1
|
Li X, Yu X, Liu Q, Zhang Y, Wang Q. Lipid Production of Schizochytrium sp. HBW10 Isolated from Coastal Waters of Northern China Cultivated in Food Waste Hydrolysate. Microorganisms 2023; 11:2714. [PMID: 38004726 PMCID: PMC10672807 DOI: 10.3390/microorganisms11112714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/31/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
Marine oleaginous thraustochytrids have attracted increasing attention for their great potential in producing high-value active metabolites using various industrial and agricultural waste. Food waste containing abundant nutrients is considered as an excellent feedstock for microbial fermentation. In this study, a thraustochytrid strain Schizochytrium sp. HBW10 was isolated from a water column in Bohai Bay in Northern China for the first time. Further lipid production characteristics of S. sp. HBW10 were investigated utilizing sulfuric acid hydrolysate of food waste (FWH) from two different restaurants (FWH1 and FWH2) with the initial pH value adjusted by NaOH or NaHCO3. Results showed that the highest concentration of total fatty acids (TFAs) was observed in FWH2 medium with the 50% content level on the fifth day, reaching up to 0.34 g/L. A higher initial pH promoted the growth and saturated fatty acid (SFA) accumulation of S. sp. HBW10, achieving nearly 100% of the sum of saturated and monounsaturated fatty acids (SMUFAs) in TFAs with initial pH7 and pH8 in FWH1 medium. This work demonstrates a possible way for lipid production by thraustochytrids using food waste hydrolysate with a higher initial pH (pH7~pH8) adjusted by NaHCO3.
Collapse
Affiliation(s)
- Xiaofang Li
- Ocean College, Hebei Agricultural University, Qinhuangdao 066000, China; (X.L.)
| | - Xinping Yu
- Ocean College, Hebei Agricultural University, Qinhuangdao 066000, China; (X.L.)
| | - Qian Liu
- Ocean College, Hebei Agricultural University, Qinhuangdao 066000, China; (X.L.)
| | - Yong Zhang
- Marine Environment Monitoring Central Station of Qinhuangdao, SOA, Qinhuangdao 066002, China
| | - Qiuzhen Wang
- Ocean College, Hebei Agricultural University, Qinhuangdao 066000, China; (X.L.)
| |
Collapse
|
2
|
Mayali X, Samo TJ, Kimbrel JA, Morris MM, Rolison K, Swink C, Ramon C, Kim YM, Munoz-Munoz N, Nicora C, Purvine S, Lipton M, Stuart RK, Weber PK. Single-cell isotope tracing reveals functional guilds of bacteria associated with the diatom Phaeodactylum tricornutum. Nat Commun 2023; 14:5642. [PMID: 37704622 PMCID: PMC10499878 DOI: 10.1038/s41467-023-41179-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/24/2023] [Indexed: 09/15/2023] Open
Abstract
Bacterial remineralization of algal organic matter fuels algal growth but is rarely quantified. Consequently, we cannot currently predict whether some bacterial taxa may provide more remineralized nutrients to algae than others. Here, we quantified bacterial incorporation of algal-derived complex dissolved organic carbon and nitrogen and algal incorporation of remineralized carbon and nitrogen in fifteen bacterial co-cultures growing with the diatom Phaeodactylum tricornutum at the single-cell level using isotope tracing and nanoSIMS. We found unexpected strain-to-strain and cell-to-cell variability in net carbon and nitrogen incorporation, including non-ubiquitous complex organic nitrogen utilization and remineralization. We used these data to identify three distinct functional guilds of metabolic interactions, which we termed macromolecule remineralizers, macromolecule users, and small-molecule users, the latter exhibiting efficient growth under low carbon availability. The functional guilds were not linked to phylogeny and could not be elucidated strictly from metabolic capacity as predicted by comparative genomics, highlighting the need for direct activity-based measurements in ecological studies of microbial metabolic interactions.
Collapse
Affiliation(s)
- Xavier Mayali
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA.
| | - Ty J Samo
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Jeff A Kimbrel
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Megan M Morris
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Kristina Rolison
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Courtney Swink
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Christina Ramon
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Young-Mo Kim
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Nathalie Munoz-Munoz
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Carrie Nicora
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Sam Purvine
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Mary Lipton
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Rhona K Stuart
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Peter K Weber
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| |
Collapse
|
3
|
Russo GL, Langellotti AL, Verardo V, Martín-García B, Oliviero M, Baselice M, Di Pierro P, Sorrentino A, Viscardi S, Marileo L, Sacchi R, Masi P. Bioconversion of Cheese Whey and Food By-Products by Phaeodactylum tricornutum into Fucoxanthin and n-3 Lc-PUFA through a Biorefinery Approach. Mar Drugs 2023; 21:md21030190. [PMID: 36976239 PMCID: PMC10054534 DOI: 10.3390/md21030190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/28/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
This study investigates the potential of utilizing three food wastes: cheese whey (CW), beet molasses (BM), and corn steep liquor (CSL) as alternative nutrient sources for the cultivation of the diatom Phaeodactylum tricornutum, a promising source of polyunsaturated eicosapentaenoic acid (EPA) and the carotenoid fucoxanthin. The CW media tested did not significantly impact the growth rate of P. tricornutum; however, CW hydrolysate significantly enhances cell growth. BM in cultivation medium enhances biomass production and fucoxanthin yield. The optimization of the new food waste medium was conducted through the application of a response surface methodology (RSM) using hydrolyzed CW, BM, and CSL as factors. The results showed a significant positive impact of these factors (p < 0.005), with an optimized biomass yield of 2.35 g L-1 and a fucoxanthin yield of 3.64 mg L-1 using a medium composed of 33 mL L-1 of CW, 2.3 g L-1 of BM, and 2.24 g L-1 of CSL. The experimental results reported in this study showed that some food by-products from a biorefinery perspective could be utilized for the efficient production of fucoxanthin and other high-added-value products such as eicosapentaenoic acid (EPA).
Collapse
Affiliation(s)
- Giovanni Luca Russo
- CAISIAL Center, University of Naples Federico II, Via Università 133, 80055 Portici, Italy
| | | | - Vito Verardo
- Department of Nutrition and Food Science, Campus of Cartuja, University of Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology 'José Mataix', Biomedical Research Center, University of Granada, Avda del Conocimiento sn., 18100 Granada, Spain
| | - Beatriz Martín-García
- Department of Nutrition and Food Science, Campus of Cartuja, University of Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology 'José Mataix', Biomedical Research Center, University of Granada, Avda del Conocimiento sn., 18100 Granada, Spain
| | - Maria Oliviero
- Department of Animal Health, Experimental Zooprophylactic Institute of Southern Italy, Via Salute, 2, 80055 Portici, Italy
| | - Marco Baselice
- Department of Civil, Environmental, Land, Construction and Chemistry (DICATECh), Politecnico di Bari, 70126 Bari, Italy
| | - Prospero Di Pierro
- Department of Agricultural Sciences, Unit of Food Science and Technology, University of Naples Federico II, 80055 Portici, Italy
| | - Angela Sorrentino
- CAISIAL Center, University of Naples Federico II, Via Università 133, 80055 Portici, Italy
| | - Sharon Viscardi
- Biotechnology of Functional Foods Laboratory, Camino Sanquilco, Parcela 18, Padre Las Casas 4850827, La Araucanía, Chile
- Núcleo de Investigación en Producción Alimentaria, Universidad Católica de Temuco, Rudecindo Ortega 02950, Temuco 4780694, La Araucanía, Chile
| | - Luis Marileo
- Biotechnology of Functional Foods Laboratory, Camino Sanquilco, Parcela 18, Padre Las Casas 4850827, La Araucanía, Chile
- Programa de Doctorado en Ciencias Agropecuarias, Facultad de Recursos Naturales, Universidad Católica de Temuco, Rudecindo Ortega 02950, Temuco 4813302, La Araucanía, Chile
| | - Raffaele Sacchi
- Department of Agricultural Sciences, Unit of Food Science and Technology, University of Naples Federico II, 80055 Portici, Italy
| | - Paolo Masi
- CAISIAL Center, University of Naples Federico II, Via Università 133, 80055 Portici, Italy
- Department of Agricultural Sciences, Unit of Food Science and Technology, University of Naples Federico II, 80055 Portici, Italy
| |
Collapse
|
4
|
Penhaul Smith J, Hughes A, McEvoy L, Day J. Use of crude glycerol for mixotrophic culture of Phaeodactylum tricornutum. ALGAL RES 2023. [DOI: 10.1016/j.algal.2022.102929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Okara Waste as a Substrate for the Microalgae Phaeodactylum tricornutum Enhances the Production of Algal Biomass, Fucoxanthin, and Polyunsaturated Fatty Acids. FERMENTATION 2022. [DOI: 10.3390/fermentation9010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Despite the rich nutritional content of okara, the majority remains underutilized and discarded as food waste. In this study, solid-state fermentation of okara with food-grade fungi was performed to extract and solubilize any remnant nutrients locked within the lignocellulosic matrix to produce a nutrient-rich okara fermentate. Fermented okara media (FOM) was used as the sole nutrient source for growing marine diatom, Phaeodactylum tricornutum. Results have shown a two-fold increase in biomass production when grown on FOM (0.52 g L−1) as compared with conventional Guillard’s F/2 media (0.25 g L−1). Furthermore, cellular fucoxanthin content was enhanced significantly by two-fold to reach a final concentration of 15.3 mg g−1 compared to 7.3 mg g−1. Additionally, a significantly higher amount of polyunsaturated fatty acid (PUFA) was produced, particularly eicosapentaenoic acid (EPA) which yield has increased by nearly three-fold. Metabolomics analysis of intracellular contents in fermented okara culture revealed a significantly enhanced accumulation of nitrogenous metabolites, alongside the decrease in sugar metabolites as compared to F/2 culture, thus indicating metabolic flux towards pathways involved in cellular growth. This study demonstrated an innovative and low-cost strategy of using fermented okara as a nutritious substrate for achieving a sustainable media replacement for high density algal growth with a simultaneous enhancement of production in highly valued nutraceuticals, including fucoxanthin and EPA.
Collapse
|
6
|
Wang X, Mou JH, Qin ZH, Hao TB, Zheng L, Buhagiar J, Liu YH, Balamurugan S, He Y, Lin CSK, Yang WD, Li HY. Supplementation with rac-GR24 Facilitates the Accumulation of Biomass and Astaxanthin in Two Successive Stages of Haematococcus pluvialis Cultivation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4677-4689. [PMID: 35384649 DOI: 10.1021/acs.jafc.2c00479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The unicellular freshwater green alga Haematococcus pluvialis has attracted much research attention due to its biosynthetic ability for large amounts of astaxanthin, a blood-red ketocarotenoid that is used in cosmetics, nutraceuticals, and pharmaceuticals. Recently, numerous studies have investigated the functions of natural astaxanthin; however, the high cost of the production of astaxanthin from H. pluvialis cultures restricts its commercial viability. There is an urgent need to fulfill commercial demands by increasing astaxanthin accumulation from H. pluvialis cultures. In this study, we discovered that treatment of H. pluvialis cultures at the beginning of the macrozooid stage (day 0) with 1 μM rac-GR24, a synthetic analogue of strigolactones (a class of phytohormones), led to significant increases in biomass [up to a maximum dry cell weight (DCW) of 0.53 g/L] during the macrozooid stage and astaxanthin (from 0.63 to 5.32% of DCW) during the hematocyst stage. We elucidated that this enhancement of biomass accumulation during the macrozooid stage by rac-GR24 is due to its increasing CO2 utilization efficiency in photosynthesis and carbohydrate biosynthesis. We also found that rac-GR24 stimulated the overproduction of nicotinamide adenine dinucleotide phosphate (NADPH) and antioxidant enzymes in H. pluvialis cultures, which alleviated the oxidative damage caused by reactive oxygen species generated during the hematocyst stage due to the exhaustion of nitrogen supplies. Moreover, rac-GR24 treatment of H. pluvialis synergistically altered the activity of the pathways of fatty acid biosynthesis and astaxanthin esterification, which resulted in larger amounts of astaxanthin being generated by rac-GR24-treated cultures than by controls. In summary, we have developed a feasible and economic rac-GR24-assisted strategy that increases the amounts of biomass and astaxanthin generated by H. pluvialis cultures, and have provided novel insights into the mechanistic roles of rac-GR24 to achieve these effects.
Collapse
Affiliation(s)
- Xiang Wang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510000, China
| | - Jin-Hua Mou
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon 999077, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510000, China
| | - Zi-Hao Qin
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon 999077, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510000, China
| | - Ting-Bin Hao
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lan Zheng
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Joseph Buhagiar
- Department of Biology, University of Malta, Msida 2080, Malta
| | - Yu-Hong Liu
- Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528231, China
| | | | - Yuhe He
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon 999077, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510000, China
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon 999077, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510000, China
| | - Wei-Dong Yang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hong-Ye Li
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
7
|
Sivakumar R, Sachin S, Priyadarshini R, Ghosh S. Sustainable production of EPA-rich oil from microalgae: Towards an algal biorefinery. J Appl Microbiol 2022; 132:4170-4185. [PMID: 35238451 DOI: 10.1111/jam.15508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 02/07/2022] [Accepted: 02/26/2022] [Indexed: 11/27/2022]
Abstract
Utilization of sustainable natural resources such as microalgae has been considered for the production of biofuels, aquaculture feed, high-value bioactives such as omega-3 fatty acids, carotenoids, etc. Eicosapentaenoic acid (EPA) is an omega-3 fatty acid present in fish oil, which is of physiological importance to both humans and fishes. Marine microalgae are sustainable sources of lipid rich in EPA and different species have been explored for the production of EPA as a single product. There has been a rising interest in the concept of a multi-product biorefinery, focusing on maximum valorization of the algal biomass. Targeting one or more value-added compounds in a biorefinery scenario can improve the commercial viability of low-value products like triglycerides for biofuel. This approach has been viewed by technologists and experts as a sustainable and economically feasible possibility for the large-scale production of microalgae for its potential applications in biodiesel and jet fuel production, nutraceuticals, animal and aquaculture feeds, etc. In this review paper, we describe the recent developments in the production of high-value EPA-rich oil from microalgae, emphasizing on the upstream and downstream bioprocess techniques, and the advantages of considering an EPA-rich oil based biorefinery.
Collapse
Affiliation(s)
- Rohith Sivakumar
- Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Sharika Sachin
- Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Rajashri Priyadarshini
- Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Sanjoy Ghosh
- Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
8
|
Wang X, Li C, Lam CH, Subramanian K, Qin ZH, Mou JH, Jin M, Chopra SS, Singh V, Ok YS, Yan J, Li HY, Lin CSK. Emerging waste valorisation techniques to moderate the hazardous impacts, and their path towards sustainability. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127023. [PMID: 34482075 DOI: 10.1016/j.jhazmat.2021.127023] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/12/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
Due to the recent boom in urbanisation, economy, and global population, the amount of waste generated worldwide has increased tremendously. The World Bank estimates that global waste generation is expected to increase 70% by 2050. Disposal of waste is already a major concern as it poses risks to the environment, human health, and economy. To tackle this issue and maximise potential environmental, economic, and social benefits, waste valorisation - a value-adding process for waste materials - has emerged as a sustainable and efficient strategy. The major objective of waste valorisation is to transit to a circular economy and maximally alleviate hazardous impacts of waste. This review conducts bibliometric analysis to construct a co-occurrence network of research themes related to management of five major waste streams (i.e., food, agricultural, textile, plastics, and electronics). Modern valorisation technologies and their efficiencies are highlighted. Moreover, insights into improvement of waste valorisation technologies are presented in terms of sustainable environmental, social, and economic performances. This review summarises highlighting factors that impede widespread adoption of waste valorisation, such as technology lock-in, optimisation for local conditions, unfavourable regulations, and low investments, with the aim of devising solutions that explore practical, feasible, and sustainable means of waste valorisation.
Collapse
Affiliation(s)
- Xiang Wang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; School of Energy and Environment, City University of Hong Kong, China
| | - Chong Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Chun Ho Lam
- School of Energy and Environment, City University of Hong Kong, China
| | | | - Zi-Hao Qin
- School of Energy and Environment, City University of Hong Kong, China
| | - Jin-Hua Mou
- School of Energy and Environment, City University of Hong Kong, China
| | - Mushan Jin
- School of Energy and Environment, City University of Hong Kong, China
| | | | - Vijay Singh
- Integrated Bioprocessing Research Laboratory, University of Illinois at Urbana, Champaign, 338, AESB, 1304 West Pennsylvania Avenue, Urbana, IL 61801, USA
| | - Yong Sik Ok
- Korea Biochar Research Center, Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, South Korea
| | - Jianbin Yan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Hong-Ye Li
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, China.
| |
Collapse
|
9
|
Park WK, Min K, Yun JH, Kim M, Kim MS, Park GW, Lee SY, Lee S, Lee J, Lee JP, Moon M, Lee JS. Paradigm shift in algal biomass refinery and its challenges. BIORESOURCE TECHNOLOGY 2022; 346:126358. [PMID: 34800638 DOI: 10.1016/j.biortech.2021.126358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Microalgae have been studied and tested for over 70 years. However, biodiesel, the prime target of the algal industry, has suffered from low competitiveness and current steps toward banning the internal combustion engine all over the world. Meanwhile, interest in reducing CO2 emissions has grown as the world has witnessed disasters caused by global warming. In this situation, in order to maximize the benefits of the microalgal industry and surmount current limitations, new breakthroughs are being sought. First, drop-in fuel, mandatory for the aviation and maritime industries, has been discussed as a new product. Second, methods to secure stable and feasible outdoor cultivation focusing on CO2 sequestration were investigated. Lastly, the need for an integrated refinery process to simultaneously produce multiple products has been discussed. While the merits of microalgae industry remain valid, further investigations into these new frontiers would put algal industry at the core of future bio-based economy.
Collapse
Affiliation(s)
- Won-Kun Park
- Department of Chemistry & Energy Engineering, Sangmyung University, Seoul 03016, Republic of Korea
| | - Kyoungseon Min
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea
| | - Jin-Ho Yun
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Minsik Kim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Min-Sik Kim
- Energy Resources Upcycling Research Laboratory, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea
| | - Gwon Woo Park
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea
| | - Soo Youn Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea
| | - Sangmin Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea
| | - Jiye Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea
| | - Joon-Pyo Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea
| | - Myounghoon Moon
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea.
| | - Jin-Suk Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea
| |
Collapse
|
10
|
Wang Z, Mou J, Qin Z, He Y, Sun Z, Wang X, Lin CSK. An auxin-like supermolecule to simultaneously enhance growth and cumulative eicosapentaenoic acid production in Phaeodactylum tricornutum. BIORESOURCE TECHNOLOGY 2022; 345:126564. [PMID: 34915115 DOI: 10.1016/j.biortech.2021.126564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Phaeodactylum tricornutum, a model alga, is well known for its ability to accumulate intracellular omega-3 eicosapentaenoic acid (EPA). However, P.tricornutum cells need to have a higher EPA content if they are to be used for industrial applications. In this study, an auxin-like supermolecule (SM) was synthesised and used for the cultivation of P. tricornutum. Results show that the addition of 1 ppm of SM significantly increased the P. tricornutum cell density and boosted the P. tricornutum biomass. The experimental group treated with 5 ppm of SM, had an EPA content of 31.7%, which was a 2.09-fold increase over the EPA content in the untreated group. Overall, our results demonstrated that SM can significantly improve the microalgal growth and EPA accumulation in P. tricornutum, providing a feasible strategy to achieve efficient and cost-effective EPA production.
Collapse
Affiliation(s)
- Zhenyao Wang
- School of Energy and Environment, City University of Hong Kong, Hong Kong, PR China; Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, PR China
| | - Jinhua Mou
- School of Energy and Environment, City University of Hong Kong, Hong Kong, PR China
| | - Zihao Qin
- School of Energy and Environment, City University of Hong Kong, Hong Kong, PR China
| | - Yuhe He
- School of Energy and Environment, City University of Hong Kong, Hong Kong, PR China; Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, PR China
| | - Zheng Sun
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China
| | - Xiang Wang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Hong Kong, PR China; Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, PR China.
| |
Collapse
|
11
|
Kim S, Ishizawa H, Inoue D, Toyama T, Yu J, Mori K, Ike M, Lee T. Microalgal transformation of food processing byproducts into functional food ingredients. BIORESOURCE TECHNOLOGY 2022; 344:126324. [PMID: 34785335 DOI: 10.1016/j.biortech.2021.126324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/06/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Large amounts of food processing byproducts (FPBs) are generated from food manufacturing industries, the second-largest portion of food waste generation. FPBs may require additional cost for post-treatment otherwise cause environmental contamination. Valorization of FPBs into food ingredients by microalgae cultivation can save a high cost for organic carbon sources and nutrients from medium cost. This study reviews FPBs generation categorized by industry and traditional disposal. In contrast with the low-value production, FPBs utilization as the nutrient-abundant medium for microalgae can lead to high-value production. Due to the complex composition in FPBs, various pretreatment methods have been applied to extract the desired compounds and medium preparation. Using the FPB-based medium resulted in cost reduction and a productivity enhancement in previous literature. Although there are still challenges to overcome to achieve economic viability and environmental sustainability, the microalgal transformation of FPBs is attractive for functional food ingredients production.
Collapse
Affiliation(s)
- Sunah Kim
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Hidehiro Ishizawa
- Research Institute of Green Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka 432-8561, Japan
| | - Daisuke Inoue
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tadashi Toyama
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Jaecheul Yu
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Kazuhiro Mori
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Michihiko Ike
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Taeho Lee
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
12
|
Mou JH, Tahar IB, Wang ZY, Ong KL, Li C, Qin ZH, Wang X, Lin CSK, Fickers P. Enhancing the recombinant protein productivity of Yarrowia lipolytica using insitu fibrous bed bioreactor. BIORESOURCE TECHNOLOGY 2021; 340:125672. [PMID: 34352642 DOI: 10.1016/j.biortech.2021.125672] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/22/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
In this study, the ability of Yarrowia lipolytica to produce the recombinant lipase CalB from Candida antarctica, used as a model protein has been compared across different bioreactor processes using glycerol, a byproduct from the biodiesel industry as the main carbon source. Batch, pulsed fed-batch (PFB), and continuous fed-batch (CFB) strategies were first compared using classical stirred tank (STR) bioreactors in terms of biomass production, carbon source uptake, and lipase production. Additionally, an in situ fibrous bed bioreactor (isFBB) was developed using sugarcane bagasse as a cell immobilization support. The maximum lipase titer achieved using the isFBB culture mode was 38%, 33%, and 49% higher than those obtained using the batch, PFB, and CFB cultures, respectively. The lipase productivity in isFBB mode (142U/mL/h) was 1.4-fold higher than that obtained using batch free cell cultures. These results highlight that isFBB is an efficient technology for the production of recombinant enzymes.
Collapse
Affiliation(s)
- Jin-Hua Mou
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Imen Ben Tahar
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liege, Avenue de la Faculté, 2B, 5030, Gembloux, Belgium
| | - Zhen-Yao Wang
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Khai Lun Ong
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Chong Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zi-Hao Qin
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Xiang Wang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China.
| | - Patrick Fickers
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liege, Avenue de la Faculté, 2B, 5030, Gembloux, Belgium
| |
Collapse
|
13
|
Sustainable production of food grade omega-3 oil using aquatic protists: Reliability and future horizons. N Biotechnol 2021; 62:32-39. [PMID: 33486117 DOI: 10.1016/j.nbt.2021.01.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 02/07/2023]
Abstract
Biotechnological production of omega-3 polyunsaturated fatty acids (PUFAs) has become a commercial alternative to fish oil in the past twenty years. Compared to PUFA production by fatty fishes, that from microorganisms has increased due to its promising sustainability and high product safety and to increasing awareness in the expanding vegan market. Although autotrophic production by microalgae seems to be more sustainable in the long term, to date most of the microbial production of omega-3 is carried out under heterotrophic conditions using conventional fermentation technologies. The present review critically analyzes the main reasons for this discrepancy and reports on the recent advances and the most promising approaches for its future development in the context of sustainability and circular economy.
Collapse
|
14
|
Khan MJ, Bawra N, Verma A, Kumar V, Pugazhendhi A, Joshi KB, Vinayak V. Cultivation of diatom Pinnularia saprophila for lipid production: A comparison of methods for harvesting the lipid from the cells. BIORESOURCE TECHNOLOGY 2021; 319:124129. [PMID: 32977098 DOI: 10.1016/j.biortech.2020.124129] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/10/2020] [Accepted: 09/12/2020] [Indexed: 06/11/2023]
Abstract
The present study underlines the application of centrifugal force and pulse electric field techniques along with its comparison to resonance energy to harvest lipid from a fixed number of Pinnularia saprophila cells. Sulpho phospho vanillin method for lipid, and analysis of cells via microscopy was done. It was found that a centrifugal force of 11110×g for 15 min allowed ~3.39% lipid to ooze out with 2.5% cell destruction. Alternatively, when same numbers of diatom cells were subjected to pulse electric field at 110 kV/27 mA for 10 µs, maximum lipid production of 2.86% with 21.19% cell death was observed. It was perceived that diatom cells in a micro resonating micro fluidic chamber for 20 min harvested 4.4% of lipid with 11.16% of cell death. However, microfluidic device needs to be scaled up using cheaper material instead of silicon wafer, to be an efficient technique to milk lipid from diatoms.
Collapse
Affiliation(s)
- Mohd Jahir Khan
- Diatom Nanoengineering and Metabolism Lab (DNM), School of Applied Sciences, Dr. Harisingh Gour Central University, Sagar, MP 470003, India
| | - Nisha Bawra
- Diatom Nanoengineering and Metabolism Lab (DNM), School of Applied Sciences, Dr. Harisingh Gour Central University, Sagar, MP 470003, India
| | - Aayush Verma
- Diatom Nanoengineering and Metabolism Lab (DNM), School of Applied Sciences, Dr. Harisingh Gour Central University, Sagar, MP 470003, India
| | - Vikas Kumar
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour University, Sagar, MP 470003, India
| | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
| | - Khashti Ballabh Joshi
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour University, Sagar, MP 470003, India
| | - Vandana Vinayak
- Diatom Nanoengineering and Metabolism Lab (DNM), School of Applied Sciences, Dr. Harisingh Gour Central University, Sagar, MP 470003, India.
| |
Collapse
|
15
|
Yao S, Xiong L, Chen X, Li H, Chen X. Comparative study of lipid production from cellulosic ethanol fermentation wastewaters by four oleaginous yeasts. Prep Biochem Biotechnol 2020; 51:669-677. [PMID: 33302781 DOI: 10.1080/10826068.2020.1852416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The biochemical treatment of cellulosic ethanol wastewater (CEW) is considered to be an ideal green process. To screen out the best oleaginous yeastfor the utilization of cellulosic ethanol wastewater, four oleaginous yeasts (Trichosporon cutaneum, Rhorosporidium toruloides, Cryptococcus albidus and T. coremiiforme) were compared to assess their abilities for lipid production in terms of biomass production, lipid content and lipid yield. Furthermore, thechemical oxygen demand (COD) conversion rate, COD degradation and fatty acid composition were calculated to analyze the effect of wastewaters treatment. According to the fermentation results, the highest biomass and lipid yield of T. cutaneum in CEW were 20.945 and 1.56 g/L, respectively, while the R. toruloides reached the highest lipid content (17.32%). The maximum conversion rates of T. cutaneum are 73.64 and 6.06%, respectively, in terms of conversion yield of biomass/COD and lipids/COD. The content of fatty acids showed that after six days' fermentation, T. coremiiforme obtained the highest unsaturated fatty acid content, the content of C18:1 and C18:2 was 57.64%. This study suggests that T. cutaneum has great potential for lipid production and wastewaters treatment from cellulosic ethanol fermentation.
Collapse
Affiliation(s)
- Shimiao Yao
- Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou, P. R. China.,Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, P. R. China.,Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, P. R. China.,R&D Center of Xuyi Attapulgite Applied Technology, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Xuyi, People's Republic of China
| | - Lian Xiong
- Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou, P. R. China.,Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, P. R. China.,Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, P. R. China.,R&D Center of Xuyi Attapulgite Applied Technology, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Xuyi, People's Republic of China
| | - Xuefang Chen
- Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou, P. R. China.,Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, P. R. China.,Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, P. R. China.,R&D Center of Xuyi Attapulgite Applied Technology, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Xuyi, People's Republic of China
| | - Hailong Li
- Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou, P. R. China.,Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, P. R. China.,Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, P. R. China.,R&D Center of Xuyi Attapulgite Applied Technology, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Xuyi, People's Republic of China
| | - Xinde Chen
- Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou, P. R. China.,Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, P. R. China.,Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, P. R. China.,R&D Center of Xuyi Attapulgite Applied Technology, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Xuyi, People's Republic of China
| |
Collapse
|
16
|
Wang X, Zhang MM, Sun Z, Liu SF, Qin ZH, Mou JH, Zhou ZG, Lin CSK. Sustainable lipid and lutein production from Chlorella mixotrophic fermentation by food waste hydrolysate. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123258. [PMID: 32947693 DOI: 10.1016/j.jhazmat.2020.123258] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/24/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
Bioconversion of food waste into value-added products is a promising way to tackle the global food waste management problem. In this study, a novel valorisation strategy for bioenergy and lutein production via microalgal fermentation was investigated. Significant amount of glucose was recovered from enzymatic hydrolysis of food waste. The resultant hydrolysate was then utilised as culture medium in mixotrophic cultivation of Chlorella sp. to obtain high levels of lipid and lutein, whose accumulation patterns were consistent with molecular analyses. The resultant algal lipid derived from microalgal biomass using food hydrolysate was at high quality in terms of biodiesel properties. Further, in semi-continuous fermentation, the average algal biomass was 6.1 g L-1 with 2.5 g L-1 lipid and 38.5 mg L-1 lutein using hydrolysate with an initial glucose concentration of 10 g L-1. Meanwhile, the resultant algal biomass was 6.9 g L-1 with 1.8 g L-1 lipid and 63.0 mg L-1 lutein using hydrolysate with an initial glucose concentration of 20 g L-1, which suggests food waste hydrolysate could trigger algal products preferences. The experimental results of this study suggested the potential of microalgae as a platform for bioconversion of food waste into high-value products, especially sustainable bioenergy.
Collapse
Affiliation(s)
- Xiang Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education; International Research Center for Marine Biosciences, Ministry of Science and Technology; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Man-Man Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education; International Research Center for Marine Biosciences, Ministry of Science and Technology; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Zheng Sun
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education; International Research Center for Marine Biosciences, Ministry of Science and Technology; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
| | - Si-Fen Liu
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Zi-Hao Qin
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Jin-Hua Mou
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Zhi-Gang Zhou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education; International Research Center for Marine Biosciences, Ministry of Science and Technology; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
17
|
The Prospects of Agricultural and Food Residue Hydrolysates for Sustainable Production of Algal Products. ENERGIES 2020. [DOI: 10.3390/en13236427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The growing demand of microalgal biomass for biofuels, nutraceuticals, cosmetics, animal feed, and other bioproducts has created a strong interest in developing low-cost sustainable cultivation media and methods. Agricultural and food residues represent low-cost abundant and renewable sources of organic carbon that can be valorized for the cultivation of microalgae, while converting them from an environmental liability to an industrial asset. Biochemical treatment of such residues results in the release of various sugars, primarily glucose, sucrose, fructose, arabinose, and xylose along with other nutrients, such as trace elements. These sugars and nutrients can be metabolized in the absence of light (heterotrophic) or the presence of light (mixotrophic) by a variety of microalgae species for biomass and bioproduct production. The present review provides an up-to-date critical assessment of the prospects of various types of agricultural and food residues to serve as algae feedstocks and the microalgae species that can be grown on such residues under a range of cultivation conditions. Utilization of these feedstocks can create potential industrial applications for sustainable production of microalgal biomass and bioproducts.
Collapse
|
18
|
Su M, D'Imporzano G, Veronesi D, Afric S, Adani F. Phaeodactylum tricornutum cultivation under mixotrophic conditions with glycerol supplied with ultrafiltered digestate: A simple biorefinery approach recovering C and N. J Biotechnol 2020; 323:73-81. [PMID: 32745506 DOI: 10.1016/j.jbiotec.2020.07.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/23/2020] [Accepted: 07/27/2020] [Indexed: 11/29/2022]
Abstract
Phaeodactylum tricornutum was cultivated mixotrophically in batch mode providing glycerol as the C source, i.e., 0.02, 0.03 and 0.04 Mol L-1 glycerol, and ultrafiltered digestate (UF) as an N source. Biomass productivity, biomass composition, N efficiency use and total energy balance were recorded and compared to those under autotrophic conditions. Under mixotrophic conditions (0.03 Mol L-1 and 0.04 Mol L-1 glycerol), biomass productivity of P. tricornutum increased by 1.29 and 1.60 times in comparison with autotrophic conditions. Algal protein content declined as glycerol concentration increased, contrary to the case of the carbohydrate content. Lipid content did not change but unexpectedly, a lower unsaturated fatty acid in mixotrophic culture was observed than that from autotrophic culture. Mixotrophic conditions offered a higher energy recovery efficiency (EFt) than autotrophic conditions (5.7 % in 0.04 Mol L-1 glycerol and 4.2 % in autotrophic trial, respectively). Additionally, the efficiency of glycerol conversion into biomass (EFgly) increased with the glycerol dose, achieving 22.8 % for 0.04 Mol L-1 glycerol.
Collapse
Affiliation(s)
- Min Su
- Gruppo Ricicla Lab. - Bioeconomy and Green Chemistry Lab., University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - Giuliana D'Imporzano
- Gruppo Ricicla Lab. - Bioeconomy and Green Chemistry Lab., University of Milan, Via Celoria 2, 20133 Milan, Italy.
| | - Davide Veronesi
- Gruppo Ricicla Lab. - Bioeconomy and Green Chemistry Lab., University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - Stefano Afric
- Gruppo Ricicla Lab. - Bioeconomy and Green Chemistry Lab., University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - Fabrizio Adani
- Gruppo Ricicla Lab. - Bioeconomy and Green Chemistry Lab., University of Milan, Via Celoria 2, 20133 Milan, Italy.
| |
Collapse
|
19
|
Kumar KK, Deeba F, Negi YS, Gaur NA. Harnessing pongamia shell hydrolysate for triacylglycerol agglomeration by novel oleaginous yeast Rhodotorula pacifica INDKK. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:175. [PMID: 33088345 PMCID: PMC7574204 DOI: 10.1186/s13068-020-01814-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND To meet the present transportation demands and solve food versus fuel issue, microbial lipid-derived biofuels are gaining attention worldwide. This study is focussed on high-throughput screening of oleaginous yeast by microwave-aided Nile red spectrofluorimetry and exploring pongamia shell hydrolysate (PSH) as a feedstock for lipid production using novel oleaginous yeast Rhodotorula pacifica INDKK. RESULTS A new oleaginous yeast R. pacifica INDKK was identified and selected for microbial lipid production. R. pacifica INDKK produced maximum 12.8 ± 0.66 g/L of dry cell weight and 6.78 ± 0.4 g/L of lipid titre after 120 h of growth, showed high tolerance to pre-treatment-derived inhibitors such as 5-hydroxymethyl furfural (5-HMF), (2 g/L), furfural (0.5 g/L) and acetic acid (0.5 g/L), and ability to assimilate C3, C5 and C6 sugars. Interestingly, R. pacifica INDKK showed higher lipid accumulation when grown in alkali-treated saccharified PSH (AS-PSH) (0.058 ± 0.006 g/L/h) as compared to acid-treated detoxified PSH (AD-PSH) (0.037 ± 0.006 g/L/h) and YNB medium (0.055 ± 0.003 g/L/h). The major fatty acid constituents are oleic, palmitic, linoleic and linolenic acids with an estimated cetane number (CN) of about 56.7, indicating the good quality of fuel. CONCLUSION These results suggested that PSH and R. pacifica INDKK could be considered as potential feedstock for sustainable biodiesel production.
Collapse
Affiliation(s)
- Kukkala Kiran Kumar
- International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067 India
| | - Farha Deeba
- International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067 India
| | - Yuvraj Singh Negi
- Department of Polymer & Process Engineering, Indian Institute of Technology Roorkee, Uttarakhand, 247667 India
| | - Naseem A. Gaur
- International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067 India
| |
Collapse
|
20
|
Wang X, Liu SF, Qin ZH, Balamurugan S, Li HY, Lin CSK. Sustainable and stepwise waste-based utilisation strategy for the production of biomass and biofuels by engineered microalgae. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114854. [PMID: 32504890 DOI: 10.1016/j.envpol.2020.114854] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/04/2020] [Accepted: 05/20/2020] [Indexed: 05/08/2023]
Abstract
Waste streams have emerged as potential feedstocks for biofuel production via microbial bioconversion. Metabolic engineering of the microalga Phaeodactylum tricornutum in its lipid biosynthetic pathways has been conducted with an aim to improve lipid production. However, there has been only limited achievement in satisfying biofuel demands by utilising extracellular organic carbons from low-cost waste streams. Herein, we present a successive staged cultivation mode, based on a previously engineered strain that co-overexpresses two key triacylglycerol biosynthesis genes. We first optimised microalgal biomass and lipid production by using food waste hydrolysate and crude glycerol as the cultivation media. Food waste hydrolysate (5% v/v) is a low-cost organic carbon source for enhanced microalgal biomass production, and the resulting lipid concentration was 1.08-fold higher with food-waste hydrolysate than that of the defined medium. Additionally, the resultant lipid concentration after using crude glycerol (100 mM) was 1.24-fold higher than that using the defined medium. Two carbon feeding modes (hybrid and sequential) were also performed to investigate the potential of engineered P. tricornutum with preliminary mechanistic analyses. The biodiesel properties of lipids produced in the hybrid mode were evaluated for potential application prospects. Collectively, this study demonstrates a waste stream utilisation strategy for efficient and sustainable microalgal biofuel production.
Collapse
Affiliation(s)
- Xiang Wang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Si-Fen Liu
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Zi-Hao Qin
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Srinivasan Balamurugan
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Department of Biotechnology, Bharathidasan University, Tiruchirappalli, 620024, India
| | - Hong-Ye Li
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
21
|
Patel A, Rova U, Christakopoulos P, Matsakas L. Mining of squalene as a value-added byproduct from DHA producing marine thraustochytrid cultivated on food waste hydrolysate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 736:139691. [PMID: 32497881 DOI: 10.1016/j.scitotenv.2020.139691] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/22/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
The commercial production of docosahexaenoic acid (DHA) from oleaginous microorganisms is getting more attention due to several advantages over fish oils. The processing cost became a major bottleneck for commercialization of DHA from microorganisms. The most of cost shares in the feedstock to cultivate the microorganisms and downstream processing. The cost of feedstock can be compensated with the utilization of substrate from waste stream whereas production of value-added chemicals boosts the economic viability of nutraceutical production. In the present study, the docosahexaenoic acid (DHA)-producing marine protist Aurantiochytrium sp. T66 was cultivated on post-consumption food waste hydrolysate for the mining of squalene. After 120 h of cultivation, cell dry weight was 14.7 g/L, of which 6.34 g/L (43.13%; w/w) were lipids. DHA accounted for 2.15 g/L (34.05%) of total extracted lipids or 0.15 g/gCDW. Maximum squalene concentration and yield were 1.05 g/L and 69.31 mg/gCDW, respectively. Hence, utilization of food waste represents an excellent low-cost strategy for cultivating marine oleaginous thraustochytrids and produce squalene as a byproduct of DHA.
Collapse
Affiliation(s)
- Alok Patel
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden.
| | - Ulrika Rova
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Paul Christakopoulos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Leonidas Matsakas
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| |
Collapse
|
22
|
Mok WK, Tan YX, Chen WN. Technology innovations for food security in Singapore: A case study of future food systems for an increasingly natural resource-scarce world. Trends Food Sci Technol 2020; 102:155-168. [PMID: 32834499 PMCID: PMC7303638 DOI: 10.1016/j.tifs.2020.06.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/15/2020] [Accepted: 06/14/2020] [Indexed: 02/09/2023]
Abstract
Background Food security is becoming an increasingly important global issue. Anthropogenic factors such as rapid urbanization and industrialization have strained finite resources like land and water. Therefore, against the impending threat of food security, the world can no longer rely on traditional methods to meet its needs. Instead, more creative and technologically advanced methods must be adopted to maximise diminishing natural resources. Singapore is a good case study of a small city-state that is trying to increase its own self-production of food using technology. Scope and approach This review highlights the technologies that Singapore have adopted in enhancing food security given its limitation in natural resources. These methodologies serve as a case study that can be used as a reference point in light of the increasingly finite natural resources. The review also presents the advantages of these techniques as well as challenges that need to be overcome for them to be more widely adopted. Key findings and conclusion To increase self-production of food and enhance its food security, Singapore has employed the use of technologies such as vertical farming and aquaponics in urban farming, nutrient recovery from food waste, biodegradable food packaging from durian rinds, natural preservatives, insect farming, microalgae and cultivated meat as alternative protein sources. These technologies workaround Singapore's land and natural resource constraints, which many countries around the world can adapt. However, many of them are still relatively nascent with numerous challenges, which have to be addressed before they can be widely accepted and implemented. Long term agriculture and pollution have led to depletion of natural resources. Technology innovations can be used to mitigate natural resource constraints. Singapore has adopted numerous technologies to enhance food security. Areas include urban farming, processing technology and alternative food sources. Singapore's model provides a good example to increase self-production of food.
Collapse
Affiliation(s)
- Wai Kit Mok
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, N1.2-B1-35, Singapore, 637459, Singapore
| | - Yong Xing Tan
- Interdisciplinary Graduate School, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore.,Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 CleanTech Loop, 1 CleanTech One #06-08, Singapore, 637141, Singapore
| | - Wei Ning Chen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, N1.2-B1-35, Singapore, 637459, Singapore
| |
Collapse
|
23
|
Leyland B, Boussiba S, Khozin-Goldberg I. A Review of Diatom Lipid Droplets. BIOLOGY 2020; 9:biology9020038. [PMID: 32098118 PMCID: PMC7168155 DOI: 10.3390/biology9020038] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/20/2022]
Abstract
The dynamic nutrient availability and photon flux density of diatom habitats necessitate buffering capabilities in order to maintain metabolic homeostasis. This is accomplished by the biosynthesis and turnover of storage lipids, which are sequestered in lipid droplets (LDs). LDs are an organelle conserved among eukaryotes, composed of a neutral lipid core surrounded by a polar lipid monolayer. LDs shield the intracellular environment from the accumulation of hydrophobic compounds and function as a carbon and electron sink. These functions are implemented by interconnections with other intracellular systems, including photosynthesis and autophagy. Since diatom lipid production may be a promising objective for biotechnological exploitation, a deeper understanding of LDs may offer targets for metabolic engineering. In this review, we provide an overview of diatom LD biology and biotechnological potential.
Collapse
|
24
|
Wang X, Liu SF, Li RY, Yang WD, Liu JS, Lin CSK, Balamurugan S, Li HY. TAG pathway engineering via GPAT2 concurrently potentiates abiotic stress tolerance and oleaginicity in Phaeodactylum tricornutum. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:160. [PMID: 32944076 PMCID: PMC7491103 DOI: 10.1186/s13068-020-01799-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 09/04/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND Despite the great potential of marine diatoms in biofuel sector, commercially viable biofuel production from native diatom strain is impractical. Targeted engineering of TAG pathway represents a promising approach; however, recruitment of potential candidate has been regarded as critical. Here, we identified a glycerol-3-phosphate acyltransferase 2 (GPAT2) isoform and overexpressed in Phaeodactylum tricornutum. RESULTS GPAT2 overexpression did not impair growth and photosynthesis. GPAT2 overexpression reduced carbohydrates and protein content, however, lipid content were significantly increased. Specifically, TAG content was notably increased by 2.9-fold than phospho- and glyco-lipids. GPAT2 overexpression elicited the push-and-pull strategy by increasing the abundance of substrates for the subsequent metabolic enzymes, thereby increased the expression of LPAAT and DGAT. Besides, GPAT2-mediated lipid overproduction coordinated the expression of NADPH biosynthetic genes. GPAT2 altered the fatty acid profile in TAGs with C16:0 as the predominant fatty acid moieties. We further investigated the impact of GPAT2 on conferring abiotic stress, which exhibited enhanced tolerance to hyposaline (70%) and chilling (10 ºC) conditions via altered fatty acid saturation level. CONCLUSIONS Collectively, our results exemplified the critical role of GPAT2 in hyperaccumulating TAGs with altered fatty acid profile, which in turn uphold resistance to abiotic stress conditions.
Collapse
Affiliation(s)
- Xiang Wang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science, Jinan University, Guangzhou, 510632 China
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Si-Fen Liu
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science, Jinan University, Guangzhou, 510632 China
| | - Ruo-Yu Li
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science, Jinan University, Guangzhou, 510632 China
| | - Wei-Dong Yang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science, Jinan University, Guangzhou, 510632 China
| | - Jie-Sheng Liu
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science, Jinan University, Guangzhou, 510632 China
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Srinivasan Balamurugan
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science, Jinan University, Guangzhou, 510632 China
- Department of Biotechnology, Bharathidasan University, Tiruchirappalli, 620024 India
| | - Hong-Ye Li
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science, Jinan University, Guangzhou, 510632 China
| |
Collapse
|