1
|
Li L, Xie Z, Ning J, Zhang Y, Sang Y, Zhang L, Liu F. An acid-tolerant Clostridium sp. BLY-1 strain with high biohydrogen production rate. BIORESOURCE TECHNOLOGY 2024; 409:131227. [PMID: 39117241 DOI: 10.1016/j.biortech.2024.131227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/18/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
Screening and isolating acid-tolerant bacteria capable of efficient hydrogen production can mitigate the inhibitory effects on microbial activity caused by rapid pH drops during fermentation. In this study, we isolated an acid-tolerant and highly efficient hydrogen-producing bacterium, named Clostridium sp. BLY-1, from acidic soil. Compared to the model strain Clostridium pasteurianum DSM 525, BLY-1 demonstrates a faster growth rate and superior hydrogen production capabilities. At an initial pH of 4.0, BLY-1's hydrogen production is 7.5 times greater than that of DSM 525, and under optimal conditions (pH=5.0), BLY-1's hydrogen production rate is 42.13% higher than DSM 525. Genomic analysis revealed that BLY-1 possesses a complete CiaRH two-component system and several stress-resistance components absent in DSM 525, which enhance its growth and hydrogen production in acidic environments. These findings provide a novel avenue for boosting the hydrogen production capabilities of Clostridium strains, offering new resources for advancing the green hydrogen industry.
Collapse
Affiliation(s)
- Liangyan Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300350, PR China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China
| | - Zhangzhang Xie
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China
| | - Jiarui Ning
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300350, PR China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China
| | - Yuechao Zhang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China
| | - Yuxuan Sang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China
| | - Liyun Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300350, PR China.
| | - Fanghua Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, PR China.
| |
Collapse
|
2
|
Mazzoli R, Pescarolo S, Gilli G, Gilardi G, Valetti F. Hydrogen production pathways in Clostridia and their improvement by metabolic engineering. Biotechnol Adv 2024; 73:108379. [PMID: 38754796 DOI: 10.1016/j.biotechadv.2024.108379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
Biological production of hydrogen has a tremendous potential as an environmentally sustainable technology to generate a clean fuel. Among the different available methods to produce biohydrogen, dark fermentation features the highest productivity and can be used as a means to dispose of organic waste biomass. Within this approach, Clostridia have the highest theoretical H2 production yield. Nonetheless, most strains show actual yields far lower than the theoretical maximum: improving their efficiency becomes necessary for achieving cost-effective fermentation processes. This review aims at providing a survey of the metabolic network involved in H2 generation in Clostridia and strategies used to improve it through metabolic engineering. Together with current achievements, a number of future perspectives to implement these results will be illustrated.
Collapse
Affiliation(s)
- Roberto Mazzoli
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Torino, Italy.
| | - Simone Pescarolo
- Biology applied to the environment, Laboratories of microbiology and ecotoxicology, Ecobioqual, Environment Park. Via Livorno 60, 10144 Torino, Italy
| | - Giorgio Gilli
- Department of Sciences of Public Health and Pediatrics, School of Medicine, University of Torino, Via Santena 5 bis, 10126 Torino, Italy
| | - Gianfranco Gilardi
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Torino, Italy
| | - Francesca Valetti
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Torino, Italy.
| |
Collapse
|
3
|
Miebach K, Finger M, Scherer AMK, Maaß CA, Büchs J. Hydrogen online monitoring based on thermal conductivity for anaerobic microorganisms. Biotechnol Bioeng 2023; 120:2199-2213. [PMID: 37462090 DOI: 10.1002/bit.28502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023]
Abstract
H2 -producing microorganisms are a promising source of sustainable biohydrogen. However, most H2 -producing microorganisms are anaerobes, which are difficult to cultivate and characterize. While several methods for measuring H2 exist, common H2 sensors often require oxygen, making them unsuitable for anaerobic processes. Other sensors can often not be operated at high gas humidity. Thus, we applied thermal conductivity (TC) sensors and developed a parallelized, online H2 monitoring for time-efficient characterization of H2 production by anaerobes. Since TC sensors are nonspecific for H2 , the cross-sensitivity of the sensors was evaluated regarding temperature, gas humidity, and CO2 concentrations. The systems' measurement range was validated with two anaerobes: a high H2 -producer (Clostridium pasteurianum) and a low H2 -producer (Phocaeicola vulgatus). Online monitoring of H2 production in shake flask cultivations was demonstrated, and H2 transfer rates were derived. Combined with online CO2 and pressure measurements, molar gas balances of the cultivations were closed, and an anaerobic respiration quotient was calculated. Thus, insight into the effect of medium components and inhibitory cultivation conditions on H2 production with the model anaerobes was gained. The presented online H2 monitoring method can accelerate the characterization of anaerobes for biohydrogen production and reveal metabolic changes without expensive equipment and offline analysis.
Collapse
Affiliation(s)
- Katharina Miebach
- Chair of Biochemical Engineering (AVT.BioVT), RWTH Aachen University, Aachen, Germany
| | - Maurice Finger
- Chair of Biochemical Engineering (AVT.BioVT), RWTH Aachen University, Aachen, Germany
| | | | | | - Jochen Büchs
- Chair of Biochemical Engineering (AVT.BioVT), RWTH Aachen University, Aachen, Germany
| |
Collapse
|
4
|
Cheng WX, Wang LL, Xu Y, Li SJ, Wang Q, Chen RP, Yu L. Performance and mechanism of different pretreatment methods for inoculated sludge in biohydrogen production. BIORESOURCE TECHNOLOGY 2023:129234. [PMID: 37244304 DOI: 10.1016/j.biortech.2023.129234] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 05/29/2023]
Abstract
A comparison was conducted between pre-culture bacteria (PCB) and heat treatment anaerobic granular sludge (HTAGS) for hydrogen production, and it was found that hydrogen molar yield (HMY) of PCB was 21-35% higher than that of HTAGS. The addition of biochar increased hydrogen production in both cultivation methods by acting as an electron shuttle to enhance extracellular electron transfers of Clostridium and Enterobacter. On the other hand, Fe3O4 did not promote hydrogen production in PCB experiments but had a positive effect on HTAGS experiments. This was due to the fact that PCB was mainly composed of Clostridium butyricum, which could not reduce extracellular iron oxide, resulting in a lack of respiratory driving force. In contrast, HTAGS retained a significant amount of Enterobacter, which possess the ability of extracellular anaerobic respiration. Different pretreatment methods of inoculum resulted in significant changes in the sludge community, thus exerting a noticeable impact on biohydrogen production.
Collapse
Affiliation(s)
- Wei-Xin Cheng
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Ling-Ling Wang
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Yun Xu
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Si-Jia Li
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Quan Wang
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Rong-Ping Chen
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Lei Yu
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
5
|
Green synthesis of nickel ferrite nanoparticles for efficient enhancement of lignocellulosic hydrolysate-based biohydrogen production. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
6
|
Zhang J, Zhang H, Zhang J, Zhou C, Pei Y, Zang L. Improved biohydrogen evolution through calcium ferrite nanoparticles assisted dark fermentation. BIORESOURCE TECHNOLOGY 2022; 361:127676. [PMID: 35872267 DOI: 10.1016/j.biortech.2022.127676] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Dark fermentation (DF) is a green hydrogen (H2) production process, but it is far below the theoretical H2 yield. In this study, calcium ferrite nanoparticles (CaFe2O4 NPs) were produced to augment H2 yield via DF. The highest H2 yield of 250.1 ± 6.5 mL/g glucose was achieved at 100 mg/L CaFe2O4 NPs. Furtherincreasein CaFe2O4 NPs above 100 mg/L, such as 600 mg/L, would slightly lower H2 yield to 208.6 ± 2.6 mL/g glucose. The CaFe2O4 NPs in DF system released calcium and iron ions, promoting granular sludge formation andDF microbial activity. Soluble metabolites revealed that butyric acid was raised by CaFe2O4 NPs, which indicated the improved metabolic pathway for more H2. Microbial structure composition further illustrated that CaFe2O4 NPs could increase the abundance of dominant microbial populations, with the supremacy of Firmicutes up to 71.22 % in the bioH2 evolution group augmented with 100 mg/L CaFe2O4 NPs.
Collapse
Affiliation(s)
- Junchu Zhang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Huiwen Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Jishi Zhang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Chen Zhou
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yong Pei
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Lihua Zang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
7
|
Tratzi P, Ta DT, Zhang Z, Torre M, Battistelli F, Manzo E, Paolini V, Zhang Q, Chu C, Petracchini F. Sustainable additives for the regulation of NH 3 concentration and emissions during the production of biomethane and biohydrogen: A review. BIORESOURCE TECHNOLOGY 2022; 346:126596. [PMID: 34953990 DOI: 10.1016/j.biortech.2021.126596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
This study reviews the recent advances and innovations in the application of additives to improve biomethane and biohydrogen production. Biochar, nanostructured materials, novel biopolymers, zeolites, and clays are described in terms of chemical composition, properties and impact on anaerobic digestion, dark fermentation, and photofermentation. These additives can have both a simple physical effect of microbial adhesion and growth, and a more complex biochemical impact on the regulation of key parameters for CH4 and H2 production: in this study, these effects in different experimental conditions are reviewed and described. The considered parameters include pH, volatile fatty acids (VFA), C:N ratio, and NH3; additionally, the global impact on the total production yield of biogas and bioH2 is reviewed. A special focus is given to NH3, due to its strong inhibition effect towards methanogens, and its contribution to digestate quality, leaching, and emissions into the atmosphere.
Collapse
Affiliation(s)
- Patrizio Tratzi
- National Research Council of Italy, Institute of Atmospheric Pollution Research (CNR-IIA), Via Salaria 29300, 00015 Monterotondo, Italy
| | - Doan Thanh Ta
- Institute of Green Products, Feng Chia University, No. 100, Wenhwa Rd., Seatwen, Taichung 40724, Taiwan
| | - Zhiping Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (MOA of China), Henan Agricultural University, Zhengzhou 450002, China; Renewable Natural Resources, Louisiana State University, Baton Rouge, LA, USA
| | - Marco Torre
- National Research Council of Italy, Institute of Atmospheric Pollution Research (CNR-IIA), Via Salaria 29300, 00015 Monterotondo, Italy
| | - Francesca Battistelli
- National Research Council of Italy, Institute of Atmospheric Pollution Research (CNR-IIA), Via Salaria 29300, 00015 Monterotondo, Italy
| | - Eros Manzo
- National Research Council of Italy, Institute of Atmospheric Pollution Research (CNR-IIA), Via Salaria 29300, 00015 Monterotondo, Italy
| | - Valerio Paolini
- National Research Council of Italy, Institute of Atmospheric Pollution Research (CNR-IIA), Via Salaria 29300, 00015 Monterotondo, Italy.
| | - Quanguo Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (MOA of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Chenyeon Chu
- Institute of Green Products, Feng Chia University, No. 100, Wenhwa Rd., Seatwen, Taichung 40724, Taiwan
| | - Francesco Petracchini
- National Research Council of Italy, Institute of Atmospheric Pollution Research (CNR-IIA), Via Salaria 29300, 00015 Monterotondo, Italy
| |
Collapse
|
8
|
Yu J, Liu J, Senthil Kumar P, Wei Y, Zhou M, Vo DVN, Xiao L. Promotion of methane production by magnetite via increasing acetogenesis revealed by metagenome-assembled genomes. BIORESOURCE TECHNOLOGY 2022; 345:126521. [PMID: 34896259 DOI: 10.1016/j.biortech.2021.126521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Metal oxides are wildly studied to enhance anaerobic digestion and the methanogenic process, which is generally interpreted by increased direct interspecies electron transfer (DIET). Yet microbial mechanisms involved are under debate. Herein, methane production dynamics were analyzed, and acceleration on biogas accumulation was presented. Complementing previous findings, Fe3O4 nanoparticles stimulated bacterial fermentation rather than methanogenesis or syntropy between electro-microorganism and methanogen. More importantly, metagenome-assembled genomes proved that Fe3O4 nanoparticles increased acetogenesis by Parabacteroides chartae, which provided abundant substrates for acetoclastic methanogenesis. Interestingly, the weakly conductive V3O7·H2O nanowires increased potential hydrogen-producing bacteria, Brevundimonas, and electro-microorganisms, Clostridium and Rhodoferax, which is convenient for conducting DIET. Collectively, conductivity may not be a critical factor in mediating DIET and distinct strategies of metal oxides on methane production propose more possibilities, such as fermentation process.
Collapse
Affiliation(s)
- Jiafeng Yu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, PR China
| | - Jian Liu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, PR China
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110 India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India
| | - Yunwei Wei
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, PR China
| | - Meng Zhou
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Dai-Viet N Vo
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City 755414, Vietnam
| | - Leilei Xiao
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China.
| |
Collapse
|
9
|
Li W, Zhang J, Yang J, Zhang J, Li Z, Yang Y, Zang L. Comparison of copper and aluminum doped cobalt ferrate nanoparticles for improving biohydrogen production. BIORESOURCE TECHNOLOGY 2022; 343:126078. [PMID: 34606925 DOI: 10.1016/j.biortech.2021.126078] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Two various materials, copper and aluminum doped cobalt ferrite nanoparticles (NPs) were fabricated for investigating their effects of addition amounts on hydrogen (H2) synthesis and process stability. CoCu0.2Fe1.8O4NPs enhanced H2 production more than CoAl0.2Fe1.8O4 NPs under same condition. The highest H2 yield of 212.25 ml/g glucose was found at optimal dosage of 300 mg/L CoCu0.2Fe1.8O4 NPs, revealing the increases of 43.17% and 6.67% compared with the control without NPs and 300 mg/L CoAl0.2Fe1.8O4 NPs groups, respectively. NPs level of more than 400 mg/L inhibited H2 generation. Further investigations illustrated that CoCu0.2Fe1.8O4 NPs were mainly distributed on extracellular polymer substance while CoAl0.2Fe1.8O4 NPs were mostly enriched on cell membrane, which facilitated electron transfer behavior. Community structure composition demonstrated that CoCu0.2Fe1.8O4 and CoAl0.2Fe1.8O4 separately caused a 9.67% and 9.03% increase in Clostridium sensu stricto 1 compared with the control reactor without NPs exposure.
Collapse
Affiliation(s)
- Wenqing Li
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, PR China
| | - Jishi Zhang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, PR China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| | - Junwei Yang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, PR China
| | - Junchu Zhang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, PR China
| | - Zhenmin Li
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, PR China
| | - Yunjun Yang
- Academy of Advanced Interdisciplinary Studies, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, PR China
| | - Lihua Zang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, PR China
| |
Collapse
|
10
|
Zhang J, Zhang Y, Liu R, Cai R, Liu F, Sun C. Iocasia fonsfrigidae NS-1 gen. nov., sp. nov., a Novel Deep-Sea Bacterium Possessing Diverse Carbohydrate Metabolic Pathways. Front Microbiol 2021; 12:725159. [PMID: 34899621 PMCID: PMC8652127 DOI: 10.3389/fmicb.2021.725159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
Resolving metabolisms of deep-sea microorganisms is crucial for understanding ocean energy cycling. Here, a strictly anaerobic, Gram-negative strain NS-1 was isolated from the deep-sea cold seep in the South China Sea. Phylogenetic analysis based on 16S rRNA gene sequence indicated that strain NS-1 was most closely related to the type strain Halocella cellulosilytica DSM 7362T (with 92.52% similarity). A combination of phylogenetic, genomic, and physiological traits with strain NS-1, was proposed to be representative of a novel genus in the family Halanaerobiaceae, for which Iocasia fonsfrigidae NS-1 was named. It is noteworthy that I. fonsfrigidae NS-1 could metabolize multiple carbohydrates including xylan, alginate, starch, and lignin, and thereby produce diverse fermentation products such as hydrogen, lactate, butyrate, and ethanol. The expressions of the key genes responsible for carbohydrate degradation as well as the production of the above small molecular substrates when strain NS-1 cultured under different conditions, were further analyzed by transcriptomic methods. We thus predicted that part of the ecological role of Iocasia sp. is likely in the fermentation of products from the degradation of diverse carbohydrates to produce hydrogen as well as other small molecules, which are in turn utilized by other members of cold seep microbes.
Collapse
Affiliation(s)
- Jing Zhang
- CAS Key Laboratory of Experimental Marine Biology and Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,College of Earth Science, University of Chinese Academy of Sciences, Beijing, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,School of Life Sciences, Hebei University, Baoding, China
| | - Yuechao Zhang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Rui Liu
- CAS Key Laboratory of Experimental Marine Biology and Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Ruining Cai
- CAS Key Laboratory of Experimental Marine Biology and Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,College of Earth Science, University of Chinese Academy of Sciences, Beijing, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Fanghua Liu
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Chaomin Sun
- CAS Key Laboratory of Experimental Marine Biology and Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
11
|
Chen L, Zhang K, Wang M, Zhang Z, Feng Y. Enhancement of magnetic field on fermentative hydrogen production by Clostridium pasteurianum. BIORESOURCE TECHNOLOGY 2021; 341:125764. [PMID: 34438289 DOI: 10.1016/j.biortech.2021.125764] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Microbial fermentation plays important roles in hydrogen production. Various methods to promote hydrogen production are being developed. Here, different magnetic field intensities (2.7 mT, 3.2 mT and 9.1 mT) were applied to the glucose fermentation system of Clostridium pasteurianum to evaluate the feasibility and effect of statistic magnetic field on hydrogen production. The results showed that the magnetic field intensity of 3.2 mT effectively enhanced the hydrogen production. The total glucose consumption reached 0.64 ± 0.010 mmol, the maximum hydrogen yield reached 2.34 ± 0.020 mol H2/mol glucose, and the maximum hydrogen production rate reached 0.065 ± 0.002 mmol/h. Compared with the control, the maximum biomass, carbon conversion efficiency and energy conversion efficiency were elevated by 366%, 114%, and 26.8%, respectively. Our results provide a new way for promotion of hydrogen production, better understanding of the interaction mechanism between magnetic field and microorganisms and for optimizing the hydrogen production.
Collapse
Affiliation(s)
- Lei Chen
- School of Life Science, Qufu Normal University, Qufu, Shandong 273165, China
| | - Ke Zhang
- School of Life Science, Qufu Normal University, Qufu, Shandong 273165, China
| | - Mingpeng Wang
- School of Life Science, Qufu Normal University, Qufu, Shandong 273165, China
| | - Zhaojie Zhang
- Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, USA
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
12
|
Li Z, Gu J, Ding J, Ren N, Xing D. Molecular mechanism of ethanol-H 2 co-production fermentation in anaerobic acidogenesis: Challenges and perspectives. Biotechnol Adv 2020; 46:107679. [PMID: 33316366 DOI: 10.1016/j.biotechadv.2020.107679] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/29/2022]
Abstract
Ethanol-type fermentation (ETF) is one of three fermentation types during the acidogenesis of the anaerobic biological treatment. Ethanoligenens, a representative genus of ETF, displays acidophilic, autoaggregative, and ethanol-H2 co-producing characteristics and facilitates subsequent methanogenesis. Here, the latest advances in the molecular mechanisms of the metabolic regulation of ethanol-H2 co-producing bacteria based on multi-omics studies were comprehensively reviewed. Comparative genomics demonstrated a low genetic similarity between Ethanoligenens and other hydrogen-producing genera. FeFe‑hydrogenases (FeFe-H2ases) and pyruvate ferredoxin oxidoreductase (PFOR) played critical roles in the ethanol-H2 co-metabolic pathway of Ethanoligenens. Global transcriptome analysis revealed that highly expressed [FeFe]-H2ases and ferredoxins drove hydrogen production by Ethanoligenens at low pH conditions (4.0-4.5). Quantitative proteomic analysis also proved that this genus resists acetic acid-induced intracellular acidification through the up-regulated expression of pyrimidine metabolism related proteins. The autoaggregation of Ethanoligenen facilitated its granulation with acetate-oxidizing bacteria in co-culture systems and mitigated a fast pH drop, providing a new approach for solving a pH imbalance and improving hydrogen production. In-depth studies of the regulatory mechanism underlying ethanol-H2 co-production metabolism and the syntrophic interactions of ethanol-H2 co-producing Ethanoligenens with other microorganisms will provide insights into the improvement of bioenergy recovery in anaerobic biotechnology. The coupling of ETF with other biotechnologies, which based on the regulation of electron flow direction, syntrophic interaction, and metabolic flux, can be potential strategies to enhance the cascade recovery of energy and resources.
Collapse
Affiliation(s)
- Zhen Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jiayu Gu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Defeng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
13
|
Biological hydrogen production from palm oil mill effluent (POME) by anaerobic consortia and Clostridium beijerinckii. J Biotechnol 2020; 323:17-23. [DOI: 10.1016/j.jbiotec.2020.06.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 04/02/2020] [Accepted: 06/18/2020] [Indexed: 12/20/2022]
|
14
|
Hao Q, Liu F, Zhang Y, Wang O, Xiao L. Methylobacter accounts for strong aerobic methane oxidation in the Yellow River Delta with characteristics of a methane sink during the dry season. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135383. [PMID: 31810682 DOI: 10.1016/j.scitotenv.2019.135383] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 11/03/2019] [Accepted: 11/03/2019] [Indexed: 06/10/2023]
Abstract
Recent investigations demonstrate that some coastal wetlands are atmospheric methane sinks, but the regulatory mechanisms are not clear. Here, the main pathway and operator of methane oxidation in the Yellow River Delta (YRD) wetland, a methane source in the wet season but a methane sink in the dry season, were investigated. The anaerobic oxidation of methane (AOM) and aerobic methane oxidation (AMO) abilities of wetland soil were measured, and the microbial community structure was analyzed. The experimental results showed that AMO was active throughout the year. In contrast, AOM was weak and even undetected. The microbial community analysis indicated that Methylomicrobium and Methylobacter potentially scavenged methane in oxic environments. A representative strain of Methylobacter, which was isolated from the soil, presented a strong AMO ability at high concentrations of methane and air. Overall, this study showed that active AMO performing by Methylobacter may account for methane sink in the YRD wetland during the dry season. Our research not only has determined the way in which methane sinks are formed but also identified the potential functional microbes. In particular, we confirmed the function of potential methanotroph by pure culture. Our research provides biological evidence for why some wetlands have methane sink characteristics, which may help to understand the global methane change mechanism.
Collapse
Affiliation(s)
- Qinqin Hao
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Fanghua Liu
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, PR China.
| | - Yuechao Zhang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Oumei Wang
- Binzhou Medical University, Yantai, 264003, PR China
| | - Leilei Xiao
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, PR China.
| |
Collapse
|
15
|
Lee YJ, Lee DJ. Impact of adding metal nanoparticles on anaerobic digestion performance - A review. BIORESOURCE TECHNOLOGY 2019; 292:121926. [PMID: 31409520 DOI: 10.1016/j.biortech.2019.121926] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/25/2019] [Accepted: 07/27/2019] [Indexed: 06/10/2023]
Abstract
Anaerobic digestion is the most widely adopted biological waste treatment processes with renewable energy production. The effects of adding metal nanoparticles (NPs) on improving digestion performance are well noted. This paper reviewed the traditional view on the cytotoxicity of NPs to living organisms and the contemporary view of mechanisms for enhancement in anaerobic digestion performance in the presence of metal NPs. The complicated interactions acquire further studies for comprehending the physical and chemical interactions of metal NPs to the constituent compounds and to the living cells, and the involvement of mechanisms such as direct interspecies electron transfer for better design and control of the "NP strategy" for anaerobic digestion performance enhancement.
Collapse
Affiliation(s)
- Yu-Jen Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan; Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; College of Technology and Engineering, National Taiwan Normal University, Taipei 10610, Taiwan.
| |
Collapse
|