1
|
Feng L, Os Andersen T, Heldal Hagen L, Bilgic B, Jarle Horn S. Bioaugmentation by enriched hydrogenotrophic methanogens into trickle bed reactors for H 2/CO 2 conversion. BIORESOURCE TECHNOLOGY 2024; 408:131225. [PMID: 39111397 DOI: 10.1016/j.biortech.2024.131225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/03/2024] [Accepted: 08/04/2024] [Indexed: 08/11/2024]
Abstract
Biomethanation represents a promising approach for biomethane production, with biofilm-based processes like trickle bed reactors (TBRs) being among the most efficient solutions. However, maintaining stable performance can be challenging, and both pure and mixed culture approaches have been applied to address this. In this study, inocula enriched with hydrogenotrophic methanogens were introduced to to TBRs as bioaugmentation strategy to assess their impacts on the process performance and microbial community dynamics. Metagenomic analysis revealed a metagenome-assembled genome belonging to the hydrogenotrophic genus Methanobacterium, which became dominant during enrichment and successfully colonized the TBR biofilm after bioaugmentation. The TBRs achieved a biogas production with > 96 % methane. The bioaugmented reactor consumed additional H2. This may be due to microbial species utilizing CO2 and H2 via various CO2 reduction pathways. Overall, implementing bioaugmentation in TBRs showed potential for establishing targeted species, although challenges remain in managing H2 consumption and optimizing microbial interactions.
Collapse
Affiliation(s)
- Lu Feng
- Norwegian Institute of Bioeconomy Research (NIBIO), P.O. Box 115, 1431 Ås, Norway.
| | - Thea Os Andersen
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432 Ås, Norway
| | - Live Heldal Hagen
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432 Ås, Norway
| | - Begum Bilgic
- Norwegian Institute of Bioeconomy Research (NIBIO), P.O. Box 115, 1431 Ås, Norway; Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432 Ås, Norway
| | - Svein Jarle Horn
- Norwegian Institute of Bioeconomy Research (NIBIO), P.O. Box 115, 1431 Ås, Norway; Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432 Ås, Norway
| |
Collapse
|
2
|
Hu W, Zheng S, Wang J, Lu X, Han Y, Wang J, Zhen G. Optimizing bioelectromethanosynthesis of CO 2 and membrane fouling mitigation in MECs via in-situ biogas recirculation. CHEMOSPHERE 2024; 358:142119. [PMID: 38697567 DOI: 10.1016/j.chemosphere.2024.142119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/29/2024] [Accepted: 04/21/2024] [Indexed: 05/05/2024]
Abstract
The CO2 bioelectromethanosynthesis via two-chamber microbial electrolysis cell (MEC) holds tremendous potential to solve the energy crisis and mitigate the greenhouse gas emissions. However, the membrane fouling is still a big challenge for CO2 bioelectromethanosynthesis owing to the poor proton diffusion across membrane and high inter-resistance. In this study, a new MEC bioreactor with biogas recirculation unit was designed in the cathode chamber to enhance secondary-dissolution of CO2 while mitigating the contaminant adhesion on membrane surface. Biogas recirculation improved CO2 re-dissolution, reduced concentration polarization, and facilitated the proton transmembrane diffusion. This resulted in a remarkable increase in the cathodic methane production rate from 0.4 mL/L·d to 8.5 mL/L·d. A robust syntrophic relationship between anodic organic-degrading bacteria (Firmicutes 5.29%, Bacteroidetes 25.90%, and Proteobacteria 6.08%) and cathodic methane-producing archaea (Methanobacterium 65.58%) enabled simultaneous organic degradation, high CO2 bioelectromethanosynthesis, and renewable energy storage.
Collapse
Affiliation(s)
- Weijie Hu
- Shanghai Municipal Engineering Design Institute (Group) Co., Ltd, Shanghai, 200092, China
| | - Shaojuan Zheng
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Jiayi Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Xueqin Lu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China; Institute of Eco-Chongming (IEC), 3663 N. Zhongshan Rd, Shanghai, 200062, China
| | - Yule Han
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Juan Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Guangyin Zhen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China; The State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 200092, Shanghai, China; Shanghai Institute of Pollution Control and Ecological Security, 1515 North Zhongshan Rd. (No. 2), Shanghai, 200092, China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N. Zhongshan Road, Shanghai, 200062, China.
| |
Collapse
|
3
|
Liang C, Svendsen SB, de Jonge N, Carvalho PN, Nielsen JL, Bester K. Eat seldom is better than eat frequently: Pharmaceuticals degradation kinetics, enantiomeric profiling and microorganisms in moving bed biofilm reactors are affected by feast famine cycle times. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133739. [PMID: 38401210 DOI: 10.1016/j.jhazmat.2024.133739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 01/05/2024] [Accepted: 02/05/2024] [Indexed: 02/26/2024]
Abstract
Feast-famine (FF) regimes improved the removal of recalcitrant pharmaceuticals in moving bed biofilm reactors (MBBRs), but the optimal FF cycle remained unresolved. The effects of FF cycle time on the removal of bulk substrates (organic carbon and nitrogen) and trace pharmaceuticals by MBBR are systematically evaluated in this study. The feast to famine ratio was fixed to 1:2 to keep the same loading rate, but the time for the FF cycles varied from 18 h to 288 h. The MBBR adapted to the longest FF cycle time (288 h equaling 48 × HRT) resulted in significantly higher degradation rates (up to +183%) for 12 out of 28 pharmaceuticals than a continuously fed (non-FF) reactor. However, other FF cycle times (18, 36, 72 and 144 h) only showed a significant up-regulation for 2-3 pharmaceuticals compared to the non-FF reactor. Enantioselective degradation of metoprolol and propranolol occurred in the second phase of a two phase degradation, which was different for the longer FF cycle time. N-oxidation and N-demethylation pathways of tramadol and venlafaxine differed across the FF cycle time suggestin the FF cycle time varied the predominant transformation pathways of pharmaceuticals. The abundance of bacteria in the biofilms varied considerably between different FF cycle times, which possibly caused the biofilm to remove more recalcitrant bulk organic C and pharmaceuticals under long cycle times.
Collapse
Affiliation(s)
- Chuanzhou Liang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China; Department of Environmental Science, Aarhus University, Frederiksborgvej 399, Roskilde 4000, Denmark
| | - Sif B Svendsen
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, Roskilde 4000, Denmark
| | - Nadieh de Jonge
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, DK-9220 Aalborg, Denmark
| | - Pedro N Carvalho
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, Roskilde 4000, Denmark
| | - Jeppe Lund Nielsen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, DK-9220 Aalborg, Denmark
| | - Kai Bester
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, Roskilde 4000, Denmark.
| |
Collapse
|
4
|
Thapa A, Jo H, Han U, Cho SK. Ex-situ biomethanation for CO 2 valorization: State of the art, recent advances, challenges, and future prospective. Biotechnol Adv 2023; 68:108218. [PMID: 37481094 DOI: 10.1016/j.biotechadv.2023.108218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/21/2023] [Accepted: 07/17/2023] [Indexed: 07/24/2023]
Abstract
Ex-situ biomethanation is an emerging technology that facilitates the use of surplus renewable electricity and valorizes carbon dioxide (CO2) for biomethane production by hydrogenotrophic methanogens. This review offers an up-to-date overview of the current state of ex-situ biomethanation and thoroughly analyzes key operational parameters affecting hydrogen (H2) gas-liquid mass transfer and biomethanation performance, along with an in-depth discussion of the technical challenges. To the best of our knowledge, this is the first review article to discuss microbial community structure in liquid and biofilm phases and their responses after exposure to H2 starvation during ex-situ biomethanation. In addition, future research in areas such as reactor configuration and optimization of operational parameters for improving the H2 mass transfer rate, inhibiting opportunistic homoacetogens, integration of membrane technology, and use of conductive packing material is recommended to overcome challenges and improve the efficiency of ex-situ biomethanation. Furthermore, this review presents a techno-economic analysis for the future development and facilitation of industrial implementation. The insights presented in this review will offer useful information to identify state-of-the-art research trends and realize the full potential of this emerging technology for CO2 utilization and biomethane production.
Collapse
Affiliation(s)
- Ajay Thapa
- Department of Biological and Environmental Science, Dongguk University, 32 Dongguk-ro, IIsandong-gu, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Hongmok Jo
- Department of Biological and Environmental Science, Dongguk University, 32 Dongguk-ro, IIsandong-gu, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Uijeong Han
- Department of Biological and Environmental Science, Dongguk University, 32 Dongguk-ro, IIsandong-gu, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Si-Kyung Cho
- Department of Biological and Environmental Science, Dongguk University, 32 Dongguk-ro, IIsandong-gu, Goyang-si, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
5
|
Feickert Fenske C, Md Y, Strübing D, Koch K. Preliminary gas flow experiments identify improved gas flow conditions in a pilot-scale trickle bed reactor for H 2 and CO 2 biological methanation. BIORESOURCE TECHNOLOGY 2023; 371:128648. [PMID: 36681350 DOI: 10.1016/j.biortech.2023.128648] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
Biological methanation of H2 and CO2 is a potential energy conversion technology that can support the energy transition based on renewable sources. The methanation performance in trickle bed reactors can be improved by approaching the gas flow through the reactor towards plug flow. Through preliminary gas flow experiments without biological conversion, this study investigated operational and constructional conditions that enhance plug flow in a pilot-scale trickle bed reactor with 1 m3 gas volume. An improved gas flow was observed when the feed gas was applied in a top-to-bottom direction and when the process liquid was not trickled through the packing bed. Furthermore, the gas flow experiments identified reactor-specific properties, such as unused or dead volumes. Applying gas flow experiments prior to reactor start-up is recommended as a simple and convenient method to identify individual reactor properties and optimization potentials for higher methanation performance.
Collapse
Affiliation(s)
- Carolina Feickert Fenske
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748 Garching, Germany
| | - Yasin Md
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748 Garching, Germany
| | - Dietmar Strübing
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748 Garching, Germany
| | - Konrad Koch
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748 Garching, Germany.
| |
Collapse
|
6
|
Kamravamanesh D, Rinta Kanto JM, Ali-Loytty H, Myllärinen A, Saalasti M, Rintala J, Kokko M. Ex-situ biological hydrogen methanation in trickle bed reactors: Integration into biogas production facilities. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2023.118498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
7
|
Biological Aspects, Advancements and Techno-Economical Evaluation of Biological Methanation for the Recycling and Valorization of CO2. ENERGIES 2022. [DOI: 10.3390/en15114064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Nowadays, sustainable and renewable energy production is a global priority. Over the past decade, several Power-to-X (PtX) technologies have been proposed to store and convert the surplus of renewable energies into chemical bonds of chemicals produced by different processes. CO2 is a major contributor to climate change, yet it is also an undervalued source of carbon that could be recycled and represents an opportunity to generate renewable energy. In this context, PtX technologies would allow for CO2 valorization into renewable fuels while reducing greenhouse gas (GHG) emissions. With this work we want to provide an up-to-date overview of biomethanation as a PtX technology by considering the biological aspects and the main parameters affecting its application and scalability at an industrial level. Particular attention will be paid to the concept of CO2-streams valorization and to the integration of the process with renewable energies. Aspects related to new promising technologies such as in situ, ex situ, hybrid biomethanation and the concept of underground methanation will be discussed, also in connection with recent application cases. Furthermore, the technical and economic feasibility will be critically analyzed to highlight current options and limitations for implementing a sustainable process.
Collapse
|
8
|
Kaul A, Böllmann A, Thema M, Kalb L, Stöckl R, Huber H, Sterner M, Bellack A. Combining a robust thermophilic methanogen and packing material with high liquid hold-up to optimize biological methanation in trickle-bed reactors. BIORESOURCE TECHNOLOGY 2022; 345:126524. [PMID: 34896529 DOI: 10.1016/j.biortech.2021.126524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
The hydrogen gas-to-liquid mass transfer is the limiting factor in biological methanation. In trickle-bed reactors, mass transfer can be increased by high flow velocities in the liquid phase, by adding a packing material with high liquid hold-up or by using methanogenic archaea with a high methane productivity. This study developed a polyphasic approach to address all methods at once. Various methanogenic strains and packings were investigated from a microbial and hydrodynamic perspective. Analyzing the ability to produce high-quality methane and to form biofilms, pure cultures of Methanothermobacter performed better than those of the genus Methanothermococcus. Liquid and static hold-up of a packing material and its capability to facilitate attachment was not attributable to a single property. Consequently, it is recommended to carefully match organism and packing for optimized performance of trickle-bed reactors. The ideal combination for the ORBIT-system was identified as Methanothermobacter thermoautotrophicus IM5 and DuraTop®.
Collapse
Affiliation(s)
- Anja Kaul
- Research Center on Energy Transmission and Energy Storage, OTH Regensburg, Seybothstraße 2, 93053 Regensburg, Germany.
| | - Andrea Böllmann
- Institute of Microbiology and Archaea Centre Regensburg, University of Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany
| | - Martin Thema
- Research Center on Energy Transmission and Energy Storage, OTH Regensburg, Seybothstraße 2, 93053 Regensburg, Germany
| | - Larissa Kalb
- Institute of Microbiology and Archaea Centre Regensburg, University of Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany
| | - Richard Stöckl
- Institute of Microbiology and Archaea Centre Regensburg, University of Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany
| | - Harald Huber
- Institute of Microbiology and Archaea Centre Regensburg, University of Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany
| | - Michael Sterner
- Research Center on Energy Transmission and Energy Storage, OTH Regensburg, Seybothstraße 2, 93053 Regensburg, Germany
| | - Annett Bellack
- Institute of Microbiology and Archaea Centre Regensburg, University of Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany
| |
Collapse
|
9
|
Enhanced ex-situ biomethanation of hydrogen and carbon dioxide in a trickling filter bed reactor. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Abstract
Climate neutral and sustainable energy sources will play a key role in future energy production. Biomethanation by gas to gas conversion of flue gases is one option with regard to renewable energy production. Here, we performed the conversion of synthetic carbon monoxide (CO)-containing flue gases to methane (CH4) by artificial hyperthermophilic archaeal co-cultures, consisting of Thermococcus onnurineus and Methanocaldococcus jannaschii, Methanocaldococcus vulcanius, or Methanocaldococcus villosus. Experiments using both chemically defined and complex media were performed in closed batch setups. Up to 10 mol% CH4 was produced by converting pure CO or synthetic CO-containing industrial waste gases at a high rate using a co-culture of T. onnurineus and M. villosus. These findings are a proof of principle and advance the fields of Archaea Biotechnology, artificial microbial ecosystem design and engineering, industrial waste-gas recycling, and biomethanation.
Collapse
|
11
|
Jensen MB, Poulsen S, Jensen B, Feilberg A, Kofoed MVW. Selecting carrier material for efficient biomethanation of industrial biogas-CO2 in a trickle-bed reactor. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
A Review of the State of the Art of Biomethane Production: Recent Advancements and Integration of Renewable Energies. ENERGIES 2021. [DOI: 10.3390/en14164895] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Anaerobic Digestion (AD) is a well-established process that is becoming increasingly popular, especially as a technology for organic waste treatment; the process produces biogas, which can be upgraded to biomethane, which can be used in the transport sector or injected into the natural gas grid. Considering the sensitivity of Anaerobic Digestion to several process parameters, mathematical modeling and numerical simulations can be useful to improve both design and control of the process. Therefore, several different modeling approaches were presented in the literature, aiming at providing suitable tools for the design and simulation of these systems. The purpose of this study is to analyze the recent advancements in the biomethane production from different points of view. Special attention is paid to the integration of this technology with additional renewable energy sources, such as solar, geothermal and wind, aimed at achieving a fully renewable biomethane production. In this case, auxiliary heat may be provided by solar thermal or geothermal energy, while wind or photovoltaic plants can provide auxiliary electricity. Recent advancements in plants design, biomethane production and mathematical modeling are shown in the paper, and the main challenges that these fields must face with are discussed. Considering the increasing interest of industries, public policy makers and researchers in this field, the efficiency and profitability such hybrid renewable solutions for biomethane production are expected to significantly improve in the next future, provided that suitable subsidies and funding policies are implemented to support their development.
Collapse
|
13
|
Aryal N, Odde M, Bøgeholdt Petersen C, Ditlev Mørck Ottosen L, Vedel Wegener Kofoed M. Methane production from syngas using a trickle-bed reactor setup. BIORESOURCE TECHNOLOGY 2021; 333:125183. [PMID: 33895671 DOI: 10.1016/j.biortech.2021.125183] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/08/2021] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
Syngas from gasification of waste biomass is a mixture of carbon monoxide (CO), carbon dioxide (CO2), and hydrogen (H2), which can be utilized for the synthesis of biofuels such as methane (CH4). The aim of the study research work was to demonstrate how syngas could be methanated and upgraded to natural gas quality (biomethane) in a fed-batch trickle-bed reactor system using either manure - (AD-M) or sludge-based (AD-WW) inoculum as microbial basis. The methanated syngas had a high concentration of CO2 and did not fulfil the criteria for natural gas quality biomethane. Further upgrading of syngas to biomethane could be achieved simultaneously in the same reactors by addition of exogenous H2, resulting in CH4 concentrations up to 91.0 ± 3.5% (AD-WW) and 95.3 ± 1.0% (AD-M). Microbial analysis indicated that the communities differed between AD-M and AD-WW demonstrating functional redundancy among the microbial communities of different inocula.
Collapse
Affiliation(s)
- Nabin Aryal
- Department of Biological and Chemical Engineering, Hangøvej 2, DK-8200 Aarhus N, Denmark
| | - Mikkel Odde
- Department of Biological and Chemical Engineering, Hangøvej 2, DK-8200 Aarhus N, Denmark
| | | | | | | |
Collapse
|
14
|
Dalby FR, Hafner SD, Petersen SO, Vanderzaag A, Habtewold J, Dunfield K, Chantigny MH, Sommer SG. A mechanistic model of methane emission from animal slurry with a focus on microbial groups. PLoS One 2021; 16:e0252881. [PMID: 34111183 PMCID: PMC8191904 DOI: 10.1371/journal.pone.0252881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 05/25/2021] [Indexed: 11/19/2022] Open
Abstract
Liquid manure (slurry) from livestock releases methane (CH4) that contributes significantly to global warming. Existing models for slurry CH4 production-used for mitigation and inventories-include effects of organic matter loading, temperature, and retention time but cannot predict important effects of management, or adequately capture essential temperature-driven dynamics. Here we present a new model that includes multiple methanogenic groups whose relative abundance shifts in response to changes in temperature or other environmental conditions. By default, the temperature responses of five groups correspond to those of four methanogenic species and one uncultured methanogen, although any number of groups could be defined. We argue that this simple mechanistic approach is able to describe both short- and long-term responses to temperature where other existing approaches fall short. The model is available in the open-source R package ABM (https://github.com/sashahafner/ABM) as a single flexible function that can include effects of slurry management (e.g., removal frequency and treatment methods) and changes in environmental conditions over time. Model simulations suggest that the reduction of CH4 emission by frequent emptying of slurry pits is due to washout of active methanogens. Application of the model to represent a full-scale slurry storage tank showed it can reproduce important trends, including a delayed response to temperature changes. However, the magnitude of predicted emission is uncertain, primarily as a result of sensitivity to the hydrolysis rate constant, due to a wide range in reported values. Results indicated that with additional work-particularly on the magnitude of hydrolysis rate-the model could be a tool for estimation of CH4 emissions for inventories.
Collapse
Affiliation(s)
- Frederik R. Dalby
- Department of Biotechnology and Chemical Engineering, Faculty of Technical Sciences, Aarhus University, Aarhus, Denmark
- * E-mail: (SDH); (FRD); (SGS)
| | - Sasha D. Hafner
- Department of Biotechnology and Chemical Engineering, Faculty of Technical Sciences, Aarhus University, Aarhus, Denmark
- Hafner Consulting LLC, Reston, Virginia, United States of America
- * E-mail: (SDH); (FRD); (SGS)
| | | | - Andrew Vanderzaag
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Canada
| | - Jemaneh Habtewold
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Canada
| | - Kari Dunfield
- School of Environmental Science, University of Guelph, Guelph, Canada
| | - Martin H. Chantigny
- Quebec Research and Development Centre, Agriculture and Agri-Food Canada, Quebec, Canada
| | - Sven G. Sommer
- Department of Biotechnology and Chemical Engineering, Faculty of Technical Sciences, Aarhus University, Aarhus, Denmark
- * E-mail: (SDH); (FRD); (SGS)
| |
Collapse
|
15
|
Biogas from Anaerobic Digestion as an Energy Vector: Current Upgrading Development. ENERGIES 2021. [DOI: 10.3390/en14102742] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The present work reviews the role of biogas as advanced biofuel in the renewable energy system, summarizing the main raw materials used for biogas production and the most common technologies for biogas upgrading and delving into emerging biological methanation processes. In addition, it provides a description of current European legislative framework and the potential biomethane business models as well as the main biogas production issues to be addressed to fully deploy these upgrading technologies. Biomethane could be competitive due to negative or zero waste feedstock prices, and competitive to fossil fuels in the transport sector and power generation if upgrading technologies become cheaper and environmentally sustainable.
Collapse
|
16
|
Mauerhofer LM, Zwirtmayr S, Pappenreiter P, Bernacchi S, Seifert AH, Reischl B, Schmider T, Taubner RS, Paulik C, Rittmann SKMR. Hyperthermophilic methanogenic archaea act as high-pressure CH 4 cell factories. Commun Biol 2021; 4:289. [PMID: 33674723 PMCID: PMC7935968 DOI: 10.1038/s42003-021-01828-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 02/10/2021] [Indexed: 01/31/2023] Open
Abstract
Bioprocesses converting carbon dioxide with molecular hydrogen to methane (CH4) are currently being developed to enable a transition to a renewable energy production system. In this study, we present a comprehensive physiological and biotechnological examination of 80 methanogenic archaea (methanogens) quantifying growth and CH4 production kinetics at hyperbaric pressures up to 50 bar with regard to media, macro-, and micro-nutrient supply, specific genomic features, and cell envelope architecture. Our analysis aimed to systematically prioritize high-pressure and high-performance methanogens. We found that the hyperthermophilic methanococci Methanotorris igneus and Methanocaldococcoccus jannaschii are high-pressure CH4 cell factories. Furthermore, our analysis revealed that high-performance methanogens are covered with an S-layer, and that they harbour the amino acid motif Tyrα444 Glyα445 Tyrα446 in the alpha subunit of the methyl-coenzyme M reductase. Thus, high-pressure biological CH4 production in pure culture could provide a purposeful route for the transition to a carbon-neutral bioenergy sector.
Collapse
Affiliation(s)
- Lisa-Maria Mauerhofer
- grid.10420.370000 0001 2286 1424Archaea Physiology & Biotechnology Group, Department Functional and Evolutionary Ecology, Universität Wien, Wien, Austria
| | - Sara Zwirtmayr
- grid.9970.70000 0001 1941 5140Institute for Chemical Technology of Organic Materials, Johannes Kepler Universität Linz, Linz, Austria
| | - Patricia Pappenreiter
- grid.9970.70000 0001 1941 5140Institute for Chemical Technology of Organic Materials, Johannes Kepler Universität Linz, Linz, Austria
| | | | | | - Barbara Reischl
- grid.10420.370000 0001 2286 1424Archaea Physiology & Biotechnology Group, Department Functional and Evolutionary Ecology, Universität Wien, Wien, Austria ,Krajete GmbH, Linz, Austria
| | - Tilman Schmider
- grid.10420.370000 0001 2286 1424Archaea Physiology & Biotechnology Group, Department Functional and Evolutionary Ecology, Universität Wien, Wien, Austria
| | - Ruth-Sophie Taubner
- grid.10420.370000 0001 2286 1424Archaea Physiology & Biotechnology Group, Department Functional and Evolutionary Ecology, Universität Wien, Wien, Austria ,grid.9970.70000 0001 1941 5140Institute for Chemical Technology of Organic Materials, Johannes Kepler Universität Linz, Linz, Austria
| | - Christian Paulik
- grid.9970.70000 0001 1941 5140Institute for Chemical Technology of Organic Materials, Johannes Kepler Universität Linz, Linz, Austria
| | - Simon K.-M. R. Rittmann
- grid.10420.370000 0001 2286 1424Archaea Physiology & Biotechnology Group, Department Functional and Evolutionary Ecology, Universität Wien, Wien, Austria
| |
Collapse
|
17
|
Jensen MB, Jensen B, Ottosen LDM, Kofoed MVW. Integrating H2 injection and reactor mixing for low-cost H2 gas-liquid mass transfer in full-scale in situ biomethanation. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2020.107869] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
18
|
Dahl Jønson B, Ujarak Sieborg M, Tahir Ashraf M, Yde L, Shin J, Shin SG, Mi Triolo J. Direct inoculation of a biotrickling filter for hydrogenotrophic methanogenesis. BIORESOURCE TECHNOLOGY 2020; 318:124098. [PMID: 32947139 DOI: 10.1016/j.biortech.2020.124098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 06/11/2023]
Abstract
Hydrogenotrophic biomethanation in a biotrickling filter has been reported to be a proven technology for biological biogas upgrading in recent studies. However, the preparation of enriched hydrogenotrophic methanogens in a separate reactor prior to biomethanation in a trickled bed is a lengthy procedure and therefore hard to apply on an industrial scale. This study explored the direct inoculation of anaerobic biogas digestate for simultaneous enrichment of hydrogenotrophic methanogens and biofilm immobilisation in a trickled bed system. The direct inoculation and formation of hydrogenotrophic biofilm was successful and resulted in a stable H2 loading rate of 11 [Formula: see text] , with the highest specific methane productivity recorded at 3.03 Nm3mR-3d-1 and a purity of 98% CH4 in thermophilic conditions. The DNA analysis confirmed that hydrogenotrophic methanogens dominated the archaeal consortia.
Collapse
Affiliation(s)
- Brian Dahl Jønson
- Department of Green Technology, University of Southern Denmark, Odense DK-5230, Denmark; Nature Energy A/S, Odense DK-5220, Denmark
| | - Mads Ujarak Sieborg
- Department of Green Technology, University of Southern Denmark, Odense DK-5230, Denmark
| | - Muhammad Tahir Ashraf
- Department of Green Technology, University of Southern Denmark, Odense DK-5230, Denmark
| | - Lars Yde
- Department of Green Technology, University of Southern Denmark, Odense DK-5230, Denmark
| | - Juhee Shin
- Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongnam National University of Science and Technology, Jinju, Gyeongnam 52725, Republic of Korea
| | - Seung Gu Shin
- Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongnam National University of Science and Technology, Jinju, Gyeongnam 52725, Republic of Korea
| | - Jin Mi Triolo
- Department of Green Technology, University of Southern Denmark, Odense DK-5230, Denmark.
| |
Collapse
|
19
|
Nikolic M, Cáceres Najarro M, Johannsen I, Iruthayaraj J, Ceccato M, Feilberg A. Copper Adsorption on Lignin for the Removal of Hydrogen Sulfide. Molecules 2020; 25:E5577. [PMID: 33261028 PMCID: PMC7729966 DOI: 10.3390/molecules25235577] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 01/01/2023] Open
Abstract
Lignin is currently an underutilized part of biomass; thus, further research into lignin could benefit both scientific and commercial endeavors. The present study investigated the potential of kraft lignin as a support material for the removal of hydrogen sulfide (H2S) from gaseous streams, such as biogas. The removal of H2S was enabled by copper ions that were previously adsorbed on kraft lignin. Copper adsorption was based on two different strategies: either directly on lignin particles or by precipitating lignin from a solution in the presence of copper. The H2S concentration after the adsorption column was studied using proton-transfer-reaction mass spectrometry, while the mechanisms involved in the H2S adsorption were studied with X-ray photoelectron spectroscopy. It was determined that elemental sulfur was obtained during the H2S adsorption in the presence of kraft lignin and the differences relative to the adsorption on porous silica as a control are discussed. For kraft lignin, only a relatively low removal capacity of 2 mg of H2S per gram was identified, but certain possibilities to increase the removal capacity are discussed.
Collapse
Affiliation(s)
- Miroslav Nikolic
- Department of Engineering, Aarhus University, Hangøvej 2, 8200 Aarhus, Denmark; (M.N.); (I.J.); (J.I.); (M.C.)
| | - Marleny Cáceres Najarro
- Department of Engineering, Aarhus University, Hangøvej 2, 8200 Aarhus, Denmark; (M.N.); (I.J.); (J.I.); (M.C.)
| | - Ib Johannsen
- Department of Engineering, Aarhus University, Hangøvej 2, 8200 Aarhus, Denmark; (M.N.); (I.J.); (J.I.); (M.C.)
| | - Joseph Iruthayaraj
- Department of Engineering, Aarhus University, Hangøvej 2, 8200 Aarhus, Denmark; (M.N.); (I.J.); (J.I.); (M.C.)
| | - Marcel Ceccato
- Department of Engineering, Aarhus University, Hangøvej 2, 8200 Aarhus, Denmark; (M.N.); (I.J.); (J.I.); (M.C.)
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| | - Anders Feilberg
- Department of Engineering, Aarhus University, Hangøvej 2, 8200 Aarhus, Denmark; (M.N.); (I.J.); (J.I.); (M.C.)
| |
Collapse
|
20
|
Logroño W, Popp D, Kleinsteuber S, Sträuber H, Harms H, Nikolausz M. Microbial Resource Management for Ex Situ Biomethanation of Hydrogen at Alkaline pH. Microorganisms 2020; 8:microorganisms8040614. [PMID: 32344539 PMCID: PMC7232305 DOI: 10.3390/microorganisms8040614] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/16/2020] [Accepted: 04/21/2020] [Indexed: 12/13/2022] Open
Abstract
Biomethanation is a promising solution to convert H2 (produced from surplus electricity) and CO2 to CH4 by using hydrogenotrophic methanogens. In ex situ biomethanation with mixed cultures, homoacetogens and methanogens compete for H2/CO2. We enriched a hydrogenotrophic microbiota on CO2 and H2 as sole carbon and energy sources, respectively, to investigate these competing reactions. The microbial community structure and dynamics of bacteria and methanogenic archaea were evaluated through 16S rRNA and mcrA gene amplicon sequencing, respectively. Hydrogenotrophic methanogens and homoacetogens were enriched, as acetate was concomitantly produced alongside CH4. By controlling the media composition, especially changing the reducing agent, the formation of acetate was lowered and grid quality CH4 (≥97%) was obtained. Formate was identified as an intermediate that was produced and consumed during the bioprocess. Stirring intensities ≥ 1000 rpm were detrimental, probably due to shear force stress. The predominating methanogens belonged to the genera Methanobacterium and Methanoculleus. The bacterial community was dominated by Lutispora. The methanogenic community was stable, whereas the bacterial community was more dynamic. Our results suggest that hydrogenotrophic communities can be steered towards the selective production of CH4 from H2/CO2 by adapting the media composition, the reducing agent and the stirring intensity.
Collapse
|