1
|
Wang X, Han J, Zeng M, Chen Y, Jiang F, Zhang L, Zhou Y. Total ammonia nitrogen inhibits medium-chain fatty acid biosynthesis by disrupting hydrolysis, acidification, chain elongation, substrate transmembrane transport and ATP synthesis processes. BIORESOURCE TECHNOLOGY 2024; 409:131236. [PMID: 39122132 DOI: 10.1016/j.biortech.2024.131236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 07/22/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
This study used 16S rRNA gene sequencing and metatranscriptomic analysis to comprehensively illustrate how ammonia stress influenced medium-chain fatty acids (MCFA) biosynthesis. MCFA synthesis was inhibited at total ammonia nitrogen (TAN) concentrations above 1000 mg N/L. TAN stress hindered organic hydrolysis, acidification, and volatile fatty acids elongation. Chain-elongating bacteria (e.g., Clostridium_sensu_stricto_12, Clostridium_sensu_stricto_1, Caproiciproducens) abundance remained unchanged, but their activity decreased, partially due to the increased reactive oxygen species. Metatranscriptomic analysis revealed reduced activity of enzymes critical for MCFA production under TAN stress. Fatty acid biosynthesis pathway rather than reverse β-oxidation pathway primarily contributed to MCFA production, and was inhibited under TAN stress. Functional populations likely survived TAN stress through osmoprotectant generation and potassium uptake regulation to maintain osmotic pressure, with NADH-ubiquinone oxidoreductase potentially compensating for ATP loss. This study enhances understanding of MCFA biosynthesis under TAN stress, aiding MCFA production system stability and efficiency improvement.
Collapse
Affiliation(s)
- Xiuping Wang
- School of Environmental Science & Engineering, Sun Yat-sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou, China
| | - Junjie Han
- School of Environmental Science & Engineering, Sun Yat-sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou, China
| | - Meihui Zeng
- School of Environmental Science & Engineering, Sun Yat-sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou, China
| | - Yun Chen
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Feng Jiang
- School of Environmental Science & Engineering, Sun Yat-sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou, China; Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology
| | - Liang Zhang
- School of Environmental Science & Engineering, Sun Yat-sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou, China; Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology.
| | - Yan Zhou
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
2
|
Li D, Wen Q, Chen Z. Enhanced anaerobic biodegradation of typical phenolic compounds in coal gasification wastewater (CGW) using biochar: Focusing on the hydrolysis-acidification process and microbial community succession. ENVIRONMENTAL RESEARCH 2023; 237:116964. [PMID: 37619633 DOI: 10.1016/j.envres.2023.116964] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/19/2023] [Accepted: 08/22/2023] [Indexed: 08/26/2023]
Abstract
The aim of this research is to investigate the effects of biochar (BC) on treatment performance (especially hydrolysis-acidification process) and microbial community shifts during anaerobic degradation of typical phenolic compounds in coal gasification wastewater. Compared to the control group, the removal of phenol, p-cresol and 3, 5-xylenol was gradually enhanced when increasing the BC addition within the test dosage (1-5 g/L). The biodegradation of phenol and p-cresol was significantly enhanced by BC addition while limited improvement for 3, 5-xylenol. The addition of BC significantly accelerated the hydrolysis-acidification process with the hydrolytic removal of phenol improved by 69.14%, the microbial activity was enhanced by 57.01%, and the key hydrolase bamA gene was enriched by 117.27%, respectively. Compared to 1-2 g/L dose, more protein-like and humic acid-like substances were secreted with 5 g/L BC, which probably contributed to higher extracellular electron transfer efficiency. In addition, phenol degrading bacteria (Syntrophorhabdus, Dysgonomonas, Holophaga, etc.) and electroactive microorganisms (Geobacter, Syntrophorhabdus, Methanospirillum, etc.) were enriched by BC addition. The functional genes related to carboxylation, benzoylation and ring cleavage processes of benzoyl-CoA pathway were potentially activated by BC.
Collapse
Affiliation(s)
- Da Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, 150090, PR China.
| | - Qinxue Wen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, 150090, PR China.
| | - Zhiqiang Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, 150090, PR China; School of Civil Engineering, Lanzhou University of Technology, Lanzhou, 730070, PR China.
| |
Collapse
|
3
|
Mohammad Mirsoleimani Azizi S, Zakaria BS, Haffiez N, Kumar A, Ranjan Dhar B. Pilot-scale investigation of conductive carbon cloth amendment for enhancing high-solids anaerobic digestion and mitigating antibiotic resistance. BIORESOURCE TECHNOLOGY 2023; 385:129411. [PMID: 37394042 DOI: 10.1016/j.biortech.2023.129411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/04/2023]
Abstract
This study examined the effectiveness of introducing conductive carbon cloth into a pilot-scale high-solids anaerobic digestion (HSAD) system. Adding carbon cloth increased methane production by 22 % and improved the maximum methane production rate by 39 %. Microbial community characterization indicated a possible direct interspecies electron transfer-based syntrophic association among microbes. Using carbon cloth also enhanced microbial richness, diversity, and evenness. Carbon cloth effectively reduced the total abundance of antibiotic resistance genes (ARGs) by 44.6 %, mainly by inhibiting horizontal gene transfer, as shown by the significant decrease in the relative abundance of integron genes (particularly intl1). The multivariate analysis further demonstrated strong correlations of intl1 with most of the targeted ARGs. These findings suggest that carbon cloth amendment can promote efficient methane production and attenuate the spread of ARGs in HSAD systems.
Collapse
Affiliation(s)
| | - Basem S Zakaria
- Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada
| | - Nervana Haffiez
- Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada
| | - Amit Kumar
- Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Bipro Ranjan Dhar
- Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
4
|
Hou Y, He M, Liu Y, Wang Q, Yang A, Yang F, Lei Z, Yi X, Huang W. Biological nitrogen removal mechanisms during anaerobic digestion of swine manure: Effects of biogas circulation and activated carbon addition. BIORESOURCE TECHNOLOGY 2023; 374:128766. [PMID: 36813051 DOI: 10.1016/j.biortech.2023.128766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
This study investigated the biological nitrogen removal mechanisms during the anaerobic digestion of swine manure and the effects of biogas circulation and activated carbon (AC) addition. Biogas circulation, AC addition, and their combination increased the methane yield by 25.9%, 22.3%, and 44.1%, respectively, when compared to the control. Nitrogen species analysis and metagenomic results indicated that nitrification-denitrification was the dominant ammonia removal pathway in all digesters with little oxygen, while anammox did not occur. Biogas circulation could promote mass transfer and induce air infiltration to enrich nitrification- and denitrification-related bacteria and functional genes. And AC might act as an electron shuttle to facilitate ammonia removal. The combined strategies showed a synergetic effect on the enrichment of nitrification and denitrification bacteria and functional genes, significantly lowering the total ammonia nitrogen by 23.6%. A single digester with biogas circulation and AC addition could enhance methanogenesis and ammonia removal via nitrification and denitrification.
Collapse
Affiliation(s)
- Yaoqi Hou
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecology and Environment, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Mengqi He
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecology and Environment, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Yongjie Liu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecology and Environment, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Qian Wang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecology and Environment, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Aopan Yang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecology and Environment, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Fei Yang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecology and Environment, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Zhongfang Lei
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Xuesong Yi
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecology and Environment, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Weiwei Huang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecology and Environment, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China.
| |
Collapse
|
5
|
Effect of Addition of Zero-Valent Iron (Fe) and Magnetite (Fe3O4) on Methane Yield and Microbial Consortium in Anaerobic Digestion of Food Wastewater. Processes (Basel) 2023. [DOI: 10.3390/pr11030759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
Direct interspecies electron transfer (DIET), which does not involve mediation by electron carriers, is realized by the addition of conductive materials to an anaerobic digester, which then activates syntrophism between acetogenic and methanogenic microorganisms. This study aimed to investigate the effect of the addition of two conductive materials, zero-valent iron (ZVI) and magnetite, on the methane production and microbial consortium via DIET in the anaerobic digestion of food wastewater. The operation of a batch reactor for food wastewater without the addition of the conductive materials yielded a biochemical methane potential (Bu), maximum methane production rate (Rm), and lag phase time (λ) of 0.380 Nm3 kg−1-VSadded, 15.73 mL day−1, and 0.541 days, respectively. Upon the addition of 1.5% ZVI, Bu and Rm increased significantly to 0.434 Nm3 kg−1-VSadded and 19.63 mL day−1, respectively, and λ was shortened to 0.065 days. Simultaneously, Methanomicrobiales increased from 26.60% to 46.90% and Methanosarcinales decreased from 14.20% to 1.50% as the ZVI input increased from 0% to 1.50%. Magnetite, at an input concentration of 1.00%, significantly increased the Bu and Rm to 0.431 Nm3 kg−1-VSadded and 18.44 mL day−1, respectively. However, although magnetite improves the efficiency of methanogenesis via DIET, the effect thereof on the methanogen community remains unclear.
Collapse
|
6
|
Feng L, Lin X, Li X. Combined anaerobic digestion of chicken manure and corn straw: study on methanogenic potential and microbial diversity. ANN MICROBIOL 2022. [DOI: 10.1186/s13213-022-01704-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Abstract
Purpose
To explore the methane production potential and microbial community changes of combined anaerobic digestion of chicken manure and corn straw. Increase methane production, reduce the environmental pollution caused by the burning of livestock manure and straw, and provide some theoretical references for the construction and operation of actual biogas projects.
Methods
Different proportions (3%, 5%, 10%) of corn straw were added to the anaerobic digestion systems of chicken manure in order to improve the C/N ratio and to evaluate the feasibility and potential synergistic effect on the co-digestion. The key point was to use 16S rDNA sequencing to analyze the relationship between the microbial diversity and the hydrolase activity during the anaerobic digestion.
Result
The results showed that the volumetric gas production of methane in the 3% straw addition group was 227.66 ml/gVS, which was 18% higher than the cumulative methane production in the pure chicken manure experimental group. However, with the increase of straw concentration, methane production and the utilization rate of the raw materials continued to decrease. The change in activity of each hydrolase was in agreement with changes in hydrolytic acidifying bacteria, and the activity of the main hydrolase also increased with the addition of straw; the correlation coefficient was 0.9943. Sequencing results showed that the dominant strains of methanogenic archaea were Methanosarcina, Methanosaeta, Methanobacterium, and Methanospirillum. Mainly for hydrogen-eating, acetic acid-eating methanogens, its role is to use H2, methanol and acetic acid, and other substances to metabolize methane, and convert it into CH4 and CO2.
Conclusion
The addition of a small amount of straw enhanced the production capacity of hydrogen-nutritive methane to some extent, and the species richness and evenness were also improved, reducing the pollution caused by livestock manure to the environment while controlling the pollution caused by straw burning.
Graphical Abstract
Collapse
|
7
|
Guo Y, Zheng Y, Wang Y, Zhao Y, Gao M, Giesy JP, Guo L. Enhancing two-phase anaerobic digestion of mixture of primary and secondary sludge by adding granular activated carbon (GAC): Evaluating acidogenic and methanogenic efficiency. BIORESOURCE TECHNOLOGY 2022; 363:127900. [PMID: 36075345 DOI: 10.1016/j.biortech.2022.127900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/28/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Although the granular activated carbon (GAC) has been proved to enhance conventional single-phase anaerobic digestion (AD), how it impacts on acidogenic and methanogenic fermentation is still unknown. In this study, GAC was introduced to elevate the efficiency of two-phase AD, with mixture of primary and secondary sludge as substrate. Five dosages: 0, 0.1, 0.3, 0.5 and 0.7 g GAC/g TSS (Total Suspended Solids) were investigated to determine influences of GAC. The variations of biogas (hydrogen and methane), volatile fatty acids (VFAs), organics degradation and transformation in extracellular polymeric substances (EPS) and dissolved organic matters (DOM) were analyzed. Modified Gompertz model and first-order reaction equation was applied to analyze the kinetics of biogas yield and VFAs utilization, respectively. Sludge reduction, electrical conductance and pH were also quantified to evaluate the system performance. The results showed that GAC could improve two-phase AD performance by enhancing methane production and organics conversion.
Collapse
Affiliation(s)
- Yiding Guo
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yongkang Zheng
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yi Wang
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, USA
| | - Yangguo Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Mengchun Gao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Department of Environmental Sciences, Baylor University, Waco, TX, USA
| | - Liang Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environmental and Ecology, Ministry of Educatin, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
8
|
The impact of powdered activated carbon types on membrane anti-fouling mechanism in membrane bioreactors. Appl Microbiol Biotechnol 2022; 106:7337-7345. [PMID: 36149455 DOI: 10.1007/s00253-022-12186-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/07/2022] [Accepted: 09/18/2022] [Indexed: 11/02/2022]
Abstract
Dosing powdered activated carbon (PAC) has been proven to be an economical and effective method to mitigate membrane fouling. However, the effects of pretreated PAC with different redox properties on membrane fouling still need to be further investigated. Here, the impact of commercial PAC, oxidized-PAC, and reduced-PAC on membrane fouling was investigated in membrane bioreactors (MBRs). Surprisingly, the filtration cycles were extended from 12-36 h to 132-156 h only by dosing reduced-PAC and commercial PAC with a finial dosage of 3 g/L, which were provided with reductive properties. However, few improvements of filtration cycle (less than 50 h) were achieved by dosing oxidized-PAC in the same dosage, which had the same adsorption performance as reduced-PAC and commercial PAC. The biomass and foulant concentration suggested that the enhanced anti-fouling performances by PAC with reductive properties were mainly attributed to the reduction of extracellular polymer substances (EPS) and soluble microbial products (SMP) content in the bulk solutions after 14 days of continuous operation. The model foulant degradation tests and the confocal laser scanning microscope (CLSM) images of activated sludge further demonstrated that PAC with reductive properties directly affected the microbial activities by controlling the EPS and SMP concentrations in the bulk solution, thereby suppressing membrane fouling. Such a finding provides new insights into anti-fouling mechanisms that the redox properties of PAC played a decisive role in membrane fouling mitigation, and also provides a strategy to prolong the anti-fouling effects by restoring the reductive properties of PAC. KEY POINTS: • The anti-fouling mechanisms of PAC with reductive property were investigated. • Reductive property was the main reason for fouling control instead of adsorption. • PAC with reductive property hindered the sludge activity to produce fewer foulants.
Collapse
|
9
|
Wang X, Wang P, Meng X, Ren L. Performance and metagenomics analysis of anaerobic digestion of food waste with adding biochar supported nano zero-valent iron under mesophilic and thermophilic condition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153244. [PMID: 35065103 DOI: 10.1016/j.scitotenv.2022.153244] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/14/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
A large amount of food waste (FW) brings environmental pollution and sanitation problems. Anaerobic digestion (AD) is an effective technology to treat FW and generate biogas energy. This study investigated the effect of biochar supported nano zero-valent iron (BC-nZVI) on AD performance of FW. Results showed that the cumulative methane yield (CMY) increased by 21.52%-54.90% and the lag time decreased significantly with BC-nZVI. Under mesophilic and thermophilic condition, the peak of CMY was achieved at 178.82 ± 5.27 mL/g VS and 193.01 ± 6.81 mL/g VS with 5 g/L BC-nZVI, respectively. Besides, BC-nZVI stimulated hydrolysis process and reduced the inhibition of NH4+-N and volatile fatty acids accumulation, and it could improve the system stability. Structural equation model analysis indicated that digestion time, BC-nZVI, NH4+-N, temperature and total volatile fatty acid had significant effects on CMY, explaining 92.20% of its total variation. The metagenomic analysis of key microorganisms and related metabolism pathways involved in AD system was further investigated. The results suggested that BC-nZVI contributed to strengthen methanogenesis through enriching the various predominant methanogenic pathways and activating most enzymes related to methane metabolism. BC-nZVI could improve the AD system function and provided a better AD performance by shifting the microbial communities and altering functional genes. This study provided a theoretical basis for BC-nZVI applications and improvements in AD process of FW.
Collapse
Affiliation(s)
- Xinzi Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Pan Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| | - Xingyao Meng
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Lianhai Ren
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
10
|
Yan W, Xu H, Lu D, Zhou Y. Effects of sludge thermal hydrolysis pretreatment on anaerobic digestion and downstream processes: mechanism, challenges and solutions. BIORESOURCE TECHNOLOGY 2022; 344:126248. [PMID: 34743996 DOI: 10.1016/j.biortech.2021.126248] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Thermal hydrolysis pretreatment (THP), as a step prior to sludge anaerobic digestion (AD), is widely applied due to its effectiveness in enhancing organic solids hydrolysis and subsequent biogas productivity. However, THP also induces a series of problems including formation of refractory compounds in THP cylinder, high residual ammonia and organic in the AD centrate, inhibition on downstream nitrogen removal process and reduction in UV-disinfection effectiveness during post-treatment. More attention should be paid on how to mitigate these negative effects. Despite intensive studies were carried out to reduce refractory compounds formation and enhance biological performance, there is limited effort to discuss the solutions to tackle the THP associated problems in a holistic manner. This paper summarizes the solutions developed to date and analyzes their technology readiness to assess application potential in full-scale settings. The content highlights the limitations of THP and proposes potential solutions to address the technological challenges.
Collapse
Affiliation(s)
- Wangwang Yan
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore
| | - Hui Xu
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore
| | - Dan Lu
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore
| | - Yan Zhou
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore.
| |
Collapse
|
11
|
Li X, Mo H, Zhou C, Ci Y, Wang J, Zang L. Nickel Foam Promotes Syntrophic Metabolism of Propionate and Butyrate in Anaerobic Digestion. ACS OMEGA 2021; 6:21033-21042. [PMID: 34423211 PMCID: PMC8375088 DOI: 10.1021/acsomega.1c02682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/26/2021] [Indexed: 05/16/2023]
Abstract
Enhanced interspecies electron transfer (IET) among symbiotic microorganisms is an effective method to increase the rate of methane (CH4) production in anaerobic digestion. Direct interspecies electron transfer (DIET), which does not involve dissolved redox media, is considered an alternative and superior method to enhance methane production by interspecific hydrogen (H2) transfer (IHT). In this study, nickel foam was built into a semicontinuous anaerobic reactor to investigate its effect on the metabolism of propionate and butyrate. Both increased the average yield of CH4 in anaerobic digestion by 18.1 and 15.9%, respectively. Analysis of bacterial and archaeal communities showed that the addition of nickel foam could increase the relative abundance of microbial communities involved in DIET and could increase the diversity of microorganisms in the reactor. Moreover, the anaerobic digestion performance of the nickel foam reactor was good at high hydrogen partial pressure.
Collapse
Affiliation(s)
- Xueyuan Li
- College
of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, China
| | - Haoe Mo
- College
of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, China
| | - Chengxuan Zhou
- College
of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, China
| | - Yuhui Ci
- College
of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, China
| | - Jinwei Wang
- Weifang
yingxuan Industry Co., Ltd., Weifang 262499, China
| | - Lihua Zang
- College
of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, China
| |
Collapse
|
12
|
Yu N, Guo B, Liu Y. Shaping biofilm microbiomes by changing GAC location during wastewater anaerobic digestion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146488. [PMID: 33774284 DOI: 10.1016/j.scitotenv.2021.146488] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
The addition of granular activated carbon (GAC) to up-flow anaerobic sludge blanket (UASB) reactors treating synthetic wastewater enhanced methane production by stimulating direct interspecies electron transfer (DIET). A modified UASB reactor with GAC packed in plastic carriers that allowed the GAC to float in the upper reactor zone achieved enhanced performance compared to a UASB reactor with GAC settled at the bottom of the reactor. Microbial communities in the biofilms developed on settled or floated GAC were compared. Methanosarcina (56.3-73.3%) dominated the floated-GAC biofilm whereas Methanobacterium (84.9-85.1%) was greatly enriched in the settled-GAC biofilm. Methanospirillum and Methanocorpusculum were enriched in the floated-GAC biofilm (8.8-19.8% and 5.1-9.5%, respectively), but only existed in low abundances in the settled-GAC biofilm (3.4-3.6% and 0-0.4%, respectively). The floated GAC developed bacterial communities with higher diversity and more syntrophic bacteria enrichments on its surface, including Geobacter, Smithella, and Syntrophomonas, than the settled-GAC biofilm. Common hydrogen-donating syntrophs and hydrogenotrophic archaea, Methanospirillum and Methanoregula, were identified as potential electro-active microorganisms related to DIET.
Collapse
Affiliation(s)
- Najiaowa Yu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Bing Guo
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Yang Liu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| |
Collapse
|
13
|
Fan Y, Yang X, Lei Z, Zhang Z, Kobayashi M, Adachi Y, Shimizu K. Alleviation of ammonia inhibition via nano-bubble water supplementation during anaerobic digestion of ammonia-rich swine manure: Buffering capacity promotion and methane production enhancement. BIORESOURCE TECHNOLOGY 2021; 333:125131. [PMID: 33894452 DOI: 10.1016/j.biortech.2021.125131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/28/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Anaerobic digestion (AD) of ammonia-rich swine manure (SM) with nano-bubble water (NBW) supplementation was studied in this work with the expectation of ammonia inhibition alleviation, buffering capacity promotion, and methane production enhancement. Results indicated that cumulative methane yield was elevated by 12.3-38.7% in NBW groups. Besides, the reduced methane production rate and elongated lag phase under ammonia inhibition were increased and shortened by NBW supplementation, respectively. The rapid increase of total alkalinity (TA) and partial alkalinity (PA) could be observed with NBW supplementation, as well as the rapid decline of VFA/TA, thus improved buffering capacity and alleviated ammonia inhibition. Moreover, higher level of extracellular hydrolases and coenzyme F420 could be detected in NBW groups. In conclusion, NBW with higher mobility and zeta potential (absolute value) could be a promising strategy for the alleviation of ammonia suppression during the AD of SM.
Collapse
Affiliation(s)
- Yujie Fan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Xiaojing Yang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhongfang Lei
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhenya Zhang
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Motoyoshi Kobayashi
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Yasuhisa Adachi
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Kazuya Shimizu
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|
14
|
Enhancement of Anaerobic Digestion of Waste-Activated Sludge by Conductive Materials under High Volatile Fatty Acids-to-Alkalinity Ratios. WATER 2021. [DOI: 10.3390/w13040391] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Anaerobic digestion (AD) represents a suitable option for the management of the waste-activated sludge (WAS) produced in municipal wastewater treatment plants. Nevertheless, due to its complex characteristics, WAS is often barely degradable under conventional anaerobic processes. The use of conductive materials during AD provides a promising route for enhancing WAS digestion, through the effects of direct inter-species electron transfer (DIET). The present paper aims to evaluate the effects of the addition of four different materials—granular activated carbon (GAC), granular iron, and aluminium and steel scrap powders—in semi-continuous lab-scale reactors under very high volatile fatty acids-to-alkalinity ratios. In particular, the use of metallic aluminium in WAS digestion was investigated for the first time and compared to the other materials. The AD of WAS without the addition of conductive materials was impossible, while the use of steel powder and zero-valent iron is shown not to improve the digestion process in a satisfactory way. On the contrary, both GAC and Al allow for effective WAS degradation. At stable conditions, methane yields of about 230 NmLCH4/gVS and 212 NmLCH4/gVS are recorded for GAC- and Al-amended reactors, respectively. These two materials are the most promising in sustaining WAS AD through DIET also in case of unbalanced volatile fatty acids-to-alkalinity ratios.
Collapse
|
15
|
Rengarajan S, Palanivel R. High purity prebiotic isomalto-oligosaccharides production by cell associated transglucosidase of isolated strain Debaryomyces hansenii SCY204 and selective fermentation by Saccharomyces cerevisiae SYI065. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.07.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
16
|
Yan W, Mukherjee M, Zhou Y. Direct interspecies electron transfer (DIET) can be suppressed under ammonia-stressed condition - Reevaluate the role of conductive materials. WATER RESEARCH 2020; 183:116094. [PMID: 32668350 DOI: 10.1016/j.watres.2020.116094] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/17/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
Thermal hydrolysis pretreatment (THP) and anaerobic digestion (AD) integrated (THP-AD) process is a promising process for sludge management. However, the high ammonia production during the THP-AD process severely affects system's stability and performance. Conductive materials are widely reported to stimulate AD, thus they are potentially helpful in alleviating ammonia inhibition. This study investigated the effects of three widely studied conductive materials, i.e. zero-valent iron (ZVI), magnetite nanoparticles (Mag.) and powder activated carbon (PAC), on THP-AD process. Results showed that all the tested materials could effectively stimulate methanogenesis process under non-ammonia inhibition conditions. However, upon ammonia stress, these materials behaved distinctively with the best methanogenic performance in ZVI group followed by Mag. Group, and even worsened inhibition occurred in PAC group. The mechanisms behind were investigated from two levels-the reaction kinetics of each anaerobic digestion step and the responses of intracellular metabolism. It is revealed that ZVI effectively promoted all AD reactions, especially the energy unfavorable propanoate and butanoate metabolism and overall methanogenesis. In addition, ZVI likely acted as intracellular electron shuttles, and the conjunction point of ZVI to electron transfer system was identified as EtfAB: quinone oxidoreductase. On the contrary, the declined methanogenic performance in PAC group was attributed to selectively stimulated the growth of acetoclastic methanogen - Methanosaeta, which is sensitive to ammonia toxicity. The proteomic information further revealed that ammonia stress was unfavorable to the formation of direct interspecies electron transfer between syntrophic anaerobes. Overall, the present study provides fundamental knowledge about the role of different conductive materials in AD systems from intracellular proteomic level.
Collapse
Affiliation(s)
- Wangwang Yan
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore
| | - Manisha Mukherjee
- Singapore Centre for Environmental Life Science Engineering, Nanyang Technological University, 639798, Singapore
| | - Yan Zhou
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore.
| |
Collapse
|