treatment of anaerobic digestate food effluent (ADFE) has been found to be efficient and effective. However, turbidity and high total ammonia nitrogen (TAN)) content of ADFE is a major setback, requiring significant dilution. Although the possibility of growing microalgae in a high-strength ADFE with minimal dilution has been demonstrated in suspension cultures, such effluents remain highly turbid and affect the light path in suspension cultures. Here, the feasibility of growing Chlorella sp.MUR 269 in biofilm to treat ADFE with high TAN concentrations was investigated. Six different TAN concentrations in ADFE were evaluated for their effects on biofilm growth and nutrient removal by Chlorella sp. MUR 269 using the perfused biofilm technique. Biomass yields and productivities of this alga at various TAN concentrations (mg N NH3 L-1) were 55a (108 g m-2 and 9.80 g m-2 d-1)>100b > 200c = 300c = 500c > 1000d. Growth was inhibited, resulting in a 28% reduction in yield of Chlorella biofilm when this alga was grown at 1000 mg N NH3 L-1. A survey of the photosynthetic parameters reveals evidence of stress occurring in the following sequence: 55 < 100<200 < 300<1000. A significant nutrient removal was observed across various TAN concentrations. The removal pattern also followed the concentration gradients except COD, where the highest removal occurred at 500 mg N NH3 L-1. Higher removal rates were seen at higher nutrient concentrations and declined gradually over time. In general, our results indicated that the perfused biofilm strategy is efficient, minimizes water consumption, offers easy biomass harvesting, and better exposure to light. Therefore, it can be suitable for treating turbid and concentrated effluent with minimal treatment to reduce the TAN concentration.
Collapse
Affiliation(s)
- Victor Okorie Mkpuma
- Algae R&D Centre, School of Environmental and Conservation Sciences, Murdoch University, Murdoch, Western Australia, 6150, Australia
| | - Navid Reza Moheimani
- Algae R&D Centre, School of Environmental and Conservation Sciences, Murdoch University, Murdoch, Western Australia, 6150, Australia; Centre for Water, Energy and Waste, Harry Butler Institute, Murdoch University, Perth, 6150, Australia
| | - Houda Ennaceri
- Algae R&D Centre, School of Environmental and Conservation Sciences, Murdoch University, Murdoch, Western Australia, 6150, Australia; Centre for Water, Energy and Waste, Harry Butler Institute, Murdoch University, Perth, 6150, Australia.
| |
Collapse
|
6
|
Nguyen VT, Le VA, Do QH, Le TNC, Vo TDH. Emerging revolving algae biofilm system for algal biomass production and nutrient recovery from wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168911. [PMID: 38016564 DOI: 10.1016/j.scitotenv.2023.168911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/06/2023] [Accepted: 11/24/2023] [Indexed: 11/30/2023]
Abstract
Toward the direction of zero‑carbon emission and green technologies for wastewater treatment, algae-based technologies are considered promising candidates to deal with the current situation of pollution and climate change. Recent developments of algae-based technologies have been introduced in previous studies in which their performances were optimized for wastewater treatment and biomass production. Among these, revolving algae biofilm (RAB) reactors have been proven to have a great potential in high biomass productivity, simple harvesting method, great CO2 transfer rate, high light-use efficiency, heavy metal capture, nutrient removal, and acid mine drainage treatment in previous studies. However, there were few articles detailing RAB performance, which concealed its enormous potential and diminished interest in the model. Hence, this review aims to reveal the major benefit of RAB reactors in simultaneous wastewater treatment and biomass cultivation. However, there is still a lack of research on aspects to upgrade this technology which requires further investigations to improve performance or fulfill the concept of circular economy.
Collapse
Affiliation(s)
- Van-Truc Nguyen
- Faculty of Environment, Saigon University, Ho Chi Minh City 700000, Viet Nam.
| | - Vu-Anh Le
- Department of Environmental Engineering, Zhongli District, Chung Yuan Christian University, No. 200, Zhongbei Road, Taoyuan City 32023, Taiwan
| | - Quoc-Hoang Do
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Thi-Ngoc-Chau Le
- Institute for Environment and Resources (IER), Ho Chi Minh City 700000, Viet Nam; Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Viet Nam.
| | - Thi-Dieu-Hien Vo
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Viet Nam.
| |
Collapse
|
7
|
Zhang JT, Wang JX, Liu Y, Zhang Y, Wang JH, Chi ZY, Kong FT. Microalgal-bacterial biofilms for wastewater treatment: Operations, performances, mechanisms, and uncertainties. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167974. [PMID: 37884155 DOI: 10.1016/j.scitotenv.2023.167974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/28/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023]
Abstract
Microalgal-bacterial biofilms have been increasingly considered of great potential in wastewater treatment due to the advantages of microalgal-bacterial synergistic pollutants removal/recovery, CO2 sequestration, and cost-effective biomass-water separation. However, such advantages may vary widely among different types of microalgal-bacterial biofilms, as the biofilms could be formed on different shapes and structures of attachment substratum, generating "false hope" for certain systems in large-scale wastewater treatment if the operating conditions and pollutants removal properties are evaluated based on the general term "microalgal-bacterial biofilm". This study, therefore, classified microalgal-bacterial biofilms into biofilms formed on 2D substratum, biofilms formed on 3D substratum, and biofilms formed without substratum (i.e. microalgal-bacterial granular sludge, MBGS). Biofilms formed on 2D substratum display higher microalgae fractions and nutrients removal efficiencies, while the adopted long hydraulic retention times were unacceptable for large-scale wastewater treatment. MBGS are featured with much lower microalgae fractions, most efficient pollutants removal, and acceptable retention times for realistic application, yet the feasibility of using natural sunlight should be further explored. 3D substratum systems display wide variations in operating conditions and pollutants removal properties because of diversified substratum shapes and structures. 2D and 3D substratum biofilms share more common in eukaryotic and prokaryotic microbial community structures, while MGBS biofilms are more enriched with microorganisms favoring EPS production, biofilm formation, and denitrification. The specific roles of stratified extracellular polymeric substances (EPS) in nutrients adsorption and condensation still require in-depth exploration. Nutrients removal uncertainties caused by microalgal-bacterial synergy decoupling under insufficient illumination, limited microbial community control, and possible greenhouse gas emission exacerbation arising from microalgal N2O generation were also indicated. This review is helpful for revealing the true potential of applying various microalgal-bacterial biofilms in large-scale wastewater treatment, and will provoke some insights on the challenges to the ideal state of synergistic pollutants reclamation and carbon neutrality via microalgal-bacterial interactions.
Collapse
Affiliation(s)
- Jing-Tian Zhang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Jian-Xia Wang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Yang Liu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Ying Zhang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Jing-Han Wang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China; Key Laboratory of Environment Controlled Aquaculture, Dalian Ocean University, Dalian 116023, PR China.
| | - Zhan-You Chi
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Fan-Tao Kong
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| |
Collapse
|
8
|
Mkpuma VO, Moheimani NR, Ennaceri H. Commercial paper as a promising carrier for biofilm cultivation of Chlorella sp. for the treatment of anaerobic digestate food effluent (ADFE): Effect on the photosynthetic efficiency. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165439. [PMID: 37437632 DOI: 10.1016/j.scitotenv.2023.165439] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/04/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
Microalgal technology is still economically unattractive due to the high cost associated with microalgal cultivation and biomass recovery from conventional suspension cultures. Biofilm-based cultivation is a promising alternative for higher biomass yield and cheap/easy biomass harvesting opportunities. Additionally, using anaerobic digestate food effluent (ADFE) as a nutrient source reduces the cultivation cost and achieves ADFE treatment as an added value. However, the search for locally available, inexpensive, and efficient support materials is still open to research. This study evaluates the potential of commercially available, low-cost papers as support material for biofilm cultivation of Chlorella sp. and treatment of ADFE. Among the four papers screened for microalgal attachment, quill board paper performed better in higher biomass yield and stability throughout the study period. The attached growth study was done in a modular food container vessel, using anaerobic digestate food effluent (ADFE) as a nutrient source and a basal medium as a control. The microalgae grew well on the support material with higher biomass yield and productivity of 108.64 g(DW) m-2 and 9.96 g (DW) m-2 d-1, respectively, in the ADFE medium compared with 85.87 g (DW) m-2 and 4.99 g (DW) m-2 d-1, respectively in the basal medium. Chlorophyll, a fluorescence (ChlF) probe, showed that cell density in the biofilm significantly changes the photosynthetic apparatus of the algae, with evidence of stress observed as the culture progressed. Also, efficient nutrient removal from the ADFE medium was achieved in the 100 %, 85 %, and 40.2 % ratios for ammoniacal nitrogen, phosphate, and chemical oxygen demand (COD). Therefore, using quill board paper as carrier material for microalgal cultivation offers promising advantages, including high biomass production, easy biomass harvesting (by scrapping or rolling the biomass with the paper), and efficient effluent treatment.
Collapse
Affiliation(s)
- Victor Okorie Mkpuma
- Algae R&D Centre, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Navid Reza Moheimani
- Algae R&D Centre, Murdoch University, Murdoch, Western Australia 6150, Australia; Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Perth 6150, Australia
| | - Houda Ennaceri
- Algae R&D Centre, Murdoch University, Murdoch, Western Australia 6150, Australia; Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Perth 6150, Australia.
| |
Collapse
|
9
|
Chakravorty M, Nanda M, Bisht B, Sharma R, Kumar S, Mishra A, Vlaskin MS, Chauhan PK, Kumar V. Heavy metal tolerance in microalgae: Detoxification mechanisms and applications. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 260:106555. [PMID: 37196506 DOI: 10.1016/j.aquatox.2023.106555] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/15/2023] [Accepted: 05/05/2023] [Indexed: 05/19/2023]
Abstract
The proficiency of microalgae to resist heavy metals has potential to be beneficial in resolving various environmental challenges. Global situations such as the need for cost-effective and ecological ways of remediation of contaminated water and for the development of bioenergy sources could employ microalgae. In a medium with the presence of heavy metals, microalgae utilize different mechanisms to uptake the metal and further detoxify it. Biosorption and the next process of bioaccumulation are two such major steps and they also include the assistance of different transporters at different stages of heavy metal tolerance. This capability has also proved to be efficient in eradicating many heavy metals like Chromium, Copper, Lead, Arsenic, Mercury, Nickel and Cadmium from the environment they are present in. This indicates the possibility of the application of microalgae as a biological way of remediating contaminated water. Heavy metal resistance quality also allows various microalgal species to contribute in the generation of biofuels like biodiesel and biohydrogen. Many research works have also explored the capacity of microalgae in nanotechnology for the formation of nanoparticles due to its relevant characteristics. Various studies have also revealed that biochar deduced from microalgae or a combination of biochar and microalgae can have wide applications specially in deprivation of heavy metals from an environment. This review focuses on the strategies adopted by microalgae, various transporters involved in the process of tolerating heavy metals and the applications where microalgae can participate owing to its ability to resist metals.
Collapse
Affiliation(s)
- Manami Chakravorty
- Department of Biotechnology, Dolphin (PG) Institute of Biomedical & Natural Sciences, Dehradun-248007, India
| | - Manisha Nanda
- Department of Biotechnology, Dolphin (PG) Institute of Biomedical & Natural Sciences, Dehradun-248007, India
| | - Bhawna Bisht
- Algal Research and Bioenergy Lab, Department of Food Science and Technology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand 248002, India
| | - Rohit Sharma
- School of Engineering, University of Petroleum and Energy Studies, Dehradun, India
| | - Sanjay Kumar
- Algal Research and Bioenergy Lab, Department of Food Science and Technology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand 248002, India
| | - Abhilasha Mishra
- Department of Chemistry, Graphic Era (Deemed to be University), Dehradun, Uttarakhand 248002, India
| | - Mikhail S Vlaskin
- Joint Institute for High Temperatures of the Russian Academy of Sciences, 13/2 Izhorskaya St, Moscow 125412, Russian Federation
| | - P K Chauhan
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, HP, India
| | - Vinod Kumar
- Algal Research and Bioenergy Lab, Department of Food Science and Technology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand 248002, India; Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russian Federation.
| |
Collapse
|
10
|
Chen D, Wang G, Chen C, Feng Z, Jiang Y, Yu H, Li M, Chao Y, Tang Y, Wang S, Qiu R. The interplay between microalgae and toxic metal(loid)s: mechanisms and implications in AMD phycoremediation coupled with Fe/Mn mineralization. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131498. [PMID: 37146335 DOI: 10.1016/j.jhazmat.2023.131498] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/10/2023] [Accepted: 04/24/2023] [Indexed: 05/07/2023]
Abstract
Acid mine drainage (AMD) is low-pH with high concentration of sulfates and toxic metal(loid)s (e.g. As, Cd, Pb, Cu, Zn), thereby posing a global environmental problem. For decades, microalgae have been used to remediate metal(loid)s in AMD, as they have various adaptive mechanisms for tolerating extreme environmental stress. Their main phycoremediation mechanisms are biosorption, bioaccumulation, coupling with sulfate-reducing bacteria, alkalization, biotransformation, and Fe/Mn mineral formation. This review summarizes how microalgae cope with metal(loid) stress and their specific mechanisms of phycoremediation in AMD. Based on the universal physiological characteristics of microalgae and the properties of their secretions, several Fe/Mn mineralization mechanisms induced by photosynthesis, free radicals, microalgal-bacterial reciprocity, and algal organic matter are proposed. Notably, microalgae can also reduce Fe(III) and inhibit mineralization, which is environmentally unfavorable. Therefore, the comprehensive environmental effects of microalgal co-occurring and cyclical opposing processes must be carefully considered. Using chemical and biological perspectives, this review innovatively proposes several specific processes and mechanisms of Fe/Mn mineralization that are mediated by microalgae, providing a theoretical basis for the geochemistry of metal(loid)s and natural attenuation of pollutants in AMD.
Collapse
Affiliation(s)
- Daijie Chen
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Guobao Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Chiyu Chen
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Zekai Feng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuanyuan Jiang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Hang Yu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Mengyao Li
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuanqing Chao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Yetao Tang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Shizhong Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China.
| | - Rongliang Qiu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
11
|
Biofilm-based technology for industrial wastewater treatment: current technology, applications and future perspectives. World J Microbiol Biotechnol 2023; 39:112. [PMID: 36907929 DOI: 10.1007/s11274-023-03567-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/03/2023] [Indexed: 03/14/2023]
Abstract
The microbial community in biofilm is safeguarded from the action of toxic chemicals, antimicrobial compounds, and harsh/stressful environmental circumstances. Therefore, biofilm-based technology has nowadays become a successful alternative for treating industrial wastewater as compared to suspended growth-based technologies. In biofilm reactors, microbial cells are attached to static or free-moving materials to form a biofilm which facilitates the process of liquid and solid separation in biofilm-mediated operations. This paper aims to review the state-of-the-art of recent research on bacterial biofilm in industrial wastewater treatment including biofilm fundamentals, possible applications and problems, and factors to regulate biofilm formation. We discussed in detail the treatment efficiencies of fluidized bed biofilm reactor (FBBR), trickling filter reactor (TFR), rotating biological contactor (RBC), membrane biofilm reactor (MBfR), and moving bed biofilm reactor (MBBR) for different types of industrial wastewater treatment. Besides, biofilms have many applications in food and agriculture, biofuel and bioenergy production, power generation, and plastic degradation. Furthermore, key factors for regulating biofilm formation were also emphasized. In conclusion, industrial applications make evident that biofilm-based treatment technology is impactful for pollutant removal. Future research to address and improve the limitations of biofilm-based technology in wastewater treatment is also discussed.
Collapse
|
12
|
Rambabu K, Avornyo A, Gomathi T, Thanigaivelan A, Show PL, Banat F. Phycoremediation for carbon neutrality and circular economy: Potential, trends, and challenges. BIORESOURCE TECHNOLOGY 2023; 367:128257. [PMID: 36343781 DOI: 10.1016/j.biortech.2022.128257] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Phycoremediation is gaining attention not only as a pollutant mitigation approach but also as one of the most cost-effective paths to achieve carbon neutrality. When compared to conventional treatment methods, phycoremediation is highly effective in removing noxious substances from wastewater and is inexpensive, eco-friendly, abundantly available, and has many other advantages. The process results in valuable bioproducts and bioenergy sources combined with pollutants capture, sequestration, and utilization. In this review, microalgae-based phycoremediation of various wastewaters for carbon neutrality and circular economy is analyzed scientometrically. Different mechanisms for pollutants removal and resource recovery from wastewaters are explained. Further, critical parameters that influence the engineering design and phycoremediation performance are described. A comprehensive knowledge map highlighting the microalgae potential to treat a variety of industrial effluents is also presented. Finally, challenges and future prospects for industrial implementation of phycoremediation towards carbon neutrality coupled with circular economy are discussed.
Collapse
Affiliation(s)
- K Rambabu
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Amos Avornyo
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - T Gomathi
- Biomaterials Research Lab, Department of Chemistry, DKM College for Women (Autonomous), Vellore, India
| | - A Thanigaivelan
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty Science and Engineering, University of Nottingham, Malaysia, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Fawzi Banat
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
13
|
Zhang W, Wu Y, Wu J, Zheng X, Chen Y. Enhanced removal of sulfur-containing organic pollutants from actual wastewater by biofilm reactor: Insights of sulfur transformation and bacterial metabolic traits. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120187. [PMID: 36116571 DOI: 10.1016/j.envpol.2022.120187] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/06/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
Sulfur-containing organic pollutants in wastewater could threaten human health due to their high malodor and toxicity, and their conversion processes are more complex than inorganic sulfur compounds. Membrane aerated biofilm reactor (MABR), as a novel and environmentally-friendly biofilm-based technology, is able to remove inorganic sulfur in synthetic wastewater. However, it is unknown how sulfur-containing organic pollutants in actual wastewater are transformed in MABR system. This work demonstrated the feasibility of MABR to eliminate sulfur-containing organic pollutants in actual wastewater, and the removal efficiency could be reached at approximately 100%. Meanwhile, over 70% of sulfur-containing organic contaminants were transformed to SO42- during the long-term operation. Further analysis indicated that the functional bacteria that participated in sulfur transformation and carbohydrates degradation (e.g., Chujaibacter, Microscillaceaesp., and Thiobacillus) were evidently enriched when treating actual wastewater. Moreover, the critical metabolic pathways (e.g., sulfur metabolism, glycolysis metabolism, and pyruvate metabolism), and the corresponding genetic expressions (e.g., nrrA, tauA, tauC, sorA, and SUOX) were evidently up-regulated during long-term operation, which was beneficial for the transformation of sulfur-containing organic pollutants in actual wastewater by MABR. This work would expand the application of MABR for treating the actual sulfur-containing organic wastewater and provide an in-depth understanding of the organic sulfur transformation in MABR.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Yang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Jing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xiong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| |
Collapse
|
14
|
Blanco-Vieites M, Suárez-Montes D, Hernández Battez A, Rodríguez E. Enhancement of Arthrospira sp. culturing for sulfate removal and mining wastewater bioremediation. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 25:1116-1126. [PMID: 36263990 DOI: 10.1080/15226514.2022.2135680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Sulfate content in mining wastewater can reach concentrations over 2,000 mg·L-1, which is considered as a pollutant of concern. In this article, two cyanobacteria species were cultured using highly sulfated wastewater (3,000 mg·L-1) as the culture medium. This investigation aimed to analyze the sulfate bioremediation potential of microalgae while enhancing the uptaking of this pollutant through the design of a novel nutritional medium. The results obtained show the suitability of Arthrospira maxima as a bioremediation organism of sulfated wastewater. The appropriateness of this organism is based on its great growth performance when cultured in this residue, 2.16 times higher than the initial value. Moreover, the initially obtained sulfate reduction, 23.3%, was significantly enhanced to a final removal of 73% (2,247 mg·L-1). In addition, scanning electron microscopy and energy-dispersive X-ray spectroscopy were used to evaluate sulfur crystallization. To the best of our knowledge, there are no previous works focused on microalgal sulfate removal that have reached such an uptaking rate. Accordingly, this study presents the highest performance on sulfate microalgal bioremediation published to date. Our findings suggest that A. maxima can be cultured for sulfated wastewater bioremediation while showing a removal yield that is theoretically sufficient for industrial applications.
Collapse
Affiliation(s)
- M Blanco-Vieites
- Neoalgae Micro Seaweeds Products, Calle Carmen Leal Mata, Gijon, Spain
- Department of Construction and Manufacturing Engineering, University of Oviedo, Gijon, Spain
| | - D Suárez-Montes
- Neoalgae Micro Seaweeds Products, Calle Carmen Leal Mata, Gijon, Spain
| | - A Hernández Battez
- Department of Construction and Manufacturing Engineering, University of Oviedo, Gijon, Spain
| | - E Rodríguez
- Department of Construction and Manufacturing Engineering, University of Oviedo, Gijon, Spain
| |
Collapse
|
15
|
Zhang H, Yan Q, An Z, Wen Z. A revolving algae biofilm based photosynthetic microbial fuel cell for simultaneous energy recovery, pollutants removal, and algae production. Front Microbiol 2022; 13:990807. [PMID: 36299721 PMCID: PMC9589246 DOI: 10.3389/fmicb.2022.990807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/31/2022] [Indexed: 12/03/2022] Open
Abstract
Photosynthetic microbial fuel cell (PMFC) based on algal cathode can integrate of wastewater treatment with microalgal biomass production. However, both the traditional suspended algae and the immobilized algae cathode systems have the problems of high cost caused by Pt catalyst and ion-exchange membrane. In this work, a new equipment for membrane-free PMFC is reported based on the optimization of the most expensive MFC components: the separator and the cathode. Using a revolving algae-bacteria biofilm cathode in a photosynthetic membrane-free microbial fuel cell (RAB-MFC) can obtain pollutants removal and algal biomass production as well as electrons generation. The highest chemical oxygen demand (COD) removal rates of the anode and cathode chambers reached 93.5 ± 2.6% and 95.8% ± 0.8%, respectively. The ammonia removal efficiency in anode and cathode chambers was 91.1 ± 1.3% and 98.0 ± 0.6%, respectively, corresponding to an ammonia removal rate of 0.92 ± 0.02 mg/L/h. The maximum current density and power density were 136.1 mA/m2 and 33.1 mW/m2. The average biomass production of algae biofilm was higher than 30 g/m2. The 18S rDNA sequencing analysis the eukaryotic community and revealed high operational taxonomic units (OTUs) of Chlorophyta (44.43%) was dominant phyla with low COD level, while Ciliophora (54.36%) replaced Chlorophyta as the dominant phyla when COD increased. 16S rDNA high-throughput sequencing revealed that biofilms on the cathode contained a variety of prokaryote taxa, including Proteobacteria, Bacteroidota, Firmicutes, while there was only 0.23-0.26% photosynthesizing prokaryote found in the cathode biofilm. Collectively, this work demonstrated that RAB can be used as a bio-cathode in PMFC for pollutants removal from wastewater as well as electricity generation.
Collapse
Affiliation(s)
- Huichao Zhang
- School of Civil Engineering, Yantai University, Yantai, China
| | - Qian Yan
- School of Civil Engineering, Yantai University, Yantai, China
| | - Zhongyi An
- School of Civil Engineering, Yantai University, Yantai, China
| | - Zhiyou Wen
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States
| |
Collapse
|
16
|
Li M, Ge S, Zhang J, Wu S, Wu H, Zhuang LL. Mechanism and performance of algal pond assisted constructed wetlands for wastewater polishing and nutrient recovery. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 840:156667. [PMID: 35705127 DOI: 10.1016/j.scitotenv.2022.156667] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/30/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
The limitation of oxygen and carbon source restricted the TN removal in constructed wetland (CW). Algal pond (AP) could produce oxygen and fix CO2 to improve C/N ratio in water. Therefore, an AP-CW system was established under laboratory conditions to deeply explore the effect of nutrient load distribution and microalgae addition in CWs on pollutant removal. This study showed that AP-CW could remove 49.7% TN and 90.0% TP with no carbon addition in CWs. The significant removal of NH4-N by AP advanced the location of denitrification in CWs. To enhance TN removal, different dosage of microalgae were intermittently added at 20 and 10 cm respectively below the inlet of the vertical flow CW1 and CW2, where the rest NH4-N has been almost oxidized into nitrate. The addition of microalgae influenced the microflora and effluent quality. Microalgae dosage in denitrification area significantly increased the absolute abundance of Σnir. The best TN removal of AP-CW could reach 91.3% when 8 g (dry weight) microalgae was added. However, unlike previous knowledge, microalgae as an organic carbon source would also release N and P during decomposition, leading to increased nutrients in the effluent. The optimal dosage of microalgae was 1 g/5 d in this study. The position and amount of microalgae addition in CWs should be adjusted based on water property and element flow to achieve the best pollutant removal and biomass harvest.
Collapse
Affiliation(s)
- Mengting Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Shuhan Ge
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Jian Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Shubiao Wu
- Department of Agroecology, Aarhus University, Blichers All'e 20, 8830 Tjele, Denmark
| | - Haiming Wu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Lin-Lan Zhuang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
17
|
Luo X, Yang Y, Xie S, Wang W, Li N, Wen C, Zhu S, Chen L. Drying and rewetting induce changes in biofilm characteristics and the subsequent release of metal ions. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128832. [PMID: 35390615 DOI: 10.1016/j.jhazmat.2022.128832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/15/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Drying and rewetting can markedly influence the microbial structure and function of river biofilm communities and potentially result in the release of metal ions from biofilms containing metals. However, little information is available on the response of metal-enriched biofilms to drying and rewetting over time. In this study, natural biofilms were allowed to develop in four rotating annular bioreactors for 2-11 weeks, followed by drying for 5 days and rewetting for another 5 days. Subsequently, we assessed Zn, Cd, and As desorption from the biofilms and other related parameters (microbial community structure, biofilm morphology, enzyme activity, and surface components as well as characteristics). High-throughput sequencing of the 16 S rRNA gene and confocal laser scanning microscopy revealed that the biofilm architecture and bacterial communities were distinct in different growth phases and under drying and rewetting conditions (permutational multivariate analysis of variance; p = 0.001). Proteobacteria was the dominant bacterial phylum, accounting for 69.7-90.1% of the total content. Kinetic experiments revealed that the drying and rewetting process increased metal desorption from the biofilm matrix. The desorption of heavy metals was affected by the age of the biofilm, with the maximum amount of metal ions released from 2-week-old biofilms (one-way ANOVA, Zn: p < 0.001; Cd: p = 0.008; As: p < 0.001). The modifications in biofilm properties and decreased diversity of the bacterial community (paired t-test, p < 0.05) after drying and rewetting decreased the number of specific binding sites for metal ions. In addition, negatively charged arsenate and other anions in the liquid phase could compete with As ions for adsorption sites to promote the release of As(V) and/or reductive desorption of As(III). The results of this study and their interpretation are expected to help refine the behaviors of heavy metals in the aquatic environment.
Collapse
Affiliation(s)
- Xia Luo
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming 650500, China.
| | - Yuanhao Yang
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming 650500, China
| | - Shanshan Xie
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming 650500, China
| | - Wenwen Wang
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming 650500, China
| | - Nihong Li
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming 650500, China
| | - Chen Wen
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming 650500, China
| | - Shijun Zhu
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming 650500, China
| | - Liqiang Chen
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming 650500, China.
| |
Collapse
|
18
|
Yang SR, He CS, Xie ZH, Li LL, Xiong ZK, Zhang H, Zhou P, Jiang F, Mu Y, Lai B. Efficient activation of PAA by FeS for fast removal of pharmaceuticals: The dual role of sulfur species in regulating the reactive oxidized species. WATER RESEARCH 2022; 217:118402. [PMID: 35417819 DOI: 10.1016/j.watres.2022.118402] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
As peracetic acid (PAA) is being increasingly used as an alternative disinfectant, efficient activation of PAA by low-cost and environmentally friendly catalysts over a wide pH range is potentially useful for simultaneous sterilization and pharmaceutical degradation in wastewater, such as hospital wastewater. In this study, peracetic acid (PAA) was successfully activated by low-cost and environmental-friendly FeS (25 mg/L) for efficient oxidative removal of three pharmaceuticals over a wide pH range (3.0∼9.0) as indicated by 80∼100% removal rate within 5 min. As expected, Fe(II) rather than sulfur species was the primary reactive site for PAA activation, while unlike the homogeneous Fe2+/PAA system with organic radicals (R-O·) and ·OH as the dominant reactive oxidized species (ROS), ·OH is the key reactive species in the FeS/PAA system. Interestingly and surprisingly, in-depth investigation revealed the dual role of sulfur species in regulating the reactive oxidized species: (1) S(-II) and its conversion product H2S (aq) played a significant role in Fe(II) regeneration with a result of accelerated PAA activation; (2) however, the R-O· generated in the initial seconds of the FeS/PAA process was supposed to be quickly consumed by sulfur species, resulting in ·OH as the dominant ROS over the whole process. The selective reaction of sulfur species with R-O· instead of ·OH was supported by the obviously lower Gibbs free energy of CH3COO· and sulfur species than ·OH, suggesting the preference of CH3COO· to react with sulfur species with electron transfer. After treatment with the FeS/PAA system, the products obtained from the three pharmaceuticals were detoxified and even facilitated the growth of E. coli probably due to the supply of numerous carbon sources by activated PAA. This study significantly advances the understanding of the reaction between PAA and sulfur-containing catalysts and suggests the practical application potential of the FeS/PAA process combined with biotreatment processes.
Collapse
Affiliation(s)
- Shu-Run Yang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Chuan-Shu He
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China.
| | - Zhi-Hui Xie
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Ling-Li Li
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Zhao-Kun Xiong
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Heng Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Peng Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Feng Jiang
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Yang Mu
- Department of Environmental Science and Engineering, CAS Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei 230026, China
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
19
|
Abstract
(1) Background: Mixotrophic growth is commonly associated with higher biomass productivity and lower energy consumption. This paper evaluates the impact of using different carbon sources on growth, protein profile, and nutrient uptake for Dunaliella tertiolecta CCAP 19/30 to assess the potential for mixotrophic growth. (2) Methods: Two experimental sets were conducted. The first assessed the contribution of atmospheric carbon to D. tertiolecta growth and the microalgae capacity to grow heterotrophically with an organic carbon source to provide both carbon and energy. The second set evaluated the impact of using different carbon sources on its growth, protein yield and quality. (3) Results: D. tertiolecta could not grow heterotrophically. Cell and optical density, ash-free dry weight, and essential amino acids index were inferior for all treatments using organic carbon compared to NaHCO3. Neither cell nor optical density presented significant differences among the treatments containing organic carbon, demonstrating that organic carbon does not boost D. tertiolecta growth. All the treatments presented similar nitrogen, phosphorus, sulfur recovery, and relative carbohydrate content. (4) Conclusions: Based on the results of this paper, D. tertiolecta CCAP 19/30 is an obligated autotroph that cannot grow mixotrophically using organic carbon.
Collapse
|
20
|
Iqbal K, Saxena A, Pande P, Tiwari A, Chandra Joshi N, Varma A, Mishra A. Microalgae-bacterial granular consortium: Striding towards sustainable production of biohydrogen coupled with wastewater treatment. BIORESOURCE TECHNOLOGY 2022; 354:127203. [PMID: 35462016 DOI: 10.1016/j.biortech.2022.127203] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Anthropogenic activities have drastically affected the environment, leading to increased waste accumulation in atmospheric bodies, including water. Wastewater treatment is an energy-consuming process and typically requires thousands of kilowatt hours of energy. This enormous energy demand can be fulfilled by utilizing the microbial electrolysis route to breakdown organic pollutants in wastewater which produces clean water and biohydrogen as a by-product of the reaction. Microalgae are the promising microorganism for the biohydrogen production, and it has been investigated that the interaction between microalgae and bacteria can be used to boost the yield of biohydrogen. Consortium of algae and bacteria resulting around 50-60% more biohydrogen production compared to the biohydrogen production of algae and bacteria separately. This review summarises the recent development in different microalgae-bacteria granular consortium systems successfully employed for biohydrogen generation. We also discuss the limitations in biohydrogen production and factors affecting its production from wastewater.
Collapse
Affiliation(s)
- Khushboo Iqbal
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida 201301, India
| | - Abhishek Saxena
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201301, India
| | - Priyanshi Pande
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida 201301, India
| | - Archana Tiwari
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201301, India
| | - Naveen Chandra Joshi
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida 201301, India
| | - Ajit Varma
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida 201301, India
| | - Arti Mishra
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida 201301, India.
| |
Collapse
|
21
|
Hao TB, Balamurugan S, Zhang ZH, Liu SF, Wang X, Li DW, Yang WD, Li HY. Effective bioremediation of tobacco wastewater by microalgae at acidic pH for synergistic biomass and lipid accumulation. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:127820. [PMID: 34865896 DOI: 10.1016/j.jhazmat.2021.127820] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/31/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Tobacco wastewater is too difficult to decontaminate which poses a significant environmental problem due to the harmful and toxic components. Chlorella pyrenoidosa is a typical microalgal species with potential in removal of organic/inorganic pollutants and proves to be an ideal algal-based system for wastewater treatment. However, the strategy of tobacco related wastewater treatment using microalgae is in urgent need of development. In this study, C. pyrenoidosa was used to evaluate the removal efficiency of artificial tobacco wastewater. Under various solid-to-liquid (g/L) ratios, 1:1 ratio and acidic pH 5.0 were optimal for C. pyrenoidosa to grow with high performance of removal capacity to toxic pollutants (such as COD, NH3-N, nicotine, nitrosamines and heavy metals) with the alleviation of oxidative damage. Algal biomass could reach up to 540.24 mg/L. Furthermore, carbon flux of C. pyrenoidosa was reallocated from carbohydrate and protein biosynthesis to lipogenesis with a high lipid content of 268.60 mg/L at pH 5.0. Overall, this study demonstrates an efficient and sustainable strategy for tobacco wastewater treatment at acidic pH with the production of valuable microalgal products, which provides a promising biorefinery strategy for microalgal-based wastewater bioremediation.
Collapse
Affiliation(s)
- Ting-Bin Hao
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | | | - Zhong-Hong Zhang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Si-Fen Liu
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xiang Wang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Da-Wei Li
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Wei-Dong Yang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hong-Ye Li
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
22
|
Mukhopadhyay S, Jana A, Ghosh S, Majumdar S, Ghosh TK. Arthrospira sp. mediated bioremediation of gray water in ceramic membrane based photobioreactor: process optimization by response surface methodology. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 24:1364-1375. [PMID: 35075966 DOI: 10.1080/15226514.2022.2027865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Direct discharge of raw domestic sewage enriched with nitrogenous and phosphorous compounds into the water bodies causes eutrophication and other environmental hazards with detrimental impacts on public and ecosystem health. The present study focuses on phycoremediation of gray water with Arthrospira sp. using an innovative hydrophobic ceramic membrane-based photobioreactor system integrated with CO2 biofixation and biodiesel production, aiming for green technology development. Surfactant and oil-rich gray water collected from the domestic kitchen was used wherein, chloride, sulfate, and surfactant concentrations were statistically optimized using response surface methodology (RSM), considering maximum microalgal growth rate as a response for the design. Ideal concentrations (mg/L) of working parameters were found to be 7.91 (sulfate), 880.49 (chloride), and 144.02 (surfactant), respectively to achieve optimum growth rate of 0.43 gdwt/L/day. Enhancement of growth rate of targeted microalgae by 150% with suitable CO2 (19.5%) supply and illumination in the photobioreactor affirms its efficient operation. Additionally, harvested microalgal biomass obtained from the process showed a biodiesel content of around 5.33% (dry weight). The microalgal treatment enabled about 96.82, 87.5, and 99.8% reductions in BOD, COD, and TOC, respectively, indicating the potential of the process in pollutant assimilation and recycling of such wastewater along with value-added product generation.
Collapse
Affiliation(s)
- Shritama Mukhopadhyay
- Department of Biotechnology, Heritage Institute of Technology, Kolkata, India
- Water Technology Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata, India
| | - Animesh Jana
- Department of Chemical Engineering, Indian Institute of Technology, Kharagpur, India
| | - Sourja Ghosh
- Water Technology Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata, India
| | - Swachchha Majumdar
- Water Technology Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata, India
| | - Tapan Kumar Ghosh
- Department of Biotechnology, Heritage Institute of Technology, Kolkata, India
| |
Collapse
|
23
|
Sharma R, Mishra A, Pant D, Malaviya P. Recent advances in microalgae-based remediation of industrial and non-industrial wastewaters with simultaneous recovery of value-added products. BIORESOURCE TECHNOLOGY 2022; 344:126129. [PMID: 34655783 DOI: 10.1016/j.biortech.2021.126129] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
The ability of microalgae to grow in a broad spectrum of wastewaters manifests great potentials for removing contaminants from effluents of industries and urban areas. Since the post-treatment microalgae biomass is also a significant source of high-value products, microalgae-based wastewater treatment is an economical and sustainable solution to wastewater management. Adding more value, the integration of microalgae with living/non-living materials looks more promising. Microalgae-based treatment technology has certain limitations like high operational costs, problematic harvesting, large land requirements, and hindrance in photosynthesis due to turbid wastewater. These challenges need to be essentially addressed to achieve enhanced wastewater remediation. This review has highlighted the potential applications of microalgae in contaminant removal from wastewaters, simultaneous resource recovery, efficient microalgae-based hybrid systems along with bottlenecks and prospects. This state-of-the-art article will edify the role of microalgae in wastewater remediation, biomass valorization for bio-based products, and present numerous possibilities in strengthening the circular bioeconomy.
Collapse
Affiliation(s)
- Rozi Sharma
- Department of Environmental Science, University of Jammu, Jammu-180006, Jammu and Kashmir, India
| | - Arti Mishra
- Amity Institute of Microbial Technology, Amity University, Noida-201303, Uttar Pradesh, India
| | - Deepak Pant
- Separation & Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, Mol 2400, Belgium
| | - Piyush Malaviya
- Department of Environmental Science, University of Jammu, Jammu-180006, Jammu and Kashmir, India.
| |
Collapse
|
24
|
Zhou Y, He Y, Xiao X, Liang Z, Dai J, Wang M, Chen B. A novel and efficient strategy mediated with calcium carbonate-rich sources to remove ammonium sulfate from rare earth wastewater by heterotrophic Chlorella species. BIORESOURCE TECHNOLOGY 2022; 343:125994. [PMID: 34757283 DOI: 10.1016/j.biortech.2021.125994] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
This work was the first time to establish the desired approach with two heterotrophic Chlorella species for ammonium sulfate (AS)-rich rare earth elements (REEs) wastewater treatment by heterotrophic cultivation. The results showed that these two Chlorella species treated by 6 g/L CaCO3 performed the best ability to remove NH4+-N and SO42- of REEs wastewater. Moreover, the established process performed similar features in REEs wastewater treatment by replacing CaCO3 with eggshell powder (ESP) and oyster shell powder (OSP) enriched in CaCO3. Furthermore, microalgae treated by ESP/OSP in a 10-L fermenter showed 837.39 mg/(L·d) NH4+-N and 1,820 mg/(L·d) SO42- removal rates. The developed kinetic models could be well fitted to the experimental data obtained by the 10-L fermenter. Taken together, the established process mediated with two Chlorella species and ESP/OSP by heterotrophic cultivation was the great potential for AS-rich REEs wastewater treatment in a cost-effective manner.
Collapse
Affiliation(s)
- Youcai Zhou
- College of Life Science, Fujian Normal University, Fuzhou 350117, PR China
| | - Yongjin He
- College of Life Science, Fujian Normal University, Fuzhou 350117, PR China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117, PR China
| | - Xuehua Xiao
- College of Life Science, Fujian Normal University, Fuzhou 350117, PR China
| | - Zhibo Liang
- College of Life Science, Fujian Normal University, Fuzhou 350117, PR China
| | - Jingxuan Dai
- College of Life Science, Fujian Normal University, Fuzhou 350117, PR China
| | - Mingzi Wang
- College of Life Science, Fujian Normal University, Fuzhou 350117, PR China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117, PR China.
| | - Bilian Chen
- College of Life Science, Fujian Normal University, Fuzhou 350117, PR China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117, PR China
| |
Collapse
|
25
|
Zhang H, Li X, An Z, Liu Z, Tang C, Zhao X. Treatment of polyacrylamide-polluted wastewater using a revolving algae biofilm reactor: Pollutant removal performance and microbial community characterization. BIORESOURCE TECHNOLOGY 2021; 332:125132. [PMID: 33848818 DOI: 10.1016/j.biortech.2021.125132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Industries such as oil mining face challenges in the treatment of polyacrylamide (PAM)-containing wastewater produced during petroleum extraction. The feasibility of using revolving algae biofilm (RAB) reactors to treat PAM-contaminated wastewater for simultaneous removal of carbon and nitrogen was evaluated. The presence or absence of external nitrogen sources had a significant impact on the treatment effect of the RAB system. With the additional N source, the PAM, COD, TOC, and TN removal rates were 64.1 ± 2.0, 58 ± 1.5, 34.5 ± 1.5, and 85 ± 6.0%, respectively. High-throughput sequencing showed that the biofilms on RAB reactors contained a variety of bacteria, cyanobacteria, and green algae, degrading PAM through various mechanisms. The results of infrared spectroscopy analysis indicate that the product of these processes was carboxylic acid. Based on these results, it was concluded that RAB systems can be effectively applied to the treatment of polymer-containing wastewater.
Collapse
Affiliation(s)
- Huichao Zhang
- School of Civil Engineering, Yantai University, Yantai 264000, China
| | - Xin Li
- School of Civil Engineering, Yantai University, Yantai 264000, China
| | - Zhongyi An
- School of Civil Engineering, Yantai University, Yantai 264000, China.
| | - Zhiwei Liu
- School of Civil Engineering, Yantai University, Yantai 264000, China
| | - Chunxiao Tang
- School of Civil Engineering, Yantai University, Yantai 264000, China
| | - Xiaodong Zhao
- School of Marine Science, Yantai University, Yantai 264000, China
| |
Collapse
|
26
|
Lin Y, Wang L, Xu K, Huang H, Ren H. Algae Biofilm Reduces Microbe-Derived Dissolved Organic Nitrogen Discharges: Performance and Mechanisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6227-6238. [PMID: 33891391 DOI: 10.1021/acs.est.0c06915] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Microbe-derived dissolved organic nitrogen (mDON) can readily induce harmful phytoplankton blooms, and thus, restricting its discharges is necessary. Recently, algae biofilm (AB) has attracted increasing interest for its advantages in nutrient recovery. However, its features in mDON control remain unexplored. Herein, AB's mDON formation and utilization performance, molecular characteristics, and metabolic traits have been investigated, with activated sludge (AS) as the benchmark for comparisons. Comparatively, AB reduced mDON formation by 83% when fed with DON-free wastewater. When fed with AS's effluent, it consumed at least 72% of the exogenous mDON and notably reduced the amount of protein/amino sugar-like compounds. Irrespective of the influent, AB ultimately produced more various unsaturated hydrocarbon and lignin analogues. Redundancy and network analysis highlighted the algal-bacterial synergistic effects exemplified by cross-feeding in reducing mDON concentrations and shaping mDON pools. Moreover, metagenomics-based metabolic reconstruction revealed that cyanobacteria Limnothrix and Kamptonema spp. facilitated mDON uptake, ammonification, and recycling, which supplied the extensive nitrogen assimilatory demand for amino acids, vitamins, and cofactors biosynthesis, and therefore promoted mDON scavenging. Our findings demonstrate that regardless of the secondary or tertiary process, cyanobacteria-dominated AB is promising to minimize bioavailable mDON discharges, which has implications for future eutrophication control.
Collapse
Affiliation(s)
- Yuan Lin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163 Xianlin Avenue, Nanjing 210023, Jiangsu, P. R. China
| | - Liye Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163 Xianlin Avenue, Nanjing 210023, Jiangsu, P. R. China
| | - Ke Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163 Xianlin Avenue, Nanjing 210023, Jiangsu, P. R. China
| | - Hui Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163 Xianlin Avenue, Nanjing 210023, Jiangsu, P. R. China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163 Xianlin Avenue, Nanjing 210023, Jiangsu, P. R. China
| |
Collapse
|
27
|
Astaxanthin as a microalgal metabolite for aquaculture: A review on the synthetic mechanisms, production techniques, and practical application. ALGAL RES 2021. [DOI: 10.1016/j.algal.2020.102178] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
28
|
Chen S, Xie J, Wen Z. Removal of pharmaceutical and personal care products (PPCPs) from waterbody using a revolving algal biofilm (RAB) reactor. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124284. [PMID: 33139107 DOI: 10.1016/j.jhazmat.2020.124284] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/30/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
The occurrence of Pharmaceutical and Personal Care Products (PPCPs) in the aquatic environment has raised concerns due to their accumulation in the ecosystem. This study aims to explore the feasibility of using a Revolving Algal Biofilm (RAB) reactor for PPCPs removal from waterbody. Five model PPCP compounds including ibuprofen, oxybenzone, triclosan, bisphenol A and N, N-diethyl-3-methylbenzamide (DEET) were mixed and added to the culture medium. It shows that PPCP removal efficiencies of the RAB reactor ranged from 70% to 100%. The degradation of PPCPs by the RAB reactor contributed > 90% PPCP removal while < 10% PPCPs removal was due to accumulation in the algal biomass. The nutrients removal performance of the RAB reactor was not affected by exposing to the PPCPs. The extracellular polysaccharides content of the biomass increased when exposing to PPCPs, while the extracellular proteins content remained constant. The Chl a content maintained constant in the PPCPs-treated biomass, but decreased in the biomass without PPCP treatment. It was also found that the microbial consortium of the RAB reactor was enriched with PPCPs degradation microorganisms with the progressing of feeding PPCPs. Collectively, this work demonstrates that the RAB system is a promising technology for removing PPCPs from wastewater.
Collapse
Affiliation(s)
- Si Chen
- Department of Food Science and Human Nutrition, Iowa State University, 536 Farmhouse Lane, Ames 50011, Iowa, USA
| | - Jiahui Xie
- Department of Food Science and Human Nutrition, Iowa State University, 536 Farmhouse Lane, Ames 50011, Iowa, USA
| | - Zhiyou Wen
- Department of Food Science and Human Nutrition, Iowa State University, 536 Farmhouse Lane, Ames 50011, Iowa, USA; Gross-Wen Technologies Inc., 404 Main Street, Slater 50244, Iowa, USA.
| |
Collapse
|
29
|
Chen H, Xiao T, Ning Z, Li Q, Xiao E, Liu Y, Xiao Q, Lan X, Ma L, Lu F. In-situ remediation of acid mine drainage from abandoned coal mine by filed pilot-scale passive treatment system: Performance and response of microbial communities to low pH and elevated Fe. BIORESOURCE TECHNOLOGY 2020; 317:123985. [PMID: 32805482 DOI: 10.1016/j.biortech.2020.123985] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
A field pilot-scale passive treatment system was developed for in-situ bioremediation of acid mine drainage (AMD). The microbial community and its variation were analyzed. The data proved that 93.7% of total soluble Fe and 99% of soluble Fe(II) could be removed by the system. Principal coordinates analysis (PCoA) showed that a low pH and an elevated Fe concentration within the system created a unique microbial community that was dominated by acidophilic iron-oxidizing bacteria and iron-reducing bacteria. Canonical correlation analysis (CCA) indicated that the pH, iron content and total sulfur jointly determined the composition of the microbial communities. Species of Ferrovum, Delftia, Acinetobacter, Metallibacterium, Acidibacter and Acidiphilium were highly enriched, which promoted the removal of iron. Furthermore, the results revealed important data for the biogeochemical coupling of microbial communities and environmental parameters. These findings are beneficial for further application of in-situ field bioreactors to remediate AMD.
Collapse
Affiliation(s)
- Haiyan Chen
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tangfu Xiao
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Zengping Ning
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Qian Li
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Enzong Xiao
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yizhang Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Qingxiang Xiao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; School of Tourism Management, Guizhou University of Commerce, Guiyang 550014, China
| | - Xiaolong Lan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; School of Chemistry and Environmental Engineering, Hanshan Normal University, Chaozhou 521041, China
| | - Liang Ma
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fanghai Lu
- School of Materials and Metallurgical Engineering, Guizhou Institute of Technology, Guiyang 550003, China
| |
Collapse
|
30
|
Zhuang LL, Li M, Hao Ngo H. Non-suspended microalgae cultivation for wastewater refinery and biomass production. BIORESOURCE TECHNOLOGY 2020; 308:123320. [PMID: 32284252 DOI: 10.1016/j.biortech.2020.123320] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 05/05/2023]
Abstract
Non-suspended microalgae cultivation technology coupled with wastewater purification has received more scientific attention in recent decades. Since the non-suspended microalgae cultivation is quite different from the suspended ones, the following issues are compared in this study such as advantages and disadvantages, pollutant removal mechanisms and regulations, influential factors, and microalgae biomass accumulation. The analysis aims to support the further application of this technology. The median removal rates of COD, TN, TP, NH4+-N and NO3--N were 91.6%, 78.2%, 87.5%, 93.2% and 81.7%, respectively, by non-suspended microalgae under the TN & TP load rates up to 150 mg·L-1·d-1. The main pathway for TN & TP removal is microalgae cell absorbance. Light intensity, pollutant composition and microalgae metabolic types are the major factors that influence pollutant removal and the lipid content of microalgae. Meanwhile the mechanism concerning how macro-outer conditions influence the micro-environment and further growth of non-suspended microalgae requires more investigation.
Collapse
Affiliation(s)
- Lin-Lan Zhuang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Mengting Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Huu Hao Ngo
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia.
| |
Collapse
|
31
|
Peng J, Kumar K, Gross M, Kunetz T, Wen Z. Removal of total dissolved solids from wastewater using a revolving algal biofilm reactor. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:766-778. [PMID: 31715042 DOI: 10.1002/wer.1273] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 11/02/2019] [Accepted: 11/06/2019] [Indexed: 06/10/2023]
Abstract
Total dissolved solids (TDS) comprising inorganic salts and organic matters are pollutants of concern to aquatic systems and water for human use. This work aimed to investigate the use of revolving algal biofilm (RAB) reactors as a sustainable and environmental friendly method to remove TDS from industrial effluents and municipal wastewaters. The wastewaters contained chloride, sodium, potassium, calcium, magnesium, and sulfate as the major components. The RAB reactors fed with synthetic industrial effluent with high TDS level demonstrated the best algal growth, with the highest TDS removal efficiency (27%) and removal rate (2,783 mg/L-day and 19,530 mg/m2 -day). A suspended algal culture system only removed 3% TDS from the same wastewater. The TDS removal by the RAB reactors was considered due to several mechanisms such as absorption by the algae cells, adsorption by extracellular polymeric substance of the biofilm, and/or precipitation. Collectively, this research shows that the RAB reactors can serve as an efficient system in wastewater remediation for TDS removal. PRACTITIONER POINTS: Total dissolved solids (TDS) in wastewater are pollutants of concern. The RAB reactors can remove TDS from various types of wastewater. The RAB reactors removed TDS by adsorbing ions elements such as Cl, Na, K, Ca, Mg, and S. The algal biomass absorbs ions through extracellular polymeric substance.
Collapse
Affiliation(s)
- Juan Peng
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou, China
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa
| | - Kuldip Kumar
- Metropolitan Water Reclamation District of Greater Chicago, Chicago, Illinois
| | | | - Thomas Kunetz
- Metropolitan Water Reclamation District of Greater Chicago, Chicago, Illinois
| | - Zhiyou Wen
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa
- Gross-Wen Technologies Inc., Ames, Iowa
| |
Collapse
|
32
|
Nagarajan D, Lee DJ, Chen CY, Chang JS. Resource recovery from wastewaters using microalgae-based approaches: A circular bioeconomy perspective. BIORESOURCE TECHNOLOGY 2020; 302:122817. [PMID: 32007309 DOI: 10.1016/j.biortech.2020.122817] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 05/28/2023]
Abstract
The basic concepts of circular bioeconomy are reduce, reuse and recycle. Recovery of recyclable nutrients from secondary sources could play a key role in meeting the increased demands of the growing population. Wastewaters of different origin are rich in energy and nutrients sources that can be recovered and reused in a circular bioeconomy perspective. Microalgae can effectively utilize wastewater nutrients for growth and biomass production. Integration of wastewater treatment and microalgal cultivation improves the environmental impacts of the currently used wastewater treatment methods. This review provides comprehensive information on the potential of using microalgae for the recovery of carbon, nitrogen, phosphorus and other micronutrients from wastewaters. Major factors influencing large scale microalgal wastewater treatment are discussed and future research perspectives are proposed to foster the future development in this area.
Collapse
Affiliation(s)
- Dillirani Nagarajan
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan; Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Chun-Yen Chen
- University Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung, Taiwan; Center for Nanotechnology, Tunghai University, Taichung, Taiwan.
| |
Collapse
|
33
|
Zhao G, Sheng Y, Li C, Liu Q. Effects of macro metals on alkaline phosphatase activity under conditions of sulfide accumulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 697:134151. [PMID: 31491633 DOI: 10.1016/j.scitotenv.2019.134151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/25/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
Alkaline phosphatase (AP) is commonly found in aquatic ecosystems as an extracellular enzyme closely related to the biogeochemical cycling of phosphorus. Although the AP activity (APA) is conventionally thought to be a main response to PO43- starvation, significant effects of macro metal elements (Al, Fe, and Ca) and S on the APA were found in this study. The APA was reduced by Al primarily through the adsorption of the enzyme onto AlOOH colloids. Fe2+ inhibited the APA via a mechanism involving free radical oxidation. The main mechanism by which Ca2+ inhibited the APA was by competing with Mg2+ and Zn2+ for the active sites of the enzyme. Excessive S2- could reduce the APA by removing Zn2+ from the active sites of the enzyme. The inhibition of APA could be reversed if some metal ions (e.g., Fe2+) were precipitated by S2- under reducing conditions. Therefore, in anaerobic ecosystems, the effects of macro metals on APA under conditions of sulfide accumulation may have innovative implications for phosphorus management.
Collapse
Affiliation(s)
- Guoqiang Zhao
- Research Center for Coastal Environment Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Yanqing Sheng
- Research Center for Coastal Environment Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.
| | - Changyu Li
- Research Center for Coastal Environment Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Qunqun Liu
- Research Center for Coastal Environment Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
34
|
Wollmann F, Dietze S, Ackermann J, Bley T, Walther T, Steingroewer J, Krujatz F. Microalgae wastewater treatment: Biological and technological approaches. Eng Life Sci 2019; 19:860-871. [PMID: 32624978 PMCID: PMC6999062 DOI: 10.1002/elsc.201900071] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 09/27/2019] [Accepted: 09/29/2019] [Indexed: 01/28/2023] Open
Abstract
Current global environmental issues raise unavoidable challenges for our use of natural resources. Supplying the human population with clean water is becoming a global problem. Numerous organic and inorganic impurities in municipal, industrial, and agricultural waters, ranging from microplastics to high nutrient loads and heavy metals, endanger our nutrition and health. The development of efficient wastewater treatment technologies and circular economic approaches is thus becoming increasingly important. The biomass production of microalgae using industrial wastewater offers the possibility of recycling industrial residues to create new sources of raw materials for energy and material use. This review discusses algae-based wastewater treatment technologies with a special focus on industrial wastewater sources, the potential of non-conventional extremophilic (thermophilic, acidophilic, and psychrophilic) microalgae, and industrial algae-wastewater treatment concepts that have already been put into practice.
Collapse
Affiliation(s)
- Felix Wollmann
- Institute of Natural Materials TechnologyTU DresdenDresdenGermany
| | - Stefan Dietze
- Faculty of Agriculture/Environment/ChemistryDresden University of Applied SciencesDresdenGermany
| | - Jörg‐Uwe Ackermann
- Faculty of Agriculture/Environment/ChemistryDresden University of Applied SciencesDresdenGermany
| | - Thomas Bley
- Institute of Natural Materials TechnologyTU DresdenDresdenGermany
| | - Thomas Walther
- Institute of Natural Materials TechnologyTU DresdenDresdenGermany
| | | | - Felix Krujatz
- Institute of Natural Materials TechnologyTU DresdenDresdenGermany
| |
Collapse
|
35
|
Zhou H, Brown RC, Wen Z. Anaerobic digestion of aqueous phase from pyrolysis of biomass: Reducing toxicity and improving microbial tolerance. BIORESOURCE TECHNOLOGY 2019; 292:121976. [PMID: 31421591 DOI: 10.1016/j.biortech.2019.121976] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 06/10/2023]
Abstract
Among the products of pyrolysis is an aqueous phase (AP), which contains a significant fraction of carbon but is too dilute to make recovery of this organic content cost-effectively. This study was to explore the use of AP for anaerobic digestion. Different treatment methods including overliming, Fenton's reagent oxidation, bleaching and activated carbon adsorption were investigated to reduce toxicity of AP. Overliming treatment increased biogas production up to 32-fold compared to non-treated AP. Enhancing the tolerance of the bacterial and archaeal community to the AP toxicity was also attempted with a directed evolution method, resulting the microbes' tolerance to AP from 5% to 14%. Directed evolution resulted a major bacterial taxa as Cloacimonetes, Firmicutes, and Chloroflexi, while shifted the predominant archaea shifted from acetoclastic to hydrogenotrophic methanogens. Collectively, the results demonstrated that combining feedstock treatment and directed evolution of the microbial community is an effective way for AP anaerobic digestion.
Collapse
Affiliation(s)
- Haoqin Zhou
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA
| | - Robert C Brown
- Bioeconomy Institute, Iowa State University, Ames, IA 50011, USA
| | - Zhiyou Wen
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
36
|
Wei X, Zhang S, Shimko J, Dengler RW. Mine drainage: Treatment technologies and rare earth elements. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:1061-1068. [PMID: 31291681 DOI: 10.1002/wer.1178] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/20/2019] [Accepted: 06/22/2019] [Indexed: 06/09/2023]
Abstract
The recent research and development on mine drainage published in 2018 was summarized in this annual review. In particular, this review was focused on two main aspects of mine drainage: (a) advances in treatment technologies and (b) rare earth elements in mine drainage and its recovery. The first section covers passive treatment technologies and active treatment options, including physiochemical treatment and biological treatment. The second section includes the characterization of rare earth elements in mine drainage and recovery technologies. Due to the importance of rare earth elements and the growing interest in their recovery from mine drainage, rare earth elements are reported as a separate section for the first time in this review. PRACTITIONER POINTS: Advances in treatment technologies for mine drainage are reviewed. Rare earth elements in mine drainage and its recovery are summarized. Reviewed technologies include passive, active, advanced and novel processes.
Collapse
Affiliation(s)
- Xinchao Wei
- Department of Physics and Engineering, Slippery Rock University, Slippery Rock, Pennsylvania
| | - Shicheng Zhang
- Department of Environmental Science and Technology, Fudan University, Shanghai, China
| | | | - Robert W Dengler
- Municipal Services Group, Gannett Fleming, Inc., Pittsburgh, Pennsylvania
| |
Collapse
|
37
|
Ma H, Zhang J, Wang M, Sun S. Modification of Y‐Zeolite with Zirconium for Enhancing the Active Component Loading: Preparation and Sulfate Adsorption Performance of ZrO(OH)
2
/Y‐Zeolite. ChemistrySelect 2019. [DOI: 10.1002/slct.201901519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hongqin Ma
- School of Chemical Engineering and TechnologyTianjin University Tianjin 300350 China
| | - Jiasheng Zhang
- School of Chemical Engineering and TechnologyTianjin University Tianjin 300350 China
| | - Meijie Wang
- School of Chemical Engineering and TechnologyTianjin University Tianjin 300350 China
| | - Shuai Sun
- School of Chemical Engineering and TechnologyTianjin University Tianjin 300350 China
| |
Collapse
|
38
|
Huo S, Chen J, Zhu F, Zou B, Chen X, Basheer S, Cui F, Qian J. Filamentous microalgae Tribonema sp. cultivation in the anaerobic/oxic effluents of petrochemical wastewater for evaluating the efficiency of recycling and treatment. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.02.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
39
|
Huo S, Chen J, Chen X, Wang F, Xu L, Zhu F, Guo D, Li Z. Advanced treatment of the low concentration petrochemical wastewater by Tribonema sp. microalgae grown in the open photobioreactors coupled with the traditional Anaerobic/Oxic process. BIORESOURCE TECHNOLOGY 2018; 270:476-481. [PMID: 30245317 DOI: 10.1016/j.biortech.2018.09.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 06/08/2023]
Abstract
In this paper, the filamentous microalgae Tribonema sp. grown in the open photobioreactors (PBRs) was directly integrated with the traditional Anaerobic/Oxic (A/O) process for the advanced treatment of low concentration petrochemical wastewater. The COD removal rate was only 71.7% after direct treatment of wastewater effluent from the primary clarifier in the open PBRs, while in-depth purification could be achieved in the secondary clarifier with COD removal rates reached to 97.8% in the open PBRs. The NH3-N and P of the two effluents were almost completely removed after 5-7 days in the open PBRs. The biomass concentration, productivity and the oil content in the open PBRs with the secondary clarifier effluent were all higher than those in the primary clarifier group. The filamentous microalgae Tribonema sp. as a post-treatment step for the A/O process can achieve deep removal of the pollutants and accumulate higher biomass concentration and oil content.
Collapse
Affiliation(s)
- Shuhao Huo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Jing Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiu Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Feng Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ling Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Feifei Zhu
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Danzhao Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhenjiang Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| |
Collapse
|