1
|
Xuan Z, Wang K, Duan F, Lu L. Non-carrier immobilization of yeast cells by genipin crosslinking for the synthesis of prebiotic galactooligosaccharides from plant-derived galactose. Int J Biol Macromol 2024; 277:133991. [PMID: 39089904 DOI: 10.1016/j.ijbiomac.2024.133991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/23/2024] [Accepted: 07/16/2024] [Indexed: 08/04/2024]
Abstract
Galactooligosaccharides (GOS), as mimics of human milk oligosaccharides, are important prebiotics for modulating the ecological balance of intestinal microbiota. A novel carrier-free cell immobilization method was established using genipin to cross-link Kluyveromyces lactis CGMCC 2.1494, which produced β-galactosidase, an enzyme essential for GOS synthesis. The resulting immobilized cells were characterized as stable by thermogravimetric analysis and confirmed to be crosslinked through scanning electron microscopy analysis (SEM) and Fourier transform infrared spectroscopy (FTIR). The Km and Vmax values of β-galactosidase in immobilized cells towards o-nitrophenyl β-D-galactoside were determined to be 3.446 mM and 2210 μmol min-1 g-1, respectively. The enzyme in the immobilized showed higher thermal and organic solvent tolerance compared to that in free cells. The immobilized cells were subsequently employed for GOS synthesis using plant-derived galactose as the substrate. The synthetic reaction conditions were optimized through both single-factor experiments and response surface methodology, resulting in a high yield of 49.1 %. Moreover, the immobilized cells showed good reusability and could be reused for at least 20 batches of GOS synthesis, with the enzyme activity remaining above 70 % at 35 °C.
Collapse
Affiliation(s)
- Zehui Xuan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ke Wang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Feiyu Duan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lili Lu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
2
|
Xie P, Lan J, Zhou J, Hu Z, Cui J, Qu G, Yuan B, Sun Z. Co-immobilization of amine dehydrogenase and glucose dehydrogenase for the biosynthesis of (S)-2-aminobutan-1-ol in continuous flow. BIORESOUR BIOPROCESS 2024; 11:70. [PMID: 39023666 PMCID: PMC11258105 DOI: 10.1186/s40643-024-00786-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/05/2024] [Indexed: 07/20/2024] Open
Abstract
Reductive amination by amine dehydrogenases is a green and sustainable process that produces only water as the by-product. In this study, a continuous flow process was designed utilizing a packed bed reactor filled with co-immobilized amine dehydrogenase wh84 and glucose dehydrogenase for the highly efficient biocatalytic synthesis of chiral amino alcohols. The immobilized amine dehydrogenase wh84 exhibited better thermo-, pH and solvent stability with high activity recovery. (S)-2-aminobutan-1-ol was produced in up to 99% conversion and 99% ee in the continuous flow processes, and the space-time yields were up to 124.5 g L-1 d-1. The continuous reactions were also extended to 48 h affording up to 91.8% average conversions. This study showcased the important potential to sustainable production of chiral amino alcohols in continuous flow processes.
Collapse
Affiliation(s)
- Pengcheng Xie
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 West 7th Avenue, Tianjin, 300308, China
| | - Jin Lan
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 West 7th Avenue, Tianjin, 300308, China
| | - Jingshuan Zhou
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 West 7th Avenue, Tianjin, 300308, China
| | - Zhun Hu
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an Shaanxi, 710049, China
| | - Jiandong Cui
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Ge Qu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 West 7th Avenue, Tianjin, 300308, China
| | - Bo Yuan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 West 7th Avenue, Tianjin, 300308, China.
| | - Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 West 7th Avenue, Tianjin, 300308, China.
| |
Collapse
|
3
|
Jiang H, Yu X, Guo J, Shang G, Dai Y. Rapid Degradation of Hazardous Amides by Immobilized Engineered Pseudomonas putida KT2440 Based on a Novel Gene Expression Vector. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2109-2119. [PMID: 38247140 DOI: 10.1021/acs.jafc.3c08124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
The amides 4-trifluoromethylnicotinamide, acrylamide, and benzamide are widely used in agriculture and industry, posing hazards to the environment and animals. Immobilized bacteria are preferred in wastewater treatment, but degradation of these amides by immobilized engineered bacteria has not been explored. Here, engineered Pseudomonas putida KT2440 pLSJ15-amiA was constructed by introducing a new amidase gene expression vector into environmentally safe P. putida KT2440. P. putida KT2440 pLSJ15-amiA had high amidase activity, even at 80 °C. P. putida KT2440 pLSJ15-amiA immobilized with calcium alginate exhibited a greater environmental tolerance than free cells. The amides were rapidly degraded by the immobilized cells, but the activity was inhibited by high concentrations of substrates. The substrate inhibition model revealed that the optimum initial concentrations of 4-trifluoromethylnicotinamide, acrylamide, and benzamide for degradation by immobilized cells were 197.65, 350.76, and 249.40 μmol/L, respectively. This study develops a novel and excellent immobilized biocatalyst for remediation of wastewater containing hazardous amides.
Collapse
Affiliation(s)
- Huoyong Jiang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Xuexiu Yu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Jingjing Guo
- Nanjing Normal University Zhongbei College, Zhenjiang 212334, People's Republic of China
| | - Guangdong Shang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Yijun Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China
| |
Collapse
|
4
|
Wang H, Cao L, Li Q, Wijayawardene NN, Zhao J, Cheng M, Li QR, Li X, Promputtha I, Kang YQ. Overexpressing GRE3 in Saccharomyces cerevisiae enables high ethanol production from different lignocellulose hydrolysates. Front Microbiol 2022; 13:1085114. [PMID: 36601405 PMCID: PMC9807136 DOI: 10.3389/fmicb.2022.1085114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
The efficiently renewable bioethanol can help to alleviate energy crisis and environmental pollution. Genetically modified strains for efficient use of xylose and developing lignocellulosic hydrolysates play an essential role in facilitating cellulosic ethanol production. Here we present a promising strain GRE3OE via GRE3 overexpressed in a previously reported Saccharomyces cerevisiae strain WXY70. A comprehensive evaluation of the fermentation level of GRE3OE in alkaline-distilled sweet sorghum bagasse, sorghum straw and xylose mother liquor hydrolysate. Under simulated corn stover hydrolysate, GRE3OE produced 53.39 g/L ethanol within 48 h. GRE3OE produced about 0.498 g/g total sugar in sorghum straw hydrolysate solution. Moreover, GRE3OE consumed more xylose than WXY70 in the high-concentration xylose mother liquor. Taken together, GRE3OE could be a candidate strain for industrial ethanol development, which is due to its remarkable fermentation efficiency during different lignocellulosic hydrolysates.
Collapse
Affiliation(s)
- Haijie Wang
- Key Laboratory of Medical Microbiology and Parasitology & Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Limin Cao
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing, China
| | - Qi Li
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing, China
| | - Nalin N. Wijayawardene
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, China,Section of Genetics, Institute for Research and Development in Health and Social Care, Battaramulla, Sri Lanka,National Institute of Fundamental Studies, Kandy, Sri Lanka
| | - Jian Zhao
- State key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Min Cheng
- Key Laboratory of Medical Microbiology and Parasitology & Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China,Department of Hospital Infection Management, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Qi-Rui Li
- Key Laboratory of Medical Microbiology and Parasitology & Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xiaobin Li
- Chishui Riverside Jiangi-Flavour Baijiu Research Center, Guizhou Sunveen Liquor Co., Ltd, Guiyang, China
| | - Itthayakorn Promputtha
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand,Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Ying-Qian Kang
- Key Laboratory of Medical Microbiology and Parasitology & Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China,*Correspondence: Ying-Qian Kang,
| |
Collapse
|
5
|
Ren L, Liu Y, Xia Y, Huang Y, Liu Y, Wang Y, Li P, Chang K, Xu D, Li F, Zhang B. Improving glycerol utilization during high-temperature xylitol production with Kluyveromyces marxianus using a transient clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 system. BIORESOURCE TECHNOLOGY 2022; 365:128179. [PMID: 36283669 DOI: 10.1016/j.biortech.2022.128179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Glycerol is an ideal co-substrate for xylitol production with Kluyveromyces marxianus. This study demonstrated that K. marxianus catabolizes glycerol through the Gut1-Gut2 pathway instead of the previously speculated NADPH-dependent Gcy1-Dak1 pathway using the transient clustered regularly interspaced short palindromic repeats/ CRISPR-associated protein 9 (CRISPR/Cas9) system. Additionally, Utr1p was demonstrated to mediate NADPH generation through NADH phosphorylation. YZB392, which was constructed by integrating Utr1 into the Ypr1 site in the strain overexpressing NcXyl1 and CiGxf1 and harboring disrupted Xyl2, exhibited enhanced glycerol utilization for xylitol production (from 2.50- to 3.30- g/L after consuming 1 g/L glycerol). Fed-batch fermentation at 42 °C with YZB392 yielded 322.07 g/L xylitol, which is the highest known xylitol titer obtained via biological method. Feeding crude glycerol, xylose mother liquor, and corn steep liquor powder into a bioreactor resulted in the production of 235.69 g/L xylitol. This study developed a platform for xylitol production from industrial by-products.
Collapse
Affiliation(s)
- Lili Ren
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Yanyan Liu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Yitong Xia
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Yi Huang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Yu Liu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Youming Wang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Pengfei Li
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Kechao Chang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Dayong Xu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Feng Li
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Biao Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, PR China.
| |
Collapse
|
6
|
Shen N, Li S, Qin Y, Jiang M, Zhang H. Optimization of succinic acid production from xylose mother liquor (XML) by Actinobacillus succinogenes using response surface methodology. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2095303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Affiliation(s)
- Naikun Shen
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, Guangxi, PR China
| | - Shiyong Li
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, Guangxi, PR China
| | - Yan Qin
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, PR China
| | - Mingguo Jiang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, Guangxi, PR China
| | - Hongyan Zhang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, Guangxi, PR China
| |
Collapse
|
7
|
Preparation of cross-linked cell aggregates (CLCAs) of recombinant E. coli harboring glutamate dehydrogenase and glucose dehydrogenase for efficient asymmetric synthesis of L-phosphinothricin. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Zhao J, Guo Y, Li Q, Chen J, Niu D, Liu J. Reconstruction of a Cofactor Self-Sufficient Whole-Cell Biocatalyst System for Efficient Biosynthesis of Allitol from d-Glucose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3775-3784. [PMID: 35298165 DOI: 10.1021/acs.jafc.2c00440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The combined catalysis of glucose isomerase (GI), d-psicose 3-epimerase (DPEase), ribitol dehydrogenase (RDH), and formate dehydrogenase (FDH) provides a convenient route for the biosynthesis of allitol from d-glucose; however, the low catalytic efficiency restricts its industrial applications. Here, the supplementation of 0.32 g/L NAD+ significantly promoted the cell catalytic activity by 1.18-fold, suggesting that the insufficient intracellular NAD(H) content was a limiting factor in allitol production. Glucose dehydrogenase (GDH) with 18.13-fold higher activity than FDH was used for reconstructing a cofactor self-sufficient system, which was combined with the overexpression of the rate-limiting genes involved in NAD+ salvage metabolic flow to expand the available intracellular NAD(H) pool. Then, the multienzyme self-assembly system with SpyTag and SpyCatcher effectively channeled intermediates, leading to an 81.1% increase in allitol titer to 15.03 g/L from 25 g/L d-glucose. This study provided a facilitated strategy for large-scale and efficient biosynthesis of allitol from a low-cost substrate.
Collapse
Affiliation(s)
- Jingyi Zhao
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Yan Guo
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Qiufeng Li
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Jing Chen
- South Subtropical Agricultural Scientific Research Institute of Guangxi, Longzhou, Guangxi 532415, China
| | - Debao Niu
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Jidong Liu
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| |
Collapse
|
9
|
Lekshmi Sundar MS, Madhavan Nampoothiri K. An overview of the metabolically engineered strains and innovative processes used for the value addition of biomass derived xylose to xylitol and xylonic acid. BIORESOURCE TECHNOLOGY 2022; 345:126548. [PMID: 34906704 DOI: 10.1016/j.biortech.2021.126548] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Xylose, the most abundant pentose sugar of the hemicellulosic fraction of lignocellulosic biomass, has to be utilized rationally for the commercial viability of biorefineries. An effective pre-treatment strategy for the release of xylose from the biomass and an appropriate microbe of the status of an Industrial strain for the utilization of this pentose sugar are key challenges which need special attention for the economic success of the biomass value addition to chemicals. Xylitol and xylonic acid, the alcohol and acid derivatives of xylose are highly demanded commodity chemicals globally with plenty of applications in the food and pharma industries. This review emphasis on the natural and metabolically engineered strains utilizing xylose and the progressive and innovative fermentation strategies for the production and subsequent recovery of the above said chemicals from pre-treated biomass medium.
Collapse
Affiliation(s)
- M S Lekshmi Sundar
- Microbial Processes and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDG Campus, Ghaziabad, Uttar Pradesh 201002, India
| | - K Madhavan Nampoothiri
- Microbial Processes and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram 695019, Kerala, India.
| |
Collapse
|
10
|
Immobilization of Escherichia coli cells harboring a nitrilase with improved catalytic properties though polyethylenemine-induced silicification on zeolite. Int J Biol Macromol 2021; 193:1362-1370. [PMID: 34740683 DOI: 10.1016/j.ijbiomac.2021.10.196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/18/2021] [Accepted: 10/26/2021] [Indexed: 11/23/2022]
Abstract
In the chemical-biological synthesis route of gabapentin, immobilized Escherichia coli cells harboring nitrilase are used to catalyze the biotransformation of intermediate 1-cyanocyclohexaneacetonitile to 1-cyanocyclohexaneacetic acid. Herein, we present a novel cell immobilization method, which is based on cell adsorption using 75 g/L Escherichia coli cells and 6 g/L zeolite, cell crosslinking using 3 g/L polyethylenemine and biomimetic silicification using 18 g/L hydrolyzed tetramethylorthosilicate. The constructed "hybrid biomimetic silica particles (HBSPs)" with core-shell structure showed a specific activity of 147.2 ± 2.3 U/g, 82.6 ± 2.8% recovery of nitrilase activity and a half-life of 19.1 ± 1.9 h at 55 °C. 1-Cyanocyclohexaneacetonitrile (1.0 M) could be completely hydrolyzed by 50 g/L of HBSPs at pH 7.5, 35 °C in 4 h, providing 92.1 ± 3.2% yield of 1-cyanocyclohexaneacetic acid. In batch reactions, the HBSPs could be reused for 13 cycles and maintained 79.9 ± 4.1% residual activity after the 10th batch, providing an average product yield of 92.6% in the first 10 batches with a productivity of 619.3 g/L/day. In addition, multi-layer structures consisting of silica coating and polyethylenemine/glutaraldehyde crosslinking were constructed to enhance the mechanical strength of immobilized cells, and the effects of coating layers on the catalytic properties of immobilized cells was discussed.
Collapse
|
11
|
Gao C, Wang J, Guo L, Hu G, Liu J, Song W, Liu L, Chen X. Immobilization of Microbial Consortium for Glutaric Acid Production from Lysine. ChemCatChem 2021. [DOI: 10.1002/cctc.202101245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Cong Gao
- State Key Laboratory of Food Science and Technology Jiangnan University Lihu Road 1800 Wuxi 214122 P. R. China
- International Joint Laboratory on Food Safety Jiangnan University Lihu Road 1800 Wuxi 214122 P. R. China
| | - Jiaping Wang
- State Key Laboratory of Food Science and Technology Jiangnan University Lihu Road 1800 Wuxi 214122 P. R. China
- International Joint Laboratory on Food Safety Jiangnan University Lihu Road 1800 Wuxi 214122 P. R. China
| | - Liang Guo
- State Key Laboratory of Food Science and Technology Jiangnan University Lihu Road 1800 Wuxi 214122 P. R. China
- International Joint Laboratory on Food Safety Jiangnan University Lihu Road 1800 Wuxi 214122 P. R. China
| | - Guipeng Hu
- School of Pharmaceutical Science Jiangnan University Lihu Road 1800 Wuxi 214122 P. R. China
| | - Jia Liu
- State Key Laboratory of Food Science and Technology Jiangnan University Lihu Road 1800 Wuxi 214122 P. R. China
- International Joint Laboratory on Food Safety Jiangnan University Lihu Road 1800 Wuxi 214122 P. R. China
| | - Wei Song
- School of Pharmaceutical Science Jiangnan University Lihu Road 1800 Wuxi 214122 P. R. China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology Jiangnan University Lihu Road 1800 Wuxi 214122 P. R. China
- International Joint Laboratory on Food Safety Jiangnan University Lihu Road 1800 Wuxi 214122 P. R. China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology Jiangnan University Lihu Road 1800 Wuxi 214122 P. R. China
- International Joint Laboratory on Food Safety Jiangnan University Lihu Road 1800 Wuxi 214122 P. R. China
| |
Collapse
|
12
|
Paulino BN, Molina G, Pastore GM, Bicas JL. Current perspectives in the biotechnological production of sweetening syrups and polyols. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Yuan X, Mao Y, Tu S, Lin J, Shen H, Yang L, Wu M. Increasing NADPH Availability for Xylitol Production via Pentose-Phosphate-Pathway Gene Overexpression and Embden-Meyerhof-Parnas-Pathway Gene Deletion in Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9625-9631. [PMID: 34382797 DOI: 10.1021/acs.jafc.1c03283] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cofactor availability is often a rate-limiting factor in the bioconversion of xylose to xylitol. The overexpression of pentose phosphate pathway genes and the deletion of Embden-Meyerhof-Parnas pathway genes can modulate the glucose metabolic flux and increase the intracellular NADPH supply, enabling Escherichia coli cells to produce xylitol from corncob hydrolysates. The effects of zwf and/or gnd overexpression and pfkA, pfkB, and/or pgi deletion on the intracellular redox environment and xylitol production were examined. The NADPH-enhanced strain 2bpgi produced 162 g/L xylitol from corncob hydrolysates after a 76 h fed-batch fermentation in a 15 L bioreactor, which was 13.3% greater than the 143 g/L xylitol produced by the IS5-d control strain. Additionally, the xylitol productivity and xylitol yield per glucose for 2bpgi were 2.13 g/L/h and 2.50 g/g, respectively. Thus, the genetic modifications in 2bpgi significantly enhanced NADPH regeneration, making 2bpgi a potentially useful strain for the industrial-scale production of xylitol from detoxified corncob hydrolysates.
Collapse
Affiliation(s)
- Xinsong Yuan
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
- School of Chemistry and Chemical Engineering, Hefei Normal University, Hefei 230601, PR China
| | - Yudi Mao
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Shuai Tu
- School of Chemistry and Chemical Engineering, Hefei Normal University, Hefei 230601, PR China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Jianping Lin
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Huahao Shen
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, PR China
| | - Lirong Yang
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Mianbin Wu
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, PR China
| |
Collapse
|
14
|
Zhang L, Chen Z, Wang J, Shen W, Li Q, Chen X. Stepwise metabolic engineering of Candida tropicalis for efficient xylitol production from xylose mother liquor. Microb Cell Fact 2021; 20:105. [PMID: 34034730 PMCID: PMC8147403 DOI: 10.1186/s12934-021-01596-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/15/2021] [Indexed: 11/11/2022] Open
Abstract
Background Commercial xylose purification produces xylose mother liquor (XML) as a major byproduct, which has become an inexpensive and abundant carbon source. A portion of this XML has been used to produce low-value-added products such as caramel but the remainder often ends up as an organic pollutant. This has become an issue of industrial concern. In this study, a uracil-deficient Candida tropicalis strain was engineered to efficiently convert XML to the commercially useful product xylitol. Results The xylitol dehydrogenase gene was deleted to block the conversion of xylitol to xylulose. Then, an NADPH regeneration system was added through heterologous expression of the Yarrowia lipolytica genes encoding 6-phosphate-gluconic acid dehydrogenase and 6-phosphate-glucose dehydrogenase. After process optimization, the engineered strain, C. tropicalis XZX-B4ZG, produced 97.10 g L− 1 xylitol in 120 h from 300 g L− 1 XML in a 5-L fermenter. The xylitol production rate was 0.82 g L− 1 h− 1 and the conversion rate was 92.40 %. Conclusions In conclusion, this study performed a combination of metabolic engineering and process optimizing in C. tropicalis to enhance xylitol production from XML. The use of C. tropicalis XZX-B4ZG, therefore, provided a convenient method to transform the industrial by-product XML into the useful material xylitol. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01596-1.
Collapse
Affiliation(s)
- Lihua Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, People's Republic of China
| | - Zhen Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, People's Republic of China
| | - Junhua Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, People's Republic of China
| | - Wei Shen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, People's Republic of China
| | - Qi Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, People's Republic of China.
| | - Xianzhong Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, People's Republic of China.
| |
Collapse
|
15
|
Mao S, Chen Y, Sun J, Wei C, Song Z, Lu F, Qin HM. Enhancing the sustainability of KsdD as a biocatalyst for steroid transformation by immobilization on epoxy support. Enzyme Microb Technol 2021; 146:109777. [PMID: 33812565 DOI: 10.1016/j.enzmictec.2021.109777] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/21/2021] [Accepted: 02/27/2021] [Indexed: 11/18/2022]
Abstract
The Δ1-dehydrogenation of 3-ketosteroid substrates is a crucial reaction in the production of steroids. Although 3-ketosteroid Δ1-dehydrogenase (KsdD) catalyzes this reaction with high efficiency and selectivity, the low stability and high cost of the purified enzyme catalyst have limited its industrial application. In this study, an epoxy support was used to evaluate the covalent immobilization of KsdD from Pimelobacter simplex, and the best androsta-1,4-diene-317-dione (ADD) production was achieved after optimized immobilization of KsdD enzyme in 1.5 M NaH2PO4- Na2HPO4 buffer (pH 6.5) for 12 h at 25 °C. The immobilized KsdD exhibited higher tolerance toward 20 % methanol. The dehydrogenation reaction reached a conversion efficiency of up to 90.0 % in 2 h when using 0.6 mg/mL of 4-androstene-317-dione (AD). The W299A and W299 G mutants of KsdD were also immobilized, and both showed the better catalytic performance with higher kcat/KM values compared with the wild type (WT). The immobilized W299A, W299 G and WT KsdD respectively maintained 70.5, 65.7 and 38.7 % of their initial activity at the end of 15 reaction cycles. Furthermore, the W299A retained 66.3 % of the initial activity after 30 days of incubation at 4 °C, and was more stable than free KsdD, Thus, the immobilized W299A is a promising biocatalyst for steroid dehydrogenation. In this study, we investigated the application of immobilized enzymes for the dehydrogenation of steroids, which will be of great importance for improving the development of green technology and sustainable use of biocatalysts in the steroid manufacturing industry.
Collapse
Affiliation(s)
- Shuhong Mao
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin, 300457, PR China
| | - Ying Chen
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin, 300457, PR China
| | - Jing Sun
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin, 300457, PR China
| | - Cancan Wei
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin, 300457, PR China
| | - Zhan Song
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin, 300457, PR China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin, 300457, PR China.
| | - Hui-Min Qin
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin, 300457, PR China.
| |
Collapse
|
16
|
Fan XM, Shen JJ, Xu YY, Gao J, Zhang YW. Metabolic integration of azide functionalized glycan on Escherichia coli cell surface for specific covalent immobilization onto magnetic nanoparticles with click chemistry. BIORESOURCE TECHNOLOGY 2021; 324:124689. [PMID: 33450627 DOI: 10.1016/j.biortech.2021.124689] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
A method for specific immobilization of whole-cell with covalent bonds was developed through a click reaction between alkyne and azide groups. In this approach, magnetic nanoparticle Fe3O4@SiO2-NH2-alkyne was synthesized with Fe3O4 core preparation, SiO2 coating, and alkyne functionalization on the surface. The azides were successfully integrated onto the cell surface of the recombinant E. coli harboring glycerol dehydrogenase, which was employed as the model cell. The highest immobilization yield of 83% and activity recovery of 94% were obtained under the conditions of 0.67 mg mg-1 cell-support ratio, pH 6.0, temperature 45 °C, and 20 mM Cu2+ concentration. The immobilized cell showed good reusability, which remained over 50% of initial activity after 10 cycles of utilization. Its activity was 9.7-fold higher than that of the free cell at the condition of pH 8.0 and each optimal temperature. Furthermore, the immobilized cell showed significantly higher activity, operational stability, and reusability.
Collapse
Affiliation(s)
- Xiao-Man Fan
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Jia-Jia Shen
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Yuan-Yuan Xu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Jian Gao
- College of Petroleum and Chemical Engineering, Beibu Gulf University, 535100 Qinzhou, People's Republic of China
| | - Ye-Wang Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, People's Republic of China; College of Petroleum and Chemical Engineering, Beibu Gulf University, 535100 Qinzhou, People's Republic of China.
| |
Collapse
|
17
|
Improving Biocatalytic Synthesis of Furfuryl Alcohol by Effective Conversion of D-Xylose into Furfural with Tin-Loaded Sulfonated Carbon Nanotube in Cyclopentylmethyl Ether-Water Media. Catal Letters 2021. [DOI: 10.1007/s10562-021-03570-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Singh S, Kaur D, Yadav SK, Krishania M. Process scale-up of an efficient acid-catalyzed steam pretreatment of rice straw for xylitol production by C. Tropicalis MTCC 6192. BIORESOURCE TECHNOLOGY 2021; 320:124422. [PMID: 33242688 DOI: 10.1016/j.biortech.2020.124422] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 06/11/2023]
Abstract
The present study focuses on operational parameters for the efficient acid catalyzed rice straw pretreatment process for xylitol production. 75.77 % xylose yield was attained when the 24 h presoaked rice straw (≤10 mm or ≤ 15 mm) in 1.5 % (v/v) H2SO4 was pretreated in the same reactor at 121 °C for 30 min. Neutralization with barium hydroxide produced insoluble salt and noticeably reduced HMF and furfurals. Xylitol yield of 0.6 g/g of xylose, was achieved by fermenting rice straw hydrolysate medium with C. tropicalis MTCC 6192. This two-step process of production of xylitol from xylose rich hydrolysate is much simpler and produced minimal inhibitors including organic acids such as acetic acid. This process is modified for upscaling at optimized parameters and will simultaneously minimize the pollution problem caused by rice straw and is also promising for commercial scale.
Collapse
Affiliation(s)
- Saumya Singh
- Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge city), Mohali 140306, India
| | - Dalveer Kaur
- Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge city), Mohali 140306, India
| | - Sudesh Kumar Yadav
- Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge city), Mohali 140306, India
| | - Meena Krishania
- Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge city), Mohali 140306, India.
| |
Collapse
|
19
|
Naramittanakul A, Buttranon S, Petchsuk A, Chaiyen P, Weeranoppanant N. Development of a continuous-flow system with immobilized biocatalysts towards sustainable bioprocessing. REACT CHEM ENG 2021. [DOI: 10.1039/d1re00189b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Implementing immobilized biocatalysts in continuous-flow systems can enable a sustainable process through enhanced enzyme stability, better transport and process continuity as well as simplified recycle and downstream processing.
Collapse
Affiliation(s)
- Apisit Naramittanakul
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Supacha Buttranon
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Atitsa Petchsuk
- National Metal and Materials Technology Center (MTEC), Pathum Thani 12120, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Nopphon Weeranoppanant
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
- Department of Chemical Engineering, Faculty of Engineering, Burapha University, Chonburi 20131, Thailand
| |
Collapse
|
20
|
Li YY, Li Q, Zhang PQ, Ma CL, Xu JH, He YC. Catalytic conversion of corncob to furfuryl alcohol in tandem reaction with tin-loaded sulfonated zeolite and NADPH-dependent reductase biocatalyst. BIORESOURCE TECHNOLOGY 2021; 320:124267. [PMID: 33120059 DOI: 10.1016/j.biortech.2020.124267] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/03/2020] [Accepted: 10/05/2020] [Indexed: 06/11/2023]
Abstract
In this study, tin-loaded sulfonated zeolite (Sn-zeolite) catalyst was synthesized for catalysis of raw corncob (75.0 g/L) to 103.0 mM furfural at 52.3% yield in water (pH 1.0) at 170 °C. This corncob-derived furfural was subsequently biotransformed with recombinant E. coli CG-19 cells coexpressing NADPH-dependent reductase and glucose dehydrogenase at 35 °C by supplementary of glucose (1.5 mol glucose/mol furfural), sodium dodecyl sulfate (0.50 mM) and NADP+ (1.0 μmol NADP+/mmol furfural) in the aqueous catalytic media (pH 7.5). Both sodium dodecyl sulfate (0.50 mM) and Sn4+ (1.0 mM) could promote reductase activity by 1.4-folds. Within 3 h, furfural was wholly catalyzed into furfuryl alcohol. By combining chemical catalysis with Sn-zeolite and biocatalysis with CG-19 cells in one-pot, an effective and sustainable process was established for tandemly catalyzing renewable biomass into furfuryl alcohol under environmentally-friendly way.
Collapse
Affiliation(s)
- Yuan-Yuan Li
- Laboratory of Bioresourse and Bioprocessing, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Changzhou University, Changzhou, People's Republic of China
| | - Qing Li
- Laboratory of Biomass and Bioenergy, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, People's Republic of China
| | - Peng-Qi Zhang
- Laboratory of Biomass and Bioenergy, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, People's Republic of China
| | - Cui-Luan Ma
- Laboratory of Bioresourse and Bioprocessing, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Changzhou University, Changzhou, People's Republic of China; Laboratory of Biomass and Bioenergy, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, People's Republic of China; State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Yu-Cai He
- Laboratory of Bioresourse and Bioprocessing, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Changzhou University, Changzhou, People's Republic of China; Laboratory of Biomass and Bioenergy, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, People's Republic of China; State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China; Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, People's Republic of China.
| |
Collapse
|
21
|
Pei X, Li Y, Du C, Yuan T, Fan C, Hong H, Yuan W. Production of L-alanyl-L-glutamine by immobilized Escherichia coli expressing amino acid ester acyltransferase. Appl Microbiol Biotechnol 2020; 104:6967-6976. [PMID: 32594215 DOI: 10.1007/s00253-020-10752-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/05/2020] [Accepted: 06/16/2020] [Indexed: 11/25/2022]
Abstract
Production of Ala-Gln by the E. coli expressing α-amino acid ester acyltransferase was a promising technical route due to its high enzyme activity, but the continuous production ability still needs to improve. Therefore, the immobilized E. coli expressing α-amino acid ester acyltransferase was applied for the continuous production of Ala-Gln. Four materials were selected as embedding medium for the whole cell entrapment of recombinant bacteria. Calcium alginate beads were found to be the most proper entrapment carrier for production of Ala-Gln. The temperature, pH, and repeatability of the immobilized cell were compared with free cells. Results showed that immobilization cell could maintain a wider range of temperature/pH and better stability than free cell (20-35 °C/pH 8.0-9.0, and 25 °C/pH 8.5, respectively). On this basis, continuous production strategy was put forward by filling the immobilized cell in the tubular reactor with multiple control conditions. The Ala-Gln by immobilization cell achieved the productivity of 2.79 mg/(min*mL-CV) without intermittent time. Consequently, these findings suggest that the immobilization technique has potential applications in the production of Ala-Gln by biotechnological method. KEY POINTS: • Immobilization helps to achieve high efficiency production of Ala-Gln. • Immobilized cells have better stability than free cells. • Sodium alginate is the most suitable immobilized material.
Collapse
Affiliation(s)
- Xuze Pei
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Yimin Li
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Cong Du
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Tangguo Yuan
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Chao Fan
- Innobio Corporation Limited, Dalian, 116600, China
| | - Hao Hong
- Innobio Corporation Limited, Dalian, 116600, China
| | - Wenjie Yuan
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
22
|
Immobilization of recombinant Escherichia coli on multi-walled carbon nanotubes for xylitol production. Enzyme Microb Technol 2020; 135:109495. [DOI: 10.1016/j.enzmictec.2019.109495] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 12/15/2022]
|
23
|
Combination of the CRP mutation and ptsG deletion in Escherichia coli to efficiently synthesize xylitol from corncob hydrolysates. Appl Microbiol Biotechnol 2020; 104:2039-2050. [PMID: 31950219 DOI: 10.1007/s00253-019-10324-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/05/2019] [Accepted: 12/15/2019] [Indexed: 12/16/2022]
Abstract
The biotechnology-based production of xylitol has received widespread attention because it can use cheap and renewable lignocellulose as a raw material, thereby decreasing costs and pollution. The simultaneous use of various sugars in lignocellulose hydrolysates is a primary prerequisite for efficient xylitol production. In this study, a ΔptsG and crp* combinatorial strategy was used to generate Escherichia coli W3110 strain IS5-dI, which completely eliminated glucose repression and simultaneously used glucose and xylose. This strain produced 164 g/L xylitol from detoxified corncob hydrolysates during a fed-batch fermentation in a 15-L bioreactor, which was 14.7% higher than the xylitol produced by the starting strain, IS5-d (143 g/L), and the xylitol productivity was 3.04 g/L/h. These results represent the highest xylitol concentration and productivity reported to date for bacteria and hemicellulosic sugars. Additionally, strain IS5-dG, which differs from IS5-dI at CRP amino acid residue 127 (I127G), was tolerant to the toxins in corncob hydrolysates. In a fed-batch fermentation experiment involving a 15-L bioreactor, IS5-dG produced 137 g/L xylitol from non-detoxified corncob hydrolysates, with a productivity of 1.76 g/L/h. On the basis of these results, we believe that IS5-dI and IS5-dG may be useful host strains for the industrial-scale production of xylitol from detoxified or non-detoxified corncob hydrolysates.
Collapse
|
24
|
Pei X, Wang J, Zheng H, Cheng P, Wu Y, Wang A, Su W. Highly efficient asymmetric reduction of ketopantolactone to d-(−)-pantolactone by Escherichia coli cells expressing recombinant conjugated polyketone reductase and glucose dehydrogenase in a fed-batch biphasic reaction system. REACT CHEM ENG 2020. [DOI: 10.1039/c9re00385a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enantiopure d-(−)-pantolactone was efficiently synthesized by Escherichia coli cells expressing recombinant CduCPR and BsuGDH in a fed-batch biphasic reaction system.
Collapse
Affiliation(s)
- Xiaolin Pei
- College of Material, Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou
- PR China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals
| | - Jiapao Wang
- College of Material, Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou
- PR China
| | - Haoteng Zheng
- College of Material, Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou
- PR China
| | - Pengfei Cheng
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals
- College of Pharmaceutical Science
- Zhejiang University of Technology
- Hangzhou
- PR China
| | - Yifeng Wu
- College of Material, Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou
- PR China
| | - Anming Wang
- College of Material, Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou
- PR China
| | - Weike Su
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals
- College of Pharmaceutical Science
- Zhejiang University of Technology
- Hangzhou
- PR China
| |
Collapse
|
25
|
Sánta-Bell E, Molnár Z, Varga A, Nagy F, Hornyánszky G, Paizs C, Balogh-Weiser D, Poppe L. "Fishing and Hunting"-Selective Immobilization of a Recombinant Phenylalanine Ammonia-Lyase from Fermentation Media. Molecules 2019; 24:E4146. [PMID: 31731791 PMCID: PMC6891789 DOI: 10.3390/molecules24224146] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 02/07/2023] Open
Abstract
This article overviews the numerous immobilization methods available for various biocatalysts such as whole-cells, cell fragments, lysates or enzymes which do not require preliminary enzyme purification and introduces an advanced approach avoiding the costly and time consuming downstream processes required by immobilization of purified enzyme-based biocatalysts (such as enzyme purification by chromatographic methods and dialysis). Our approach is based on silica shell coated magnetic nanoparticles as solid carriers decorated with mixed functions having either coordinative binding ability (a metal ion complexed by a chelator anchored to the surface) or covalent bond-forming ability (an epoxide attached to the surface via a proper linker) enabling a single operation enrichment and immobilization of a recombinant phenylalanine ammonia-lyase from parsley fused to a polyhistidine affinity tag.
Collapse
Affiliation(s)
- Evelin Sánta-Bell
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1111 Budapest, Hungary; (E.S.-B.); (Z.M.); (F.N.); (G.H.)
| | - Zsófia Molnár
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1111 Budapest, Hungary; (E.S.-B.); (Z.M.); (F.N.); (G.H.)
- Fermentia Microbiological Ltd., 1405 Budapest, Hungary
- Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Science, 1117 Budapest, Hungary
| | - Andrea Varga
- Biocatalysis and Biotransformation Research Centre, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University of Cluj-Napoca, 400028 Cluj-Napoca, Romania; (A.V.); (C.P.)
| | - Flóra Nagy
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1111 Budapest, Hungary; (E.S.-B.); (Z.M.); (F.N.); (G.H.)
| | - Gábor Hornyánszky
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1111 Budapest, Hungary; (E.S.-B.); (Z.M.); (F.N.); (G.H.)
- SynBiocat Ltd., 1172 Budapest, Hungary
| | - Csaba Paizs
- Biocatalysis and Biotransformation Research Centre, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University of Cluj-Napoca, 400028 Cluj-Napoca, Romania; (A.V.); (C.P.)
| | - Diána Balogh-Weiser
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1111 Budapest, Hungary; (E.S.-B.); (Z.M.); (F.N.); (G.H.)
- SynBiocat Ltd., 1172 Budapest, Hungary
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, 1111 Budapest, Hungary
| | - László Poppe
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1111 Budapest, Hungary; (E.S.-B.); (Z.M.); (F.N.); (G.H.)
- Biocatalysis and Biotransformation Research Centre, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University of Cluj-Napoca, 400028 Cluj-Napoca, Romania; (A.V.); (C.P.)
- SynBiocat Ltd., 1172 Budapest, Hungary
| |
Collapse
|
26
|
Zhang Q, Wu ZM, Liu S, Tang XL, Zheng RC, Zheng YG. Efficient Chemoenzymatic Synthesis of Optically Active Pregabalin from Racemic Isobutylsuccinonitrile. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.9b00285] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|