1
|
Kinetic Study of 4-Chlorophenol Biodegradation by Acclimated Sludge in a Packed Bed Reactor. Processes (Basel) 2022. [DOI: 10.3390/pr10102130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study, batch experiments were conducted to evaluate the degradation of 4-CP using acclimated sludge. The Monod and Haldane models were employed to fit the specific growth rate with various initial 4-CP concentrations of 67–412 mg/L in the batch experiments. Haldane kinetics showed a better fit to experimental results than Monod kinetics. The kinetic parameters were obtained from a comparison of Monod and Haldane kinetics with batch experimental data. The values of μm and KS were found to be 0.691 d−1 and 5.62 mg/L, respectively, for Monod kinetics. In contrast, the values of μm, KS, and KI were 1.30 d−1, 8.38 mg/L, and 279.4 mg/L, respectively, for Haldane kinetics. The kinetic parameters in Haldane kinetics were used as input parameters for the kinetic model system of the packed bed reactor (PBR). The continuous flow PBR was conducted to validate the kinetic model system. The model-simulated results agreed well with experimental data in the PBR performance operation. At the steady-state stage, the removal efficiency of 4-CP was 70.8–96.1%, while the hydraulic retention time (HRT) was 2.5 to 12.4 h. The corresponding removal of 4-CP was assessed to be 94.6 and 96.1% when the inlet 4-CP loading rate was increased from 0.11 to 0.51 kg/m3-d. The approaches of kinetic models and experiments presented in this study can be applied to design a PBR for 4-CP treatment in wastewater from the effluents of various industries.
Collapse
|
2
|
Mohanty SS, Jena HM. Biodegradation of Herbicide by the Immobilized Microbial Consortium SMC1 in Continuous Packed-Bed Biofilm Reactor. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2022.721923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The present study aimed to investigate the treatment of butachlor and other commonly used herbicides by the synthetically formulated microbial consortium SMC1 immobilized on the ceramic raschig rings in a packed-bed bioreactor (PBBR). The PBBR was operated in continuous mode at various flow rates over a period of 70 days to determine the effect of hydraulic retention time (HRT) and initial butachlor concentration on the removal efficiency and elimination capability of the bioreactor. It was observed that the overall operation of the bioreactor changes from being controlled by the mass transfer limitations to the controlled bio-reaction , thus proposing the range of 270–325 mg/L/d to be the optimum operating range for the efficient removal of butachlor by the PBBR. The bioreactor can reduce up to 90% of the initial chemical oxygen demand (COD) value while treating the mixture of herbicides. The operating parameters were optimized using response surface methodology where the feed flow rate of 2.9 ml/min, initial herbicide concentration of 454.63 mg/L, and concentration of an additional nitrogen source at 1.41 g/L was found to yield maximal COD reduction. To date, a continuous study in the field of butachlor biodegradation is yet to be reported. Hence, the study could be used as a model to design a better herbicide biotreatment technology.
Collapse
|
3
|
Yang Y, Zhang ZW, Liu RX, Ju HY, Bian XK, Zhang WZ, Zhang CB, Yang T, Guo B, Xiao CL, Bai H, Lu WY. Research progress in bioremediation of petroleum pollution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:46877-46893. [PMID: 34254241 DOI: 10.1007/s11356-021-15310-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
With the enhancement of environmental protection awareness, research on the bioremediation of petroleum hydrocarbon environmental pollution has intensified. Bioremediation has received more attention due to its high efficiency, environmentally friendly by-products, and low cost compared with the commonly used physical and chemical restoration methods. In recent years, bacterium engineered by systems biology strategies have achieved biodegrading of many types of petroleum pollutants. Those successful cases show that systems biology has great potential in strengthening petroleum pollutant degradation bacterium and accelerating bioremediation. Systems biology represented by metabolic engineering, enzyme engineering, omics technology, etc., developed rapidly in the twentieth century. Optimizing the metabolic network of petroleum hydrocarbon degrading bacterium could achieve more concise and precise bioremediation by metabolic engineering strategies; biocatalysts with more stable and excellent catalytic activity could accelerate the process of biodegradation by enzyme engineering; omics technology not only could provide more optional components for constructions of engineered bacterium, but also could obtain the structure and composition of the microbial community in polluted environments. Comprehensive microbial community information lays a certain theoretical foundation for the construction of artificial mixed microbial communities for bioremediation of petroleum pollution. This article reviews the application of systems biology in the enforce of petroleum hydrocarbon degradation bacteria and the construction of a hybrid-microbial degradation system. Then the challenges encountered in the process and the application prospects of bioremediation are discussed. Finally, we provide certain guidance for the bioremediation of petroleum hydrocarbon-polluted environment.
Collapse
Affiliation(s)
- Yong Yang
- School of Chemical Engineering and Technology, Tianjin University, No.135, Ya Guan Rd, Jinnan District, Tianjin, 300350, China
- CNOOC EnerTech-Safety & Environmental Protection Co., Tianwei Industrial Park, No. 75 Taihua Rd, TEDA, Tianjin, 300457, China
| | - Zhan-Wei Zhang
- School of Chemical Engineering and Technology, Tianjin University, No.135, Ya Guan Rd, Jinnan District, Tianjin, 300350, China
| | - Rui-Xia Liu
- School of Chemical Engineering and Technology, Tianjin University, No.135, Ya Guan Rd, Jinnan District, Tianjin, 300350, China
| | - Hai-Yan Ju
- School of Chemical Engineering and Technology, Tianjin University, No.135, Ya Guan Rd, Jinnan District, Tianjin, 300350, China
| | - Xue-Ke Bian
- School of Chemical Engineering and Technology, Tianjin University, No.135, Ya Guan Rd, Jinnan District, Tianjin, 300350, China
| | - Wan-Ze Zhang
- School of Chemical Engineering and Technology, Tianjin University, No.135, Ya Guan Rd, Jinnan District, Tianjin, 300350, China
| | - Chuan-Bo Zhang
- School of Chemical Engineering and Technology, Tianjin University, No.135, Ya Guan Rd, Jinnan District, Tianjin, 300350, China
| | - Ting Yang
- CNOOC EnerTech-Safety & Environmental Protection Co., Tianwei Industrial Park, No. 75 Taihua Rd, TEDA, Tianjin, 300457, China
| | - Bing Guo
- CNOOC EnerTech-Safety & Environmental Protection Co., Tianwei Industrial Park, No. 75 Taihua Rd, TEDA, Tianjin, 300457, China
| | - Chen-Lei Xiao
- CNOOC EnerTech-Safety & Environmental Protection Co., Tianwei Industrial Park, No. 75 Taihua Rd, TEDA, Tianjin, 300457, China
| | - He Bai
- China Offshore Environmental Service Ltd., Tianwei Industrial Park, No. 75 Taihua Rd, TEDA, Tianjin, 300457, China.
- Tianjin Huakan Environmental Protection Technology Co. Ltd., No. 67 Guangrui West Rd, Hedong District, Tianjin, 300170, China.
| | - Wen-Yu Lu
- School of Chemical Engineering and Technology, Tianjin University, No.135, Ya Guan Rd, Jinnan District, Tianjin, 300350, China.
| |
Collapse
|
4
|
Sonwani RK, Kim KH, Zhang M, Tsang YF, Lee SS, Giri BS, Singh RS, Rai BN. Construction of biotreatment platforms for aromatic hydrocarbons and their future perspectives. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125968. [PMID: 34492879 DOI: 10.1016/j.jhazmat.2021.125968] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 04/05/2021] [Accepted: 04/22/2021] [Indexed: 06/13/2023]
Abstract
Aromatic hydrocarbons (AHCs) are one of the major environmental pollutants introduced from both natural and anthropogenic sources. Many AHCs are well known for their toxic, carcinogenic, and mutagenic impact on human health and ecological systems. Biodegradation is an eco-friendly and cost-effective option as microorganisms (e.g., bacteria, fungi, and algae) can efficiently breakdown or transform such pollutants into less harmful and simple metabolites (e.g., carbon dioxide (aerobic), methane (anaerobic), water, and inorganic salts). This paper is organized to offer a state-of-the-art review on the biodegradation of AHCs (monocyclic aromatic hydrocarbons (MAHs) and polycyclic aromatic hydrocarbons (PAHs)) and associated mechanisms. The recent progress in biological treatment using suspended and attached growth bioreactors for the biodegradation of AHCs is also discussed. In addition, various substrate growth and inhibition models are introduced along with the key factors governing their biodegradation kinetics. The growth and inhibition models have helped gain a better understanding of substrate inhibition in biodegradation. Techno-economic analysis (TEA) and life cycle assessment (LCA) aspects are also described to assess the technical, economical, and environmental impacts of the biological treatment system.
Collapse
Affiliation(s)
- Ravi Kumar Sonwani
- Department of Chemical Engineering & Technology Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| | - Ming Zhang
- Department of Environmental Engineering, China Jiliang University, Hangzhou 310018, China
| | - Yiu Fai Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories 999077, Hong Kong
| | - Sang Soo Lee
- Department of Environmental Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Balendu Shekher Giri
- Department of Chemical Engineering & Technology Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Ram Sharan Singh
- Department of Chemical Engineering & Technology Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Birendra Nath Rai
- Department of Chemical Engineering & Technology Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
5
|
Mohanty SS, Reddy DK, Jena HM. Mass transfer study of butachlor biodegradation using immobilized microbial consortium
SMC1
in a packed bed bioreactor. CAN J CHEM ENG 2021. [DOI: 10.1002/cjce.24118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Satya Sundar Mohanty
- Department of Chemical Engineering National Institute of Technology Rourkela India
| | - D. Karthik Reddy
- Department of Chemical Engineering National Institute of Technology Rourkela India
| | - Hara Mohan Jena
- Department of Chemical Engineering National Institute of Technology Rourkela India
| |
Collapse
|
6
|
Sonwani RK, Giri BS, Jaiswal RP, Singh RS, Rai BN. Performance evaluation of a continuous packed bed bioreactor: Bio-kinetics and external mass transfer study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110860. [PMID: 32563162 DOI: 10.1016/j.ecoenv.2020.110860] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 06/11/2023]
Abstract
The biodegradation of naphthalene using low-density polyethylene (LDPE) immobilized Exiguobacterium sp. RKS3 (MG696729) in a packed bed bioreactor (PBBR) was studied. The performance of a continuous PBBR was evaluated at different inlet flow rates (IFRs) (20-100 mL/h) under 64 days of operation. The maximum naphthalene removal efficiency (RE) was found at low IFR, and it further decreased with increasing IFRs. In a continuous PBBR, the external mass transfer (EMT) aspect was analysed at various IFRs, and experimental data were interrelated between Colburn factor (JD) and Reynolds number (NRe) as [Formula: see text] . A new correlation [Formula: see text] was obtained to predict the EMT aspect of naphthalene biodegradation. Andrew-Haldane model was used to evaluate the bio-kinetic parameters of naphthalene degradation, and kinetic constant νmax, Js, and Ji were found as 0.386 per day, 13.6 mg/L, and 20.54 mg/L, respectively.
Collapse
Affiliation(s)
- Ravi Kumar Sonwani
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, Uttar Pradesh, India
| | - Balendu Shekhar Giri
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, Uttar Pradesh, India
| | - Ravi Prakash Jaiswal
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, Uttar Pradesh, India
| | - Ram Sharan Singh
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, Uttar Pradesh, India
| | - Birendra Nath Rai
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
7
|
Wang J, Shih Y, Wang PY, Yu YH, Su JF, Huang CP. Hazardous waste treatment technologies. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:1177-1198. [PMID: 31433896 DOI: 10.1002/wer.1213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 07/29/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
This is a review of the literature published in 2018 on topics related to hazardous waste management in water, soils, sediments, and air. The review covers treatment technologies applying physical, chemical, and biological principles for contaminated water, soils, sediments, and air. PRACTITIONER POINTS: The management of waters, wastewaters, and soils contaminated by various hazardous chemicals including inorganic (e.g., oxyanions, salts, and heavy metals), organic (e.g., halogenated, pharmaceuticals and personal care products, pesticides, and persistent organic chemicals) was reviewed according to the technology applied, namely, physical, chemical and biological methods. Physical methods for the management of hazardous wastes including adsorption, coagulation (conventional and electrochemical), sand filtration, electrosorption (or CDI), electrodialysis, electrokinetics, membrane (RO, NF, MF), photocatalysis, photoelectrochemical oxidation, sonochemical, non-thermal plasma, supercritical fluid, electrochemical oxidation, and electrochemical reduction processes were reviewed. Chemical methods including ozone-based, hydrogen peroxide-based, persulfate-based, Fenton and Fenton-like, and potassium permanganate processes for the management of hazardous were reviewed. Biological methods such as aerobic, anaerobic, bioreactor, constructed wetlands, soil bioremediation and biofilter processes for the management of hazardous wastes, in mode of consortium and pure culture were reviewed.
Collapse
Affiliation(s)
- Jianmin Wang
- Department of Civil, Architectural, and Environmental Engineering, Missouri University of Science & Technology, Rolla, Missouri
| | - Yujen Shih
- Graduate Institute of Environmental Engineering, National Sun yat-sen University, Kaohsiung, Taiwan
| | - Po Yen Wang
- Department of Civil Engineering, Weidner University, Chester, Pennsylvania
| | - Yu Han Yu
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware
| | - Jenn Fang Su
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware
| | - Chin-Pao Huang
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware
| |
Collapse
|