1
|
Song Y, Hu Z, Liu S, Luo S, He R, Yang X, Li S, Yang X, An Y, Lu Y. Utilization of Microalgae and Duckweed as Sustainable Protein Sources for Food and Feed: Nutritional Potential and Functional Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 39879156 DOI: 10.1021/acs.jafc.4c11610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Aquatic biomass, particularly microalgae and duckweed, presents a promising and sustainable alternative source of plant-based protein and bioactive compounds for food and feed applications. This review highlights the nutritional potential of these aquatic species, focusing on their high protein content, rapid growth rates, and adaptability to nonarable environments. Microalgae, such as Chlorella and Arthrospira spp., and duckweed, such as Lemna minor, are evaluated for their functional food applications, including their roles as protein supplements, bioactive components, antioxidants, and emulsifiers in food formulations. The study also examines their environmental benefits, including wastewater bioremediation, nutrient recycling, and greenhouse gas mitigation, which contribute to a more sustainable agricultural system. Technological advancements in the cultivation, harvesting, and processing of microalgae and duckweed are discussed to enhance their scalability and economic feasibility in food and feed production. The findings suggest that integrating microalgae and duckweed into agricultural and food systems can significantly improve food security, nutritional outcomes, and sustainability. Future research should focus on optimizing cultivation efficiencies, advancing protein extraction techniques, and expanding the applications of aquatic biomass in various food products.
Collapse
Affiliation(s)
- Yingjie Song
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou 510220, People's Republic of China
| | - Zhangli Hu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Sizhao Liu
- Guangxi Subtropical Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530010, People's Republic of China
| | - Shasha Luo
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou 510220, People's Republic of China
| | - Ruimin He
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou 510220, People's Republic of China
| | - Xinyan Yang
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou 510220, People's Republic of China
| | - Shuang Li
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou 510220, People's Republic of China
| | - Xuewei Yang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Yuxing An
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou 510220, People's Republic of China
| | - Yinglin Lu
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou 510220, People's Republic of China
| |
Collapse
|
2
|
Ferreira A, Corrêa DO, Ribeiro B, Lopes da Silva T, Marques-Dos-Santos C, Gabriel Acién F, Gouveia L. Bioprocess to produce biostimulants/biofertilizers based on microalgae grown using piggery wastewater as nutrient source. BIORESOURCE TECHNOLOGY 2024; 414:131619. [PMID: 39393644 DOI: 10.1016/j.biortech.2024.131619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
In the present work, two downstream processes - high-pressure homogenization at 100 (HPH-100) and 1200 bar (HPH-1200), and enzymatic hydrolysis (EH) - were tested to produce biostimulant extracts from Tetradesmus obliquus grown in piggery wastewater at two concentrations (12.8 and 88.3 g/L). Extracts before and after centrifugation (C) were evaluated in four bioassays using garden cress (germination), mung bean (auxin-like activity), and cucumber (auxin- and cytokinin-like activity) relative to distilled water. The initial microalgal culture, without any treatment, had the best germination results (162 % at 0.2 g/L) and the only one that showed cytokinin-like activity (141 % at 0.5 g/L). In both auxin-like bioassays, the HPH-1200 + C and EH + C originated high values (186 and 155 % for cucumber, 290 and 285 % for mung bean, respectively). For mung bean, the HPH-1200 achieved the highest auxin-like effect (378 %). Finally, the extracted biomass contained essential nutrients for biofertilization, complementing the biostimulant extracts for sustainable agriculture application.
Collapse
Affiliation(s)
- Alice Ferreira
- LNEG, National Laboratory of Energy and Geology I.P., Bioenergy and Biorefineries Unit, Estrada do Paço do Lumiar 22, 1649-038 Lisbon, Portugal; Forest Research Centre, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017 Lisboa, Portugal.
| | - Diego O Corrêa
- LNEG, National Laboratory of Energy and Geology I.P., Bioenergy and Biorefineries Unit, Estrada do Paço do Lumiar 22, 1649-038 Lisbon, Portugal; Forest Research Centre, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017 Lisboa, Portugal; Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná (UFPR), PO Box 19046, CEP 81531-980 Curitiba, Paraná, Brazil
| | - Belina Ribeiro
- LNEG, National Laboratory of Energy and Geology I.P., Bioenergy and Biorefineries Unit, Estrada do Paço do Lumiar 22, 1649-038 Lisbon, Portugal.
| | - Teresa Lopes da Silva
- LNEG, National Laboratory of Energy and Geology I.P., Bioenergy and Biorefineries Unit, Estrada do Paço do Lumiar 22, 1649-038 Lisbon, Portugal.
| | - Cláudia Marques-Dos-Santos
- Forest Research Centre, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017 Lisboa, Portugal.
| | - F Gabriel Acién
- Chemical Engineering Department, University of Almeria, Ctra. Sacramento, s/n, 04120 Almería, Spain; Solar Energy Research Centre (CIESOL), Ctra. de Sacramento s/n, Almería 04120, Spain.
| | - Luisa Gouveia
- LNEG, National Laboratory of Energy and Geology I.P., Bioenergy and Biorefineries Unit, Estrada do Paço do Lumiar 22, 1649-038 Lisbon, Portugal; GreenCoLab, Green Ocean Technologies and Products Collaborative Laboratory, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
3
|
Zhou J, Wang M, Grimi N, Dar BN, Calvo-Lerma J, Barba FJ. Research progress in microalgae nutrients: emerging extraction and purification technologies, digestive behavior, and potential effects on human gut. Crit Rev Food Sci Nutr 2024; 64:11375-11395. [PMID: 37489924 DOI: 10.1080/10408398.2023.2237586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Microalgae contain a diverse range of high-value compounds that can be utilized directly or fractionated to obtain components with even greater value-added potential. With the use of microalgae for food and medical purposes, there is a growing interest in their digestive properties and impact on human gut health. The extraction, separation, and purification of these components are key processes in the industrial application of microalgae. Innovative technologies used to extract and purify microalgal high-added-value compounds are key for their efficient utilization and evaluation. This review's comprehensive literature review was performed to highlight the main high-added-value microalgal components. The technologies for obtaining bioactive compounds from microalgae are being developed rapidly, various innovative, efficient, green separation and purification technologies are emerging, thus helping in the scaling-up and subsequent commercialization of microalgae products. Finally, the digestive behavior of microalgae nutrients and their health effects on the human gut microbiota were discussed. Microalgal nutrients exhibit favorable digestive properties and certain components have been shown to benefit gut microbes. The reality that must be faced is that multiple processes are still required for microalgae raw materials to final usable products, involving energy, time consumption and loss of ingredients, which still face challenges.
Collapse
Affiliation(s)
- Jianjun Zhou
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Paterna, València, Spain
| | - Min Wang
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Paterna, València, Spain
| | - Nabil Grimi
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu, Compiègne, France
| | - Basharat N Dar
- Department of Food Technology, Islamic University of Science & Technology, Awantipora, Kashmir, India
| | - Joaquim Calvo-Lerma
- Instituto Universitario de Ingeniería para el Desarrollo (IU-IAD), Universitat Politècnica de València, Valencia, Spain
| | - Francisco J Barba
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
| |
Collapse
|
4
|
Souza ATVDE, Souza KMSDE, Amorim APDE, Bezerra RP, Porto ALF. Methods to protein and peptide extraction from microalgae: a systematic review. AN ACAD BRAS CIENC 2024; 96:e20240113. [PMID: 39442102 DOI: 10.1590/0001-3765202420240113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 06/19/2024] [Indexed: 10/25/2024] Open
Abstract
Currently, there is a demand for protein sources that do not use soil management or animal breeding. Among these sources we highlight the microorganisms, such cyanobacteria and microalgae, which have a simple growth using light, CO2, water and some mineral salts to generate high protein production. The extraction of these proteins depends on the method used. The most used methods for extracting bio-functional proteins are mechanical, chemical and enzymatic. The aim of this work is to analyze the protein extraction methods in microalgae using Scielo, ScienceDirect and NCBI (PubMed) electronic databases that made it possible to select original studies published in the last five years (2018-2023). A total of 2707 articles, 25 of which were selected for further analysis and subjected to risk of bias assessment. The genera Chlorella, Scenedesmus and Nannochloropsis were the most studied due to their high protein content. Mechanical methods and chemical hydrolysis are the most used methods, achieving an extraction yield of 46.0 % and 64.0 %, respectively. The best extraction results are obtained with a combination of methods, reaching up to 80.0 % yield. However, some aspects need to be observed to choose an ideal protein extraction method.
Collapse
Affiliation(s)
- Ariadne Tennyle V DE Souza
- Universidade Federal de Pernambuco (UFPE), Avenida Prof. Moraes Rego, 1235, 50670-901 Recife, PE, Brazil
| | | | - Andreza P DE Amorim
- Universidade Federal Rural de Pernambuco (UFRPE), Departamento de Morfologia e Fisiologia Animal, Avenida Dom Manoel de Medeiros, s/n, 52171-900 Recife, PE, Brazil
| | - Raquel P Bezerra
- Universidade Federal Rural de Pernambuco (UFRPE), Departamento de Morfologia e Fisiologia Animal, Avenida Dom Manoel de Medeiros, s/n, 52171-900 Recife, PE, Brazil
| | - Ana Lucia F Porto
- Universidade Federal Rural de Pernambuco (UFRPE), Departamento de Morfologia e Fisiologia Animal, Avenida Dom Manoel de Medeiros, s/n, 52171-900 Recife, PE, Brazil
| |
Collapse
|
5
|
Paterson S, Majchrzak M, Alexandru D, Di Bella S, Fernández-Tomé S, Arranz E, de la Fuente MA, Gómez-Cortés P, Hernández-Ledesma B. Impact of the biomass pretreatment and simulated gastrointestinal digestion on the digestibility and antioxidant activity of microalgae Chlorella vulgaris and Tetraselmis chuii. Food Chem 2024; 453:139686. [PMID: 38788650 DOI: 10.1016/j.foodchem.2024.139686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/29/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Chlorella vulgaris and Tetraselmis chuii are two microalgae species already marketed because of their richness in high-value and health-beneficial compounds. Previous studies have demonstrated the biological properties of compounds isolated from both microalgae, although data are not yet available on the impact that pre-treatment and gastrointestinal digestion could exert on these properties. The aim of the present study was to analyze the impact of the biomass pre-treatment (freeze/thaw cycles plus ultrasounds) and simulated gastrointestinal digestion in the bioaccessibility and in vitro antioxidant activity (ABTS, ORAC, Q-FRAP, Q-DPPH) of the released digests. The cell wall from microalgae were susceptible to the pre-treatment and the action of saliva and gastric enzymes, releasing bioactive peptides and phenolic compounds that contributed to the potent antioxidant activity of digests through their radical scavenging and iron reduction capacities. Our findings suggest the potential of these microalgae against oxidative stress-associated diseases at both, intestinal and systemic level.
Collapse
Affiliation(s)
- Samuel Paterson
- Department of Bioactivity and Food Analysis, Institute of Food Science Research (CIAL, CSIC-UAM, CEI UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain.
| | - Marta Majchrzak
- Department of Bioactivity and Food Analysis, Institute of Food Science Research (CIAL, CSIC-UAM, CEI UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain.
| | - Denisa Alexandru
- Department of Bioactivity and Food Analysis, Institute of Food Science Research (CIAL, CSIC-UAM, CEI UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain.
| | - Serena Di Bella
- Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| | - Samuel Fernández-Tomé
- Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| | - Elena Arranz
- Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; Departmental Section of Food Science. Faculty of Science, Autonomous University of Madrid (UAM) and Institute of Food Science Research (CIAL, CSIC-UAM, CEI UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain.
| | - Miguel Angel de la Fuente
- Department of Bioactivity and Food Analysis, Institute of Food Science Research (CIAL, CSIC-UAM, CEI UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain.
| | - Pilar Gómez-Cortés
- Department of Bioactivity and Food Analysis, Institute of Food Science Research (CIAL, CSIC-UAM, CEI UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain.
| | - Blanca Hernández-Ledesma
- Department of Bioactivity and Food Analysis, Institute of Food Science Research (CIAL, CSIC-UAM, CEI UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain.
| |
Collapse
|
6
|
Xu Y, Tong X, Lu Y, Lu Y, Wang X, Han J, Liu Z, Ding J, Diao C, Mumby W, Peng Y, Sun Q. Microalgal proteins: Unveiling sustainable alternatives to address the protein challenge. Int J Biol Macromol 2024; 276:133747. [PMID: 38986987 DOI: 10.1016/j.ijbiomac.2024.133747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/28/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Recent breakthroughs emphasized the considerable potential of microalgae as a sustainable protein source. Microalgae are regarded as a substitute for protein-rich foods because of their high protein and amino acid content. However, despite their nutritional value, microalgae cannot be easily digested by humans due to the presence of cell walls. In the subsequent sections, protein extraction technology, the overview of the inherent challenges of the process, and the summary of the factors affecting protein extraction and utilization have been deliberated. Moreover, the review inspected the formation of proteolytic products, highlighting their diverse bioactivities, including antioxidant, antihypertensive, and immunomodulatory activities. Finally, the discussion extended to the emerging microalgal protein sourced foods, such as baked goods and nutritional supplements, as well as the sensory and marketing challenges encountered in the production of microalgal protein foods. The lack of consumer awareness about the health benefits of microalgae complicates its acceptance in the market. Long-standing challenges, such as high production costs, persist. Currently, multi-product utilization strategies are being developed to improve the economic viability of microalgae. By integrating economic, environmental, and social factors, microalgae protein can be sustainably developed to provide a reliable source of raw materials for the future food industry.
Collapse
Affiliation(s)
- Yuqing Xu
- Faculty of Medicine, Macau University of Science and Technology, Taipa 999078, Macao
| | - Xinyang Tong
- Faculty of Medicine, Macau University of Science and Technology, Taipa 999078, Macao
| | - Yuting Lu
- Faculty of Medicine, Macau University of Science and Technology, Taipa 999078, Macao
| | - Yongtong Lu
- Faculty of Medicine, Macau University of Science and Technology, Taipa 999078, Macao
| | - Xiangyi Wang
- Faculty of Medicine, Macau University of Science and Technology, Taipa 999078, Macao
| | - Jiaheng Han
- Faculty of Medicine, Macau University of Science and Technology, Taipa 999078, Macao
| | - Ziyu Liu
- Faculty of Medicine, Macau University of Science and Technology, Taipa 999078, Macao
| | - Juntong Ding
- Faculty of Medicine, Macau University of Science and Technology, Taipa 999078, Macao
| | - Can Diao
- Faculty of Medicine, Macau University of Science and Technology, Taipa 999078, Macao
| | - William Mumby
- Department of Health, Nutrition, and Food Sciences, Florida State University, USA
| | - Ye Peng
- Faculty of Medicine, Macau University of Science and Technology, Taipa 999078, Macao.
| | - Quancai Sun
- Department of Health, Nutrition, and Food Sciences, Florida State University, USA.
| |
Collapse
|
7
|
Costa MM, Spínola MP, Alves VD, Mestre Prates JA. Improving protein extraction and peptide production from Chlorella vulgaris using combined mechanical/physical and enzymatic pre-treatments. Heliyon 2024; 10:e32704. [PMID: 38988577 PMCID: PMC11233943 DOI: 10.1016/j.heliyon.2024.e32704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 07/12/2024] Open
Abstract
Chlorella vulgaris is a microalga rich in proteins with potential applications in food and feed industries. However, the presence of a cellulose-containing cell wall, which is a major barrier to protein extraction, together with fibroproteinaceous complexes, limits the bioaccessibility of nutritional and bioactive proteins and peptides from C. vulgaris biomass. Therefore, this study aimed to evaluate the effect of different mechanical/physical pre-treatments (bead milling, extrusion, freeze-drying, heating, microwave and sonication) combined or not with enzymatic treatments (commercial trypsin and pancreatin) on protein extraction and peptide formation from a C. vulgaris suspension. The amount of total protein and peptides released to the supernatant was quantified by Bradford and o-phthaldialdehyde assays, respectively. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis was used to analyse the extracted protein fractions. The results showed that extrusion caused a 3-fold increase in total peptides (p < 0.001) compared to no-pretreatment, and trypsin increased peptides formed in bead-milled (p = 0.020) and freeze-dried (p = 0.021) microalga relative to those pre-treatments alone. Some pre-treatments, such as bead milling and microwave, were effective in releasing specific protein fractions, particularly those from 32 to 40 kDa (up to 1.2-fold), compared to control. Pancreatin combined with bead milling decreased 32 to 40 kDa- and 26 kDa-protein fractions (p < 0.010) compared with the sole use of mechanical treatment, whereas the same enzyme mixture associated with microwave produced a similar result for 26 kDa-protein fraction (p = 0.023). Pancreatin also effectively reduced the total protein fraction released after pre-treatment with sonication (p = 0.013). These findings suggest that combining different pre-treatments and enzymatic treatments could improve protein extraction from C. vulgaris biomass, providing a useful approach for the development of sustainable protein sources. The present results highlight the need for further studies to assess the efficacy of extrusion in improving the bioaccessibility of C. vulgaris proteins in monogastric animals' diets.
Collapse
Affiliation(s)
- Mónica Mendes Costa
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477, Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477, Lisboa, Portugal
| | - Maria Pinheiro Spínola
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477, Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477, Lisboa, Portugal
| | - Victor Diogo Alves
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477, Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477, Lisboa, Portugal
| | - José António Mestre Prates
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477, Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477, Lisboa, Portugal
| |
Collapse
|
8
|
Laskowska A, Pacuła-Miszewska AJ, Obieziurska-Fabisiak M, Jastrzębska A, Długosz-Pokorska A, Gach-Janczak K, Ścianowski J. Synthesis of a New Class of β-Carbonyl Selenides Functionalized with Ester Groups with Antioxidant and Anticancer Properties-Part II. Molecules 2024; 29:2866. [PMID: 38930931 PMCID: PMC11206731 DOI: 10.3390/molecules29122866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/02/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
A series of phenyl β-carbonyl selenides with o-ester functionality substituted on the oxygen atom with chiral and achiral alkyl groups was synthesized. All compounds are the first examples of this type of organoselenium derivatives with an ester substituent in the ortho position. The obtained derivatives were tested as antioxidants and anticancer agents to see the influence of an ester functionality on the bioactivity of β-carbonyl selenides by replacing the o-amide group with an o-ester group. The best results as an antioxidant agent were observed for O-((1R,2S,5R)-(-)-2-isopropyl-5-methylcyclohexyl)-2-((2-oxopropyl)selanyl)benzoate. The most cytotoxic derivative against breast cancer MCF-7 cell lines was O-(methyl)-2-((2-oxopropyl)selanyl)benzoate and against human promyelocytic leukemia HL-60 was O-(2-pentyl)-2-((2-oxopropyl)selanyl)benzoate.
Collapse
Affiliation(s)
- Anna Laskowska
- Department of Organic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarin Street, 87-100 Torun, Poland; (A.L.); (A.J.P.-M.); (M.O.-F.)
| | - Agata J. Pacuła-Miszewska
- Department of Organic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarin Street, 87-100 Torun, Poland; (A.L.); (A.J.P.-M.); (M.O.-F.)
| | - Magdalena Obieziurska-Fabisiak
- Department of Organic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarin Street, 87-100 Torun, Poland; (A.L.); (A.J.P.-M.); (M.O.-F.)
| | - Aneta Jastrzębska
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 7 Gagarin Street, 87-100 Torun, Poland;
| | - Angelika Długosz-Pokorska
- Department of Biomolecular Chemistry, Faculty of Medicine, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215 Lodz, Poland; (A.D.-P.); (K.G.-J.)
| | - Katarzyna Gach-Janczak
- Department of Biomolecular Chemistry, Faculty of Medicine, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215 Lodz, Poland; (A.D.-P.); (K.G.-J.)
| | - Jacek Ścianowski
- Department of Organic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarin Street, 87-100 Torun, Poland; (A.L.); (A.J.P.-M.); (M.O.-F.)
| |
Collapse
|
9
|
Karabulut G, Purkiewicz A, Goksen G. Recent developments and challenges in algal protein and peptide extraction strategies, functional and technological properties, bioaccessibility, and commercial applications. Compr Rev Food Sci Food Saf 2024; 23:e13372. [PMID: 38795380 DOI: 10.1111/1541-4337.13372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/06/2024] [Accepted: 05/06/2024] [Indexed: 05/27/2024]
Abstract
The burgeoning demand for protein, exacerbated by population growth and recent disruptions in the food supply chain, has prompted a rapid exploration of sustainable protein alternatives. Among these alternatives, algae stand out for their environmental benefits, rapid growth, and rich protein content. However, the widespread adoption of algae-derived proteins faces significant challenges. These include issues related to harvesting, safety, scalability, high cost, standardization, commercialization, and regulatory hurdles. Particularly daunting is the efficient extraction of algal proteins, as their resilient cell walls contain approximately 70% of the protein content, with conventional methods accessing only a fraction of this. Overcoming this challenge necessitates the development of cost-effective, scalable, and environmentally friendly cell disruption techniques capable of breaking down these rigid cell walls, often laden with viscous polysaccharides. Various approaches, including physical, chemical, and enzymatic methods, offer potential solutions, albeit with varying efficacy depending on the specific algal strain and energy transfer efficiency. Moreover, there remains a pressing need for further research to elucidate the functional, technological, and bioaccessible properties of algal proteins and peptides, along with exploring their diverse commercial applications. Despite these obstacles, algae hold considerable promise as a sustainable protein source, offering a pathway to meet the escalating nutritional demands of a growing global population. This review highlights the nutritional, technological, and functional aspects of algal proteins and peptides while underscoring the challenges hindering their widespread adoption. It emphasizes the critical importance of establishing a sustainable trajectory for food production, with algae playing a pivotal role in this endeavor.
Collapse
Affiliation(s)
- Gulsah Karabulut
- Department of Food Engineering, Faculty of Engineering, Sakarya University, Sakarya, Türkiye
| | - Aleksandra Purkiewicz
- Department of Commodity Science and Food Analysis, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, Mersin, Türkiye
| |
Collapse
|
10
|
Rajput SD, Pandey N, Sahu K. A comprehensive report on valorization of waste to single cell protein: strategies, challenges, and future prospects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:26378-26414. [PMID: 38536571 DOI: 10.1007/s11356-024-33004-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 03/16/2024] [Indexed: 05/04/2024]
Abstract
The food insecurity due to a vertical increase in the global population urgently demands substantial advancements in the agricultural sector and to identify sustainable affordable sources of nutrition, particularly proteins. Single-cell protein (SCP) has been revealed as the dried biomass of microorganisms such as algae, yeast, and bacteria cultivated in a controlled environment. Production of SCP is a promising alternative to conventional protein sources like soy and meat, due to quicker production, minimal land requirement, and flexibility to various climatic conditions. In addition to protein production, it also contributes to waste management by converting it into food and feed for both human and animal consumption. This article provides an overview of SCP production, including its benefits, safety, acceptability, and cost, as well as limitations that constrains its maximum use. Furthermore, this review criticizes the downstream processing of SCP, encompassing cell wall disruption, removal of nucleic acid, harvesting of biomass, drying, packaging, storage, and transportation. The potential applications of SCP, such as in food and feed as well as in the production of bioplastics, emulsifiers, and as flavoring agents for baked food, soup, and salad, are also discussed.
Collapse
Affiliation(s)
- Sharda Devi Rajput
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, 492 010, India
| | - Neha Pandey
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, 492 010, India
| | - Keshavkant Sahu
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, 492 010, India.
| |
Collapse
|
11
|
Lijassi I, Arahou F, El Habacha G, Wahby A, Benaich S, Rhazi L, Arahou M, Wahby I. Optimization and Characterization of Spirulina and Chlorella Hydrolysates for Industrial Application. Appl Biochem Biotechnol 2024; 196:1255-1271. [PMID: 37382791 DOI: 10.1007/s12010-023-04596-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2023] [Indexed: 06/30/2023]
Abstract
Chlorella and Spirulina are the most used microalgae mainly as powder, tablets, or capsules. However, the recent change in lifestyle of modern society encouraged the emergence of liquid food supplements. The current work evaluated the efficiency of several hydrolysis methods (ultrasound-assisted hydrolysis UAH, acid hydrolysis AH, autoclave-assisted hydrolysis AAH, and enzymatic hydrolysis EH) in order to develop liquid dietary supplements from Chlorella and Spirulina biomasses. Results showed that, EH gave the highest proteins content (78% and 31% for Spirulina and Chlorella, respectively) and also increased pigments content (4.5 mg/mL of phycocyanin and 12 µg/mL of carotenoids). Hydrolysates obtained with EH showed the highest scavenging activity (95-91%), allowing us, with the other above features, to propose this method as convenient for liquid food supplements development. Nevertheless, it has been shown that the choice of hydrolysis method depended on the vocation of the product to be prepared.
Collapse
Affiliation(s)
- Ibtissam Lijassi
- Research Center of Plant & Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, University Mohammed V, Rabat, Morocco.
| | - Fadia Arahou
- Research Center of Plant & Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, University Mohammed V, Rabat, Morocco
| | - Ghizlane El Habacha
- Research Center of Plant & Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, University Mohammed V, Rabat, Morocco
| | - Anass Wahby
- Laboratory of Water, Studies and Environmental Analysis, FLP, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Souad Benaich
- Physiology and Physiopathology Research Team, Faculty of Sciences, University Mohammed V, Rabat, Morocco
| | - Laila Rhazi
- Research Center of Plant & Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, University Mohammed V, Rabat, Morocco
| | - Moustapha Arahou
- Research Center of Plant & Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, University Mohammed V, Rabat, Morocco
| | - Imane Wahby
- Research Center of Plant & Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, University Mohammed V, Rabat, Morocco
| |
Collapse
|
12
|
Delran P, Barthe L, Peydecastaing J, Pontalier PY, Guihéneuf F, Frances C. Integrating wet stirred-bead milling for Tetraselmis suecica biorefinery: Operating parameters influence and specific energy efficiency. BIORESOURCE TECHNOLOGY 2024; 394:130181. [PMID: 38109980 DOI: 10.1016/j.biortech.2023.130181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 12/20/2023]
Abstract
Stirred bead milling proved to be an efficient cell destruction technique in a biorefinery unit for the extraction of over 95 % of proteins and 60 % of carbohydrates from the green marine microalga Tetraselmis suecica. Optimum conditions, expressed in terms of metabolite yield and energy consumption, were found for average values of bead size and agitator rotation speed. The higher the microalgae concentration, up to 100 g.L-1, which is adequate for biofilm algae growth in an industrial unit, the more efficient the cell destruction process. Cell destruction rates and metabolite extraction yields are similar in pendular and recycling modes, but the pendular configuration reduces the residence time of the suspension in the grinding chamber, which is less costly. With regard to the cell destruction mechanism, it was concluded that bead shocks first damage cells by permeabilizing them, and that after a longer period, all cells are shredded and destroyed, forming elongated debris.
Collapse
Affiliation(s)
- Pauline Delran
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France; SAS inalve, Nice / Villefranche-sur-Mer, France; Laboratoire de Chimie Agro-industrielle, Université de Toulouse, INRAE, INPT, Toulouse, France
| | - Laurie Barthe
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Jérôme Peydecastaing
- Laboratoire de Chimie Agro-industrielle, Université de Toulouse, INRAE, INPT, Toulouse, France
| | - Pierre Yves Pontalier
- Laboratoire de Chimie Agro-industrielle, Université de Toulouse, INRAE, INPT, Toulouse, France
| | | | - Christine Frances
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France.
| |
Collapse
|
13
|
Mat Husin MA, Mohd Yasin NH, Takriff MS, Jamar NH. A review on pretreatment methods for lipid extraction from microalgae biomass. Prep Biochem Biotechnol 2024; 54:159-174. [PMID: 37220018 DOI: 10.1080/10826068.2023.2214923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Microalgal lipids are promising and sustainable sources for the production of third-generation biofuels, foods, and medicines. A high lipid yield during the extraction process in microalgae could be influenced by the suitable pretreatment and lipid extraction methods. The extraction method itself could be attributed to the economic and environmental impacts on the industry. This review summarizes the pretreatment methods including mechanical and non-mechanical techniques for cell lysis strategy before lipid extraction in microalgae biomass. The multiple strategies to achieve high lipid yields via cell disruption techniques are discussed. These strategies include mechanical (shear forces, pulse electric forces, waves, and temperature shock) and non-mechanical (chemicals, osmotic pressure, and biological) methods. At present, two techniques of the pretreatment method can be combined to increase lipid extraction from microalgae. Therefore, the extraction strategy for a large-scale application could be further strengthened to optimize lipid recovery by microalgae.
Collapse
Affiliation(s)
- Muhammad Azreen Mat Husin
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Nazlina Haiza Mohd Yasin
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Mohd Sobri Takriff
- Chemical & Water Desalination Program, College of Engineering, University of Sharjah, Sharjah, United Arab Emirates
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environmnent, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Nur Hidayah Jamar
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| |
Collapse
|
14
|
Cho KJ, Kim MU, Jeong GJ, Khan F, Jo DM, Kim YM. Optimization of Protease Treatment Conditions for Chlorella pyrenoidosa Protein Extraction and Investigation of Its Potential as an Alternative Protein Source. Foods 2024; 13:366. [PMID: 38338501 PMCID: PMC10855255 DOI: 10.3390/foods13030366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
This study aimed to determine enzymes that effectively extract Chlorella pyrenoidosa proteins and optimize the processing conditions using response surface methods. Furthermore, the potential of enzymatically hydrolyzed C. pyrenoidosa protein extract (CPE) as a substitute protein source was investigated. The enzymatic hydrolysis conditions for protein extraction were optimized using single-factor analysis and a response surface methodology-Box-Behnken design. The R2 value of the optimized model was 0.9270, indicating the reliability of the model, and the optimal conditions were as follows: a hydrolysis temperature of 45.56 °C, pH 9.1, and a hydrolysis time of 49.85 min. The amino acid composition of CPE was compared to that of C. pyrenoidosa powder (CP), which was found to have a higher content of essential amino acids (EAA). The electrophoretic profiles of CP and CPE confirmed that CPE has a low molecular weight. Furthermore, CPE showed higher antioxidant activity and phenol content than CP, with ABTS and DPPH radical scavenging abilities of 69.40 ± 1.61% and 19.27 ± 3.16%, respectively. CPE had high EAA content, antioxidant activity, and phenol content, indicating its potential as an alternative protein source. Overall, in this study, we developed an innovative, ecofriendly, and gentle enzymatic hydrolysis strategy for the extraction and refinement of Chlorella proteins.
Collapse
Affiliation(s)
- Kyung-Jin Cho
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea; (K.-J.C.)
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Min-Ung Kim
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea; (K.-J.C.)
| | - Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea; (K.-J.C.)
| | - Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
- Institute of Fisheries Sciences, Pukyong National University, Busan 48513, Republic of Korea
| | - Du-Min Jo
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea; (K.-J.C.)
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea; (K.-J.C.)
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
15
|
Chaos-Hernández D, Reynel-Ávila HE, Bonilla-Petriciolet A, Villalobos-Delgado FJ. Extraction methods of algae oils for the production of third generation biofuels - A review. CHEMOSPHERE 2023; 341:139856. [PMID: 37598949 DOI: 10.1016/j.chemosphere.2023.139856] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/19/2023] [Accepted: 08/15/2023] [Indexed: 08/22/2023]
Abstract
Microalgae are the main source of third-generation biofuels because they have a lipid content of 20-70%, can be abundantly produced and do not compete in the food market besides other benefits. Biofuel production from microalgae is a promising option to contribute for the resolution of the eminent crisis of fossil energy and environmental pollution specially in the transporting sector. The choice of lipid extraction method is of relevance and associated to the algae morphology (i.e., rigid cells). Therefore, it is essential to develop suitable extraction technologies for economically viable and environment-friendly lipid recovery processes with the aim of achieving a commercial production of biofuels from this biomass. This review presents an exhaustive analysis and discussion of different methods and processes of lipid extraction from microalgae for the subsequent conversion to biodiesel. Physical methods based on the use of supercritical fluids, ultrasound and microwaves were reviewed. Chemical methods using solvents with different polarities, aside from mechanical techniques such as mechanical pressure and enzymatic methods, were also analyzed. The advantages, drawbacks, challenges and future prospects of lipid extraction methods from microalgae have been summarized to provide a wide panorama of this relevant topic for the production of economic and sustainable energy worldwide.
Collapse
Affiliation(s)
- D Chaos-Hernández
- Instituto Tecnológico de Aguascalientes, Av. Adolfo López Mateos #1801, Aguascalientes, Ags., C.P. 20256, Mexico
| | - H E Reynel-Ávila
- Instituto Tecnológico de Aguascalientes, Av. Adolfo López Mateos #1801, Aguascalientes, Ags., C.P. 20256, Mexico; CONACYT, Av. Insurgentes 1582 Sur, Ciudad de México, 03940, Aguascalientes, Ags, Mexico.
| | - A Bonilla-Petriciolet
- Instituto Tecnológico de Aguascalientes, Av. Adolfo López Mateos #1801, Aguascalientes, Ags., C.P. 20256, Mexico
| | - F J Villalobos-Delgado
- Instituto Tecnológico de Aguascalientes, Av. Adolfo López Mateos #1801, Aguascalientes, Ags., C.P. 20256, Mexico
| |
Collapse
|
16
|
Chen Z, Yang S, Zhang L, Duan F. Degradative solvent extraction of cyanobacteria: From reaction kinetics to potential organic matter evolution mechanism. BIORESOURCE TECHNOLOGY 2023; 386:129547. [PMID: 37488019 DOI: 10.1016/j.biortech.2023.129547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
This study proposed a new continuous lumped reaction kinetics model to accurately reveal the control mechanism of cyanobacteria at each stage of degradative solvent extraction and discussed the potential evolution mechanism of organic matter. Results showed that degradation solvent extraction successfully separated nitrogen and phosphorus from cyanobacteria. The solute has high carbon and volatile contents, is almost ash-free, and forms a phosphorus-rich residue. The lowest fitting degree of the continuous lumped reaction model kinetics was 94.5%, suggesting that this model worked well. The depolymerization of the residue dominated between 200 and 350 °C, whereas solute decomposition dominated at 400 °C. Nitrogen-containing compounds, which originate from protein decarboxylation or deamination to generate amides, are the main components of the solute, and amino acids react with reducing sugars to generate nitrogen heterocyclic compounds, which are useful for preparing nitrogen-containing chemicals.
Collapse
Affiliation(s)
- Zongqi Chen
- Engineering Technology-Research Center of Anhui Education Department for Energy Saving and Pollutant Control in Metallurgical Process, School of Energy and Environment, Anhui University of Technology, Maanshan 243002, Anhui Province, PR China
| | - Shoumeng Yang
- Engineering Technology-Research Center of Anhui Education Department for Energy Saving and Pollutant Control in Metallurgical Process, School of Energy and Environment, Anhui University of Technology, Maanshan 243002, Anhui Province, PR China
| | - Lihui Zhang
- Engineering Technology-Research Center of Anhui Education Department for Energy Saving and Pollutant Control in Metallurgical Process, School of Energy and Environment, Anhui University of Technology, Maanshan 243002, Anhui Province, PR China.
| | - Feng Duan
- Engineering Technology-Research Center of Anhui Education Department for Energy Saving and Pollutant Control in Metallurgical Process, School of Energy and Environment, Anhui University of Technology, Maanshan 243002, Anhui Province, PR China
| |
Collapse
|
17
|
Wang S, Zhao Q, Yu H, Du X, Zhang T, Sun T, Song W. Assessing the potential of Chlorella sp. phycoremediation liquid digestates from brewery wastes mixture integrated with bioproduct production. Front Bioeng Biotechnol 2023; 11:1199472. [PMID: 37388770 PMCID: PMC10303122 DOI: 10.3389/fbioe.2023.1199472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/05/2023] [Indexed: 07/01/2023] Open
Abstract
Digestates from different anaerobic digesters are promising substrates for microalgal culture, leading to effective wastewater treatment and the production of microalgal biomass. However, further detailed research is needed before they can be used on a large scale. The aims of this study were to investigate the culture of Chlorella sp. in DigestateM from anaerobic fermentation of brewer's grains and brewery wastewater (BWW) and to explore the potential use of the biomass produced under different experimental conditions, including diverse cultivation modes and dilution ratios. Cultivation in DigestateM initiated from 10% (v/v) loading, with 20% BWW, obtained maximum biomass production, reaching 1.36 g L-1 that was 0.27g L-1 higher than 1.09 g L-1 of BG11. In terms of DigestateM remediation, the maximum removal of ammonia nitrogen (NH4 +-N), chemical oxygen demand, total nitrogen, and total phosphorus reached 98.20%, 89.98%, 86.98%, and 71.86%, respectively. The maximum lipid, carbohydrate, and protein contents were 41.60%, 32.44%, and 27.72%, respectively. The growth of Chlorella sp. may be inhibited when the Y(II)-Fv/Fm ratio is less than 0.4.
Collapse
|
18
|
Silva JDME, Martins LHDS, Moreira DKT, Silva LDP, Barbosa PDPM, Komesu A, Ferreira NR, de Oliveira JAR. Microbial Lipid Based Biorefinery Concepts: A Review of Status and Prospects. Foods 2023; 12:2074. [PMID: 37238892 PMCID: PMC10217607 DOI: 10.3390/foods12102074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
The use of lignocellulosic biomass as a raw material for the production of lipids has gained increasing attention, especially in recent years when the use of food in the production of biofuels has become a current technology. Thus, the competition for raw materials for both uses has brought the need to create technological alternatives to reduce this competition that could generate a reduction in the volume of food offered and a consequent commercial increase in the value of food. Furthermore, the use of microbial oils has been studied in many industrial branches, from the generation of renewable energy to the obtainment of several value-added products in the pharmaceutical and food industries. Thus, this review provides an overview of the feasibility and challenges observed in the production of microbial lipids through the use of lignocellulosic biomass in a biorefinery. Topics covered include biorefining technology, the microbial oil market, oily microorganisms, mechanisms involved in lipid-producing microbial metabolism, strain development, processes, lignocellulosic lipids, technical drawbacks, and lipid recovery.
Collapse
Affiliation(s)
- Jonilson de Melo e Silva
- Program of Food Science and Technology, Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil
| | | | | | - Leonardo do Prado Silva
- Department of Food Science and Nutrition, Faculty of Food Engineering (FEA), State University of Campinas (UNICAMP), Campinas 13083-862, SP, Brazil
| | | | - Andrea Komesu
- Department of Marine Sciences (DCMar), Federal University of São Paulo (UNIFESP), Santos 11070-100, SP, Brazil
| | - Nelson Rosa Ferreira
- Faculty of Food Engineering, Technology Institute, Federal University of Pará (UFPA), Belém 66077-000, PA, Brazil;
| | | |
Collapse
|
19
|
Bioprocessing to Preserve and Improve Microalgae Nutritional and Functional Potential: Novel Insight and Perspectives. Foods 2023; 12:foods12050983. [PMID: 36900500 PMCID: PMC10001325 DOI: 10.3390/foods12050983] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/16/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Microalgae are aquatic unicellular microorganisms and, although various species are approved for human consumption, Arthrospira and Chlorella are the most widespread. Several nutritional and functional properties have been bestowed to microalgae principal micro- and macro-nutrients, with antioxidant, immunomodulatory and anticancer being the most common. The many references to their potential as a food of the future is mainly ascribed to the high protein and essential amino acid content, but they are also a source of pigments, lipids, sterols, polysaccharides, vitamins, and phenolic compounds with positive effects on human health. Nevertheless, microalgae use is often hindered by unpleasant color and flavor and several strategies have been sought to minimize such challenges. This review provides an overview of the strategies so far proposed and the main nutritional and functional characteristic of microalgae and the foods made thereof. Processing treatments have been used to enrich microalgae-derived substrates in compounds with antioxidant, antimicrobial, and anti-hypertensive properties. Extraction, microencapsulation, enzymatic treatments, and fermentation are the most common, each with their own pros and cons. Yet, for microalgae to be the food of the future, more effort should be put into finding the right pre-treatments that can allow the use of the whole biomass and be cost-effective while bringing about features that go beyond the mere increase of proteins.
Collapse
|
20
|
Priya A, Naseem S, Pandey D, Bhowmick A, Attrah M, Dutta K, Rene ER, Suman SK, Daverey A. Innovative strategies in algal biomass pretreatment for biohydrogen production. BIORESOURCE TECHNOLOGY 2023; 369:128446. [PMID: 36473587 DOI: 10.1016/j.biortech.2022.128446] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Biohydrogen is one of the cleanest renewable energies with a high calorific value. Algal biomass can be utilized as a sustainable feedstock for biohydrogen production via dark fermentation. However, the recovery of fermentable sugar from algal biomass is challenging because of the diversity and complex cell wall composition and therefore, requires an additional pretreatment step. However, most of the conventional pretreatment strategies suffer from limited technological feasibility and poor economic viability. In this context, this review aims to present the structural complexities of the cell wall of algae and highlight the innovative approaches such as the use of hybrid technologies, biosurfactants, nanoparticles, and genetic engineering approaches for the hydrolysis of algal biomass and improved biohydrogen production. Additionally, a comprehensive discussion of the comparative evaluation of various pretreatment methods, and the techno-economic and life cycle assessment of algal biohydrogen production is also presented in this review.
Collapse
Affiliation(s)
- Anshu Priya
- School of Energy and Environment, City University of Hong Kong, Tat Chee Ave, Kowloon, Hong Kong
| | - Shifa Naseem
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun 248005, Uttarakhand, India
| | - Deepshikha Pandey
- School of Environment and Natural Resources, Doon University, Dehradun 248012, Uttarakhand, India
| | - Anisha Bhowmick
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Mustafa Attrah
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2601DA Delft, the Netherlands
| | - Kasturi Dutta
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2601DA Delft, the Netherlands
| | - Sunil Kumar Suman
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun 248005, Uttarakhand, India
| | - Achlesh Daverey
- School of Environment and Natural Resources, Doon University, Dehradun 248012, Uttarakhand, India; School of Biological Sciences, Doon University, Dehradun, 248012, Uttarakhand, India.
| |
Collapse
|
21
|
Raj T, Morya R, Chandrasekhar K, Kumar D, Soam S, Kumar R, Patel AK, Kim SH. Microalgae biomass deconstruction using green solvents: Challenges and future opportunities. BIORESOURCE TECHNOLOGY 2023; 369:128429. [PMID: 36473586 DOI: 10.1016/j.biortech.2022.128429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Microalgae enablefixation of CO2into carbohydrates, lipids, and proteins through inter and intracellularly biochemical pathways. These cellular components can be extracted and transformed into renewable energy, chemicals, and materials through biochemical and thermochemical transformation processes.However, recalcitrant cell wall andlack of environmentally benign efficient pretreatment processes are key obstacles in the commercialization of microalgal biorefineries.Thus,current article describes the microalgal chemical structure, type, and structural rigidity and summarizes the traditional pretreatment methods to extract cell wall constituents. Green solvents such as ionic liquid (ILs), deep eutectic solvents (DES), and natural deep eutectic solvents (NDESs) have shown interesting solvent characteristics to pretreat biomass with selective biocomponent extraction from microalgae. Further research is needed in task-specific IL/DES design, cation-anion organization, structural activity understanding of ILs-biocomponents, environmental toxicity, biodegradability, and recyclability for deployment of carbon-neutral technologies. Additionally, coupling the microalgal industry with biorefineries may facilitate waste management, sustainability, and gross revenue.
Collapse
Affiliation(s)
- Tirath Raj
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Raj Morya
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - K Chandrasekhar
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research, Vadlamudi, 522213 Guntur, Andhra Pradesh, India
| | - Deepak Kumar
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Shveta Soam
- Department of Building Energy and Environmental Engineering, University of Gävle, Sweden
| | - Ravindra Kumar
- Faculty of Bioscience and Aquaculture, Nord University, 7713 Steinkjer, Norway
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, 81157 Kaohsiung City, Taiwan
| | - Sang-Hyoun Kim
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
22
|
Agarwalla A, Komandur J, Mohanty K. Current trends in the pretreatment of microalgal biomass for efficient and enhanced bioenergy production. BIORESOURCE TECHNOLOGY 2023; 369:128330. [PMID: 36403907 DOI: 10.1016/j.biortech.2022.128330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Biofuels from microalgal biomass is among some of the promising sustainable energy technologies that can significantly replace the dependence on fossil fuels worldwide due to potentiality to lower CO2 emissions. Nevertheless, the extraction of biomolecules for biofuel generation is inhibited by the rigidity of the cellular structure of microalgal biomass. Various pretreatment strategies have been evaluated for their efficacy in microalgal cell wall disruption to enhance microalgal bioenergy production. However, the efficiency of the pretreatment methods depend on the particular species being treated due to the inherent variability of the composition of the cell wall. This paper reviews pretreatment strategies (mainly novel physical, chemical and physicochemical) employed in bioenergy generation from microalgal biomass, address existing constraints and provides prospects for economic and industrial-scale production. The authors have also discussed the different pretreatment methods used for biodiesel, bioethanol, and biohydrogen production.
Collapse
Affiliation(s)
- Ankit Agarwalla
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Janaki Komandur
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Kaustubha Mohanty
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India; School of Energy Science and Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| |
Collapse
|
23
|
Kaur M, Bhatia S, Gupta U, Decker E, Tak Y, Bali M, Gupta VK, Dar RA, Bala S. Microalgal bioactive metabolites as promising implements in nutraceuticals and pharmaceuticals: inspiring therapy for health benefits. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2023; 22:1-31. [PMID: 36686403 PMCID: PMC9840174 DOI: 10.1007/s11101-022-09848-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023]
Abstract
The rapid increase in global population and shrinkage of agricultural land necessitates the use of cost-effective renewable sources as alternative to excessive resource-demanding agricultural crops. Microalgae seem to be a potential substitute as it rapidly produces large biomass that can serve as a good source of various functional ingredients that are not produced/synthesized inside the human body and high-value nonessential bioactive compounds. Microalgae-derived bioactive metabolites possess various bioactivities including antioxidant, anti-inflammatory, antimicrobial, anti-carcinogenic, anti-hypertensive, anti-lipidemic, and anti-diabetic activities, thereof rapidly elevating their demand as interesting option in pharmaceuticals, nutraceuticals and functional foods industries for developing new products. However, their utilization in these sectors has been limited. This demands more research to explore the functionality of microalgae derived functional ingredients. Therefore, in this review, we intended to furnish up-to-date knowledge on prospects of bioactive metabolites from microalgae, their bioactivities related to health, the process of microalgae cultivation and harvesting, extraction and purification of bioactive metabolites, role as dietary supplements or functional food, their commercial applications in nutritional and pharmaceutical industries and the challenges in this area of research. Graphical abstract
Collapse
Affiliation(s)
- Manpreet Kaur
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, Punjab 141004 India
| | - Surekha Bhatia
- Department of Processing and Food Engineering, Punjab Agricultural University, Ludhiana, Punjab 141004 India
| | - Urmila Gupta
- Department of Renewable Energy Engineering, Punjab Agricultural University, Ludhiana, Punjab 141004 India
| | - Eric Decker
- Department of Food Science, University of Massachusetts, Amherst, MA USA
| | - Yamini Tak
- Agricultural Research Station, Agricultural University, Ummedganj, Kota India
| | - Manoj Bali
- Research & Development, Chemical Resources (CHERESO), Panchkula, Haryana India
| | - Vijai Kumar Gupta
- Center for Safe and Improved Food & Biorefining and Advanced Materials Research Center, SRUC Barony Campus, Dumfries, Scotland, UK
| | - Rouf Ahmad Dar
- Sam Hiiginbottom University of Agriculture, Technology and Sciences, Prayagraj, Uttar Pradesh 211007 India
| | - Saroj Bala
- Department of Microbiology, Punjab Agricultural University, Ludhiana, Punjab 141004 India
| |
Collapse
|
24
|
Deepika C, Wolf J, Roles J, Ross I, Hankamer B. Sustainable Production of Pigments from Cyanobacteria. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 183:171-251. [PMID: 36571616 DOI: 10.1007/10_2022_211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Pigments are intensely coloured compounds used in many industries to colour other materials. The demand for naturally synthesised pigments is increasing and their production can be incorporated into circular bioeconomy approaches. Natural pigments are produced by bacteria, cyanobacteria, microalgae, macroalgae, plants and animals. There is a huge unexplored biodiversity of prokaryotic cyanobacteria which are microscopic phototrophic microorganisms that have the ability to capture solar energy and CO2 and use it to synthesise a diverse range of sugars, lipids, amino acids and biochemicals including pigments. This makes them attractive for the sustainable production of a wide range of high-value products including industrial chemicals, pharmaceuticals, nutraceuticals and animal-feed supplements. The advantages of cyanobacteria production platforms include comparatively high growth rates, their ability to use freshwater, seawater or brackish water and the ability to cultivate them on non-arable land. The pigments derived from cyanobacteria and microalgae include chlorophylls, carotenoids and phycobiliproteins that have useful properties for advanced technical and commercial products. Development and optimisation of strain-specific pigment-based cultivation strategies support the development of economically feasible pigment biorefinery scenarios with enhanced pigment yields, quality and price. Thus, this chapter discusses the origin, properties, strain selection, production techniques and market opportunities of cyanobacterial pigments.
Collapse
Affiliation(s)
- Charu Deepika
- Institute of Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Juliane Wolf
- Institute of Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - John Roles
- Institute of Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Ian Ross
- Institute of Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Ben Hankamer
- Institute of Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
25
|
Salazar J, Santana-Sánchez A, Näkkilä J, Sirin S, Allahverdiyeva Y. Complete N and P removal from hydroponic greenhouse wastewater by Tetradesmus obliquus: A strategy for algal bioremediation and cultivation in Nordic countries. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.102988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
26
|
Oh YK, Kim S, Ilhamsyah DPA, Lee SG, Kim JR. Cell disruption and lipid extraction from Chlorella species for biorefinery applications: Recent advances. BIORESOURCE TECHNOLOGY 2022; 366:128183. [PMID: 36307027 DOI: 10.1016/j.biortech.2022.128183] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Chlorella is a promising microalga for CO2-neutral biorefinery that co-produces drop-in biofuels and multiple biochemicals. Cell disruption and selective lipid extraction steps are major technical bottlenecks in biorefinement because of the inherent robustness and complexity of algal cell walls. This review focuses on the state-of-the-art achievements in cell disruption and lipid extraction methods for Chlorella species within the last five years. Various chemical, physical, and biological approaches have been detailed theoretically, compared, and discussed in terms of the degree of cell wall disruption, lipid extractability, chemical toxicity, cost-effectiveness, energy use, scalability, customer preferences, environment friendliness, and synergistic combinations of different methods. Future challenges and prospects of environmental-friendly and efficient extraction technologies are also outlined for practical applications in sustainable Chlorella biorefineries. Given the diverse industrial applications of Chlorella, this review may provide useful information for downstream processing of the advanced biorefineries of other algae genera.
Collapse
Affiliation(s)
- You-Kwan Oh
- School of Chemical Engineering, Pusan National University (PNU), Busan 46241, Republic of Korea.
| | - Sangui Kim
- School of Chemical Engineering, Pusan National University (PNU), Busan 46241, Republic of Korea
| | | | - Sun-Gu Lee
- School of Chemical Engineering, Pusan National University (PNU), Busan 46241, Republic of Korea
| | - Jung Rae Kim
- School of Chemical Engineering, Pusan National University (PNU), Busan 46241, Republic of Korea
| |
Collapse
|
27
|
Deivayanai VC, Yaashikaa PR, Senthil Kumar P, Rangasamy G. A comprehensive review on the biological conversion of lignocellulosic biomass into hydrogen: Pretreatment strategy, technology advances and perspectives. BIORESOURCE TECHNOLOGY 2022; 365:128166. [PMID: 36283663 DOI: 10.1016/j.biortech.2022.128166] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 05/16/2023]
Abstract
The globe has dependent on energy generation and utilization for many years; conversely, ecological concerns constrained the world to view hydrogen as an alternative for economic development. Lignocellulosic biomass is broadly accessible as a low-cost renewable feedstock and nonreactive nature; it has received a lot of consideration as a global energy source and the most attractive alternative to replace fossil natural substances for energy production. Pretreatment of lignocellulosic biomass is essential to advance its fragmentation and lower the lignin content for sustainable energy generation. This review's goal is to provide the different pretreatment strategies for enlarging the solubility and surface area of lignocellulosic biomass. The biological conversion of lignocellulosic biomass to hydrogen was reviewed and operational conditions and enhancing methods were discussed. This review summarizes the working conditions, parameters, yield percentages, techno-economic analysis, challenges, and future recommendations on the direct conversion of biomass to hydrogen.
Collapse
Affiliation(s)
- V C Deivayanai
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai 602105, India
| | - P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India; School of Engineering, Lebanese American University, Byblos, Lebanon.
| | - Gayathri Rangasamy
- University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab 140413, India
| |
Collapse
|
28
|
Taroncher M, Rodríguez-Carrasco Y, Barba FJ, Ruiz MJ. Evaluation of cytotoxicity, analysis of metals and cumulative risk assessment in microalgae. Toxicol Mech Methods 2022:1-13. [DOI: 10.1080/15376516.2022.2152514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mercedes Taroncher
- Department of Preventive Medicine and Public Health, Food science, Toxicology and Forensic Medicine, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Yelko Rodríguez-Carrasco
- Department of Preventive Medicine and Public Health, Food science, Toxicology and Forensic Medicine, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Francisco J. Barba
- Department of Preventive Medicine and Public Health, Food science, Toxicology and Forensic Medicine, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - María José Ruiz
- Department of Preventive Medicine and Public Health, Food science, Toxicology and Forensic Medicine, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| |
Collapse
|
29
|
Jothibasu K, Muniraj I, Jayakumar T, Ray B, Dhar D, Karthikeyan S, Rakesh S. Impact of microalgal cell wall biology on downstream processing and nutrient removal for fuels and value-added products. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Zoltan Boboescu I, Kazbar A, Stegemüller L, Lazeroms P, Triantafyllou T, Gao F, Lo C, Barbosa MJ, Eppink MHM, Wijffels RH. Mild acoustic processing of Tisochrysis lutea for multiproduct biorefineries. BIORESOURCE TECHNOLOGY 2022; 360:127582. [PMID: 35798166 DOI: 10.1016/j.biortech.2022.127582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Cellular agriculture could represent a more sustainable alternative to current food and nutraceutical production processes. Tisochrysis lutea microalgae represents a rich source of antioxidants and omega-3 fatty acids essential for human health. However, current downstream technologies are limiting its use. The present work investigates mild targeted acoustic treatment of Tisochrysis lutea biomass at different growth stages and acoustic frequencies, intensities and treatment times. Significant differences have been observed in terms of the impact of these variables on the cell disruption and energy requirements. Lower frequencies of 20 kHz required a minimum of 4500 J to disrupt 90% of the cells, while only 1000 J at 1146 kHz. Comparing these results with current industry standards such as bead milling, up to six times less energy use has been identified. These mild biomass processing approaches offer a certain tunability which could suit a wide range of microorganisms with only minor adjustments.
Collapse
Affiliation(s)
| | - Antoinette Kazbar
- Bioprocess Engineering, Wageningen University & Research, Wageningen, the Netherlands
| | - Lars Stegemüller
- Bioprocess Engineering, Wageningen University & Research, Wageningen, the Netherlands
| | - Piet Lazeroms
- Bioprocess Engineering, Wageningen University & Research, Wageningen, the Netherlands
| | | | - Fengzheng Gao
- Bioprocess Engineering, Wageningen University & Research, Wageningen, the Netherlands
| | - Calvin Lo
- Bioprocess Engineering, Wageningen University & Research, Wageningen, the Netherlands
| | - Maria J Barbosa
- Bioprocess Engineering, Wageningen University & Research, Wageningen, the Netherlands
| | - Michel H M Eppink
- Bioprocess Engineering, Wageningen University & Research, Wageningen, the Netherlands
| | - Rene H Wijffels
- Bioprocess Engineering, Wageningen University & Research, Wageningen, the Netherlands; Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| |
Collapse
|
31
|
Zhou J, Wang M, Saraiva JA, Martins AP, Pinto CA, Prieto MA, Simal-Gandara J, Cao H, Xiao J, Barba FJ. Extraction of lipids from microalgae using classical and innovative approaches. Food Chem 2022; 384:132236. [PMID: 35240572 DOI: 10.1016/j.foodchem.2022.132236] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/05/2023]
Abstract
Microalgae, as a photosynthetic autotrophic organism, contain a variety of bioactive compounds, including lipids, proteins, polysaccharides, which have been applied in food, medicine, and fuel industries, among others. Microalgae are considered a good source of marine lipids due to their high content in unsaturated fatty acid (UFA) and can be used as a supplement/replacement for fish-based oil. The high concentration of docosahexaenoic (DHA) and eicosapentaenoic acids (EPA) in microalgae lipids, results in important physiological functions, such as antibacterial, anti-inflammatory, and immune regulation, being also a prerequisite for its development and application. In this paper, a variety of approaches for the extraction of lipids from microalgae were reviewed, including classical and innovative approaches, being the advantages and disadvantages of these methods emphasized. Further, the effects of microalgae lipids as high value bioactive compounds in human health and their use for several applications are dealt with, aiming using green(er) and effective methods to extract lipids from microalgae, as well as develop and extend their application potential.
Collapse
Affiliation(s)
- Jianjun Zhou
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, València, Spain; Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Agustin Escardino 7, 46980 Paterna, Valencia, Spain.
| | - Min Wang
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, València, Spain; Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Agustin Escardino 7, 46980 Paterna, Valencia, Spain.
| | - Jorge A Saraiva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Ana P Martins
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Carlos A Pinto
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Miguel A Prieto
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, Universidade de Vigo - Ourense Campus, E-32004 Ourense, Spain.
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, Universidade de Vigo - Ourense Campus, E-32004 Ourense, Spain.
| | - Hui Cao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, Universidade de Vigo - Ourense Campus, E-32004 Ourense, Spain.
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, Universidade de Vigo - Ourense Campus, E-32004 Ourense, Spain.
| | - Francisco J Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, València, Spain.
| |
Collapse
|
32
|
Russell C, Rodriguez C, Yaseen M. Microalgae for lipid production: Cultivation, extraction & detection. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Abstract
Microalgae have a high capacity to capture CO2. Additionally, biomass contains lipids that can be used to produce biofuels, biolubricants, and other compounds of commercial interest. This study analyzed various scenarios for microalgae lipid production by simulation. These scenarios include cultivation in raceway ponds, primary harvest with three flocculants, secondary harvest with pressure filter (and drying if necessary), and three different technologies for the cell disruption step, which facilitates lipid extraction. The impact on energy consumption and production cost was analyzed. Both energy consumption and operating cost are higher in the scenarios that consider bead milling (8.79–8.88 kWh/kg and USD 41.06–41.41/kg), followed by those that consider high-pressure homogenization (HPH, 5.39–5.46 kWh/kg and USD 34.26–34.71/kg). For the scenarios that consider pressing, the energy consumption is 5.80–5.88 kWh/kg and the operating cost is USD 27.27–27.88/kg. The consumption of CO2 in scenarios that consider pressing have a greater capture (11.23 kg of CO2/kg of lipids). Meanwhile, scenarios that consider HPH are the lowest consumers of fresh water (5.3 m3 of water/kg of lipids). This study allowed us to develop a base of multiple comparative scenarios, evaluate different aspects involved in Chlorella vulgaris lipid production, and determine the impact of various technologies in the cell disruption stage.
Collapse
|
34
|
Rahman MM, Hosano N, Hosano H. Recovering Microalgal Bioresources: A Review of Cell Disruption Methods and Extraction Technologies. Molecules 2022; 27:2786. [PMID: 35566139 PMCID: PMC9104913 DOI: 10.3390/molecules27092786] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 01/27/2023] Open
Abstract
Microalgae have evolved into a promising sustainable source of a wide range of compounds, including protein, carbohydrates, biomass, vitamins, animal feed, and cosmetic products. The process of extraction of intracellular composites in the microalgae industry is largely determined by the microalgal species, cultivation methods, cell wall disruption techniques, and extraction strategies. Various techniques have been applied to disrupt the cell wall and recover the intracellular molecules from microalgae, including non-mechanical, mechanical, and combined methods. A comprehensive understanding of the cell disruption processes in each method is essential to improve the efficiency of current technologies and further development of new methods in this field. In this review, an overview of microalgal cell disruption techniques and an analysis of their performance and challenges are provided. A number of studies on cell disruption and microalgae extraction are examined in order to highlight the key challenges facing the field of microalgae and their future prospects. In addition, the amount of product recovery for each species of microalgae and the important parameters for each technique are discussed. Finally, pulsed electric field (PEF)-assisted treatments, which are becoming an attractive option due to their simplicity and effectiveness in extracting microalgae compounds, are discussed in detail.
Collapse
Affiliation(s)
- Md. Mijanur Rahman
- Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan;
| | - Nushin Hosano
- Department of Biomaterials and Bioelectrics, Institute of Industrial Nanomaterials, Kumamoto University, Kumamoto 860-8555, Japan;
| | - Hamid Hosano
- Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan;
- Department of Biomaterials and Bioelectrics, Institute of Industrial Nanomaterials, Kumamoto University, Kumamoto 860-8555, Japan;
| |
Collapse
|
35
|
Ren X, Liu Y, Fan C, Hong H, Wu W, Zhang W, Wang Y. Production, Processing, and Protection of Microalgal n-3 PUFA-Rich Oil. Foods 2022; 11:foods11091215. [PMID: 35563938 PMCID: PMC9101592 DOI: 10.3390/foods11091215] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 02/01/2023] Open
Abstract
Microalgae have been increasingly considered as a sustainable “biofactory” with huge potentials to fill up the current and future shortages of food and nutrition. They have become an economically and technologically viable solution to produce a great diversity of high-value bioactive compounds, including n-3 polyunsaturated fatty acids (PUFA). The n-3 PUFA, especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), possess an array of biological activities and positively affect a number of diseases, including cardiovascular and neurodegenerative disorders. As such, the global market of n-3 PUFA has been increasing at a fast pace in the past two decades. Nowadays, the supply of n-3 PUFA is facing serious challenges as a result of global warming and maximal/over marine fisheries catches. Although increasing rapidly in recent years, aquaculture as an alternative source of n-3 PUFA appears insufficient to meet the fast increase in consumption and market demand. Therefore, the cultivation of microalgae stands out as a potential solution to meet the shortages of the n-3 PUFA market and provides unique fatty acids for the special groups of the population. This review focuses on the biosynthesis pathways and recombinant engineering approaches that can be used to enhance the production of n-3 PUFA, the impact of environmental conditions in heterotrophic cultivation on n-3 PUFA production, and the technologies that have been applied in the food industry to extract and purify oil in microalgae and protect n-3 PUFA from oxidation.
Collapse
Affiliation(s)
- Xiang Ren
- INNOBIO Corporation Limited, No. 49, DDA, Dalian 116600, China; (Y.L.); (C.F.); (H.H.); (W.W.)
- Correspondence: (X.R.); (Y.W.); Tel.: +86-411-65864645 (X.R.); +1-902-566-7953 (Y.W.)
| | - Yanjun Liu
- INNOBIO Corporation Limited, No. 49, DDA, Dalian 116600, China; (Y.L.); (C.F.); (H.H.); (W.W.)
| | - Chao Fan
- INNOBIO Corporation Limited, No. 49, DDA, Dalian 116600, China; (Y.L.); (C.F.); (H.H.); (W.W.)
| | - Hao Hong
- INNOBIO Corporation Limited, No. 49, DDA, Dalian 116600, China; (Y.L.); (C.F.); (H.H.); (W.W.)
| | - Wenzhong Wu
- INNOBIO Corporation Limited, No. 49, DDA, Dalian 116600, China; (Y.L.); (C.F.); (H.H.); (W.W.)
| | - Wei Zhang
- DeOxiTech Consulting, 30 Cloverfield Court, Dartmouth, NS B2W 0B3, Canada;
| | - Yanwen Wang
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada
- Correspondence: (X.R.); (Y.W.); Tel.: +86-411-65864645 (X.R.); +1-902-566-7953 (Y.W.)
| |
Collapse
|
36
|
Huy M, Kristin Vatland A, Kumar G. Nutraceutical productions from microalgal derived compounds via circular bioeconomy perspective. BIORESOURCE TECHNOLOGY 2022; 347:126575. [PMID: 34923082 DOI: 10.1016/j.biortech.2021.126575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Circular bioeconomy has become a sustainable business model for commercial production that promises to reuse, recycle & recover while considering less environmental footprints in nutraceutical industries. Microalgae biotechnology has the synergy to bioremediate waste stream while generating high-value-added compounds such as astaxanthin, protein and polyunsaturated fatty acids that are potential compounds used in various industries, thus, the integration of this approach provides economic advantages. However, since the industrial production of these compounds is costly and affected byunstable climate in the Nordic regions such as low temperature, light intensity, and polar circle, the focus of biosynthesis has shifted from less tolerant commercial strains towards indigenous strains. Nutraceutical productions such as polyunsaturated fatty acids and protein can now be synthesized at low temperatures which significantly improve the industry's economy. In this review, the above-mentioned compounds with potential strains were discussed based on a Nordic region's perspective.
Collapse
Affiliation(s)
- Menghour Huy
- Department of Chemistry, Bioscience, and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus, 4036 Stavanger, Norway
| | - Ann Kristin Vatland
- Department of Chemistry, Bioscience, and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus, 4036 Stavanger, Norway
| | - Gopalakrishnan Kumar
- Department of Chemistry, Bioscience, and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus, 4036 Stavanger, Norway.
| |
Collapse
|
37
|
Halim R, Papachristou I, Chen GQ, Deng H, Frey W, Posten C, Silve A. The effect of cell disruption on the extraction of oil and protein from concentrated microalgae slurries. BIORESOURCE TECHNOLOGY 2022; 346:126597. [PMID: 34990860 DOI: 10.1016/j.biortech.2021.126597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Novel cell-disruption combinations (autolytic incubation and hypotonic osmotic shock combined with HPH or pH12) were used to investigate the fundamental mass transfer of lipids and proteins from Nannochloropsis slurries (140 mg biomass/g slurry). Since neutral lipids exist as cytosolic globules, their mass transfer was directly dependent on disintegration of cell walls. Complete recovery was obtained with complete physical disruption. HPH combinations exerted more physical disruption and led to higher yields than pH12. In contrast, proteins exist as both cytosolic water-soluble fractions and cell-wall/membrane structural fractions and have a complex extraction behaviour. Mass transfer of cytosolic proteins was dependent on cell-wall disintegration, while that of structural proteins was governed by cell-wall disintegration and severance of protein linkage from the wall/membrane. HPH combinations exerted only physical disruption and were limited to releasing soluble proteins. pH12 combinations hydrolysed chemical linkages in addition to exerting physical disruption, releasing both soluble and structural proteins.
Collapse
Affiliation(s)
- Ronald Halim
- Institute for Pulsed Power and Microwave Technology (IHM), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen 76344, Germany; Institute of Process Engineering in Life Sciences, Bioprocess Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe 76131, Germany; School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin 4, Ireland; UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Ioannis Papachristou
- Institute for Pulsed Power and Microwave Technology (IHM), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen 76344, Germany
| | - George Q Chen
- Department of Chemical Engineering, The University of Melbourne, Victoria 3010, Australia
| | - Huining Deng
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, PR China
| | - Wolfgang Frey
- Institute for Pulsed Power and Microwave Technology (IHM), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen 76344, Germany
| | - Clemens Posten
- Institute of Process Engineering in Life Sciences, Bioprocess Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe 76131, Germany
| | - Aude Silve
- Institute for Pulsed Power and Microwave Technology (IHM), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen 76344, Germany
| |
Collapse
|
38
|
de Carvalho Silvello MA, Severo Gonçalves I, Patrícia Held Azambuja S, Silva Costa S, Garcia Pereira Silva P, Oliveira Santos L, Goldbeck R. Microalgae-based carbohydrates: A green innovative source of bioenergy. BIORESOURCE TECHNOLOGY 2022; 344:126304. [PMID: 34752879 DOI: 10.1016/j.biortech.2021.126304] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
Microalgae contribute significantly to the global carbon cycle through photosynthesis. Given their ability to efficiently convert solar energy and atmospheric carbon dioxide into chemical compounds, such as carbohydrates, and generate oxygen during the process, microalgae represent an excellent and feasible carbohydrate bioresource. Microalgae-based biofuels are technically viable and, delineate a green and innovative field of opportunity for bioenergy exploitation. Microalgal polysaccharides are one of the most versatile groups for biotechnological applications and its content can be increased by manipulating cultivation conditions. Microalgal carbohydrates can be used to produce a variety of biofuels, including bioethanol, biobutanol, biomethane, and biohydrogen. This review provides an overview of microalgal carbohydrates, focusing on their use as feedstock for biofuel production, highlighting the carbohydrate metabolism and approaches for their enhancement. Moreover, biofuels produced from microalgal carbohydrate are showed, in addition to a new bibliometric study of current literature on microalgal carbohydrates and their use.
Collapse
Affiliation(s)
- Maria Augusta de Carvalho Silvello
- Bioprocess and Metabolic Engineering Laboratory, School of Food Engineering, University of Campinas (UNICAMP), Campinas, São Paulo 13083-862, Brazil
| | - Igor Severo Gonçalves
- Bioprocess and Metabolic Engineering Laboratory, School of Food Engineering, University of Campinas (UNICAMP), Campinas, São Paulo 13083-862, Brazil
| | - Suéllen Patrícia Held Azambuja
- Bioprocess and Metabolic Engineering Laboratory, School of Food Engineering, University of Campinas (UNICAMP), Campinas, São Paulo 13083-862, Brazil
| | - Sharlene Silva Costa
- Laboratory of Biotechnology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, RS 96203-900, Brazil
| | - Pedro Garcia Pereira Silva
- Laboratory of Biotechnology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, RS 96203-900, Brazil
| | - Lucielen Oliveira Santos
- Laboratory of Biotechnology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, RS 96203-900, Brazil
| | - Rosana Goldbeck
- Bioprocess and Metabolic Engineering Laboratory, School of Food Engineering, University of Campinas (UNICAMP), Campinas, São Paulo 13083-862, Brazil.
| |
Collapse
|
39
|
Singh S, Verma DK, Thakur M, Tripathy S, Patel AR, Shah N, Utama GL, Srivastav PP, Benavente-Valdés JR, Chávez-González ML, Aguilar CN. Supercritical fluid extraction (SCFE) as green extraction technology for high-value metabolites of algae, its potential trends in food and human health. Food Res Int 2021; 150:110746. [PMID: 34865764 DOI: 10.1016/j.foodres.2021.110746] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 02/07/2023]
Abstract
Application of high-value algal metabolites (HVAMs) in cosmetics, additives, pigments, foods and medicines are very important. These HVAMs can be obtained from the cultivation of micro- and macro-algae. These metabolites can benefit human and animal health in a physiological and nutritional manner. However, because of conventional extraction methods and their energy and the use of pollutant solvents, the availability of HVAMs from algae remains insufficient. Receiving their sustainability and environmental benefits have recently made green extraction technologies for HVAM extractions more desirable. But very little information is available about the technology of green extraction of algae from these HVAM. This review, therefore, highlights the supercritical fluid extraction (SCFE) as principal green extraction technologyand theirideal parameters for extracting HVAMs. In first, general information is provided concerning the HVAMs and their components of macro and micro origin. The review also includes a description of SCFE technology's properties, instrumentation operation, solvents used, and the merits and demerits. Moreover, there are several HVAMs associated with their numerous high-level biological activities which include high-level antioxidant, anti-inflammatory, anticancer and antimicrobial activity and have potential health-beneficial effects in humans since they are all HVAMs, such as foods and nutraceuticals. Finally, it provides future insights, obstacles, and suggestions for selecting the right technologies for extraction.
Collapse
Affiliation(s)
- Smita Singh
- Department of Nutrition and Dietetics, University Institute of Applied Health Sciences, Chandigarh University, Chandigarh 140413, Punjab, India.
| | - Deepak Kumar Verma
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.
| | - Mamta Thakur
- Department of Food Technology, School of Sciences, ITM University, Gwalior 474001, Madhya Pradesh, India.
| | - Soubhagya Tripathy
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Ami R Patel
- Division of Dairy Microbiology, Mansinhbhai Institute of Dairy and Food Technology-MIDFT, Dudhsagar Dairy Campus, Mehsana 384 002, Gujarat, India
| | - Nihir Shah
- Division of Dairy Microbiology, Mansinhbhai Institute of Dairy and Food Technology-MIDFT, Dudhsagar Dairy Campus, Mehsana 384 002, Gujarat, India
| | - Gemilang Lara Utama
- Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Sumedang 45363, Indonesia; Center for Environment and Sustainability Science, Universitas Padjadjaran, Bandung 40132, Indonesia
| | - Prem Prakash Srivastav
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Juan Roberto Benavente-Valdés
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo Campus, 25280 Coahuila, Mexico
| | - Mónica L Chávez-González
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo Campus, 25280 Coahuila, Mexico
| | - Cristobal Noe Aguilar
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo Campus, 25280 Coahuila, Mexico.
| |
Collapse
|
40
|
Solís-Salinas CE, Patlán-Juárez G, Okoye PU, Guillén-Garcés A, Sebastian PJ, Arias DM. Long-term semi-continuous production of carbohydrate-enriched microalgae biomass cultivated in low-loaded domestic wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149227. [PMID: 34332386 DOI: 10.1016/j.scitotenv.2021.149227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/28/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
The production of carbohydrate-enriched biomass from waste streams as a sustainable biofuel precursor is a noteworthy endeavor. This study investigates the long-term microalgae cultivated under low domestic wastewater loads and different hydraulic retention times (HRT) in a semi-continuous photobioreactor. The influence of operational conditions, the microalgae interaction with carbon, nutrients availability, and microbial population in terms of carbohydrate content were elucidated. The results revealed that the operation at similar low nutrients and carbon loads maintained at three different hydraulic retention times (HRT) of 10, 8, and 6 days caused different patterns in nutrients uptake and biomass composition. Particularly, the carbohydrate accumulation was greatly influenced by the unbalance in the N:P ratios than complete depletion of the nutrients. Hence, during the period operated at HRT of 10 d, high nutrients removal efficiencies were observed while gradually increasing carbohydrate content up to 57% in dry cell weight (DCW). Afterward, the decrease to 8 and 6 d of HRT showed lower nutrient consumption with depleted alkalinity, reaching an appreciably high carbohydrate accumulation of up to 46%, and 56%, respectively. The biomass concentration decreased in the order of HRT of 10, 8, and 6 days. This study demonstrated that microalgae adapted to low carbon and nutrient loads could still accumulate high carbohydrate at shorter HRT using domestic wastewater as substrate.
Collapse
Affiliation(s)
- Cesar E Solís-Salinas
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Priv. Xochicalco s/n, Col. Centro, Temixco, Morelos CP 62580, Mexico; Tecnológico Nacional de México/Instituto Tecnológico Superior de Cintalapa, Carretera Panamericana km. 995, 30400 Cintalapa, Chiapas, Mexico
| | - Guadalupe Patlán-Juárez
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Priv. Xochicalco s/n, Col. Centro, Temixco, Morelos CP 62580, Mexico; Universidad Politécnica del Estado de Morelos, Boulevard Cuauhnáhuac No. 566 Col, Lomas del Texcal, Jiutepec, Morelos CP 62550. Mexico
| | - Patrick U Okoye
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Priv. Xochicalco s/n, Col. Centro, Temixco, Morelos CP 62580, Mexico
| | - A Guillén-Garcés
- Tecnológico Nacional de México/Instituto Tecnológico Superior de Cintalapa, Carretera Panamericana km. 995, 30400 Cintalapa, Chiapas, Mexico
| | - P J Sebastian
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Priv. Xochicalco s/n, Col. Centro, Temixco, Morelos CP 62580, Mexico
| | - Dulce María Arias
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Priv. Xochicalco s/n, Col. Centro, Temixco, Morelos CP 62580, Mexico.
| |
Collapse
|
41
|
Mehariya S, Goswami RK, Karthikeysan OP, Verma P. Microalgae for high-value products: A way towards green nutraceutical and pharmaceutical compounds. CHEMOSPHERE 2021; 280:130553. [PMID: 33940454 DOI: 10.1016/j.chemosphere.2021.130553] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Microalgae is a renewable bioresource with the potential to replace the conventional fossil-based industrial production of organic chemicals and pharmaceuticals. Moreover, the microalgal biomass contains carotenoids, vitamins, and other biomolecules that are widely used as food supplements. However, the microalgal biomass production, their composition variations, energy-intensive harvesting methods, optimized bio-refinery routes, and lack of techno-economic analysis are the major bottleneck for the life-sized commercialization of this nascent bio-industry. This review discusses the microalgae-derived key bioactive compounds and their applications in different sectors for human health. Furthermore, this review proposes advanced strategies to enhance the productivity of bioactive compounds and highlight the key challenges associated with a safety issue for use of microalgae biomass. It also provides a detailed global scenario and market demand of microalgal bioproducts. In conclusion, this review will provide the concept of microalgal biorefinery to produce bioactive compounds at industrial scale platform for their application in the nutraceutical and pharmaceutical sector considering their current and future market trends.
Collapse
Affiliation(s)
- Sanjeet Mehariya
- Department of Engineering, University of Campania "Luigi Vanvitelli", Real Casa Dell'Annunziata, Via Roma 29, 81031, Aversa, CE, Italy; Department of Chemistry, Umeå University, 90187, Umeå, Sweden
| | - Rahul Kumar Goswami
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, 305817, Rajasthan, India
| | - Obulisamy Parthiba Karthikeysan
- Department of Engineering Technology, College of Technology, University of Houston, Houston, TX, USA; Civil and Environmental Engineering, South Dakota School of Mines and Technology, Rapid City, SD, USA.
| | - Pradeep Verma
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, 305817, Rajasthan, India.
| |
Collapse
|
42
|
Rojo EM, Piedra I, González AM, Vega M, Bolado S. Effect of process parameters on the valorization of components from microalgal and microalgal-bacteria biomass by enzymatic hydrolysis. BIORESOURCE TECHNOLOGY 2021; 335:125256. [PMID: 33991882 DOI: 10.1016/j.biortech.2021.125256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
Photobioreactors for wastewater treatment coupled with nutrient recovery from the biomass is a promising biorefinery platform but requires working with microalgae-bacteria consortia. This work compares the effect that hydrolysis time and different enzymes have on the solubilization and recovery of components from microalgae-bacteria grown in piggery wastewater and microalgae grown in synthetic media by enzymatic hydrolysis. Higher carbohydrate solubilizations were obtained from microalgae-bacteria than from pure microalgae (38.5% vs. 27% Celluclast, 5 h), as expected from the SEM images. Proteases solubilized xylose remarkably well, but xylose recovery was negligible in all experiments. Alcalase hydrolysis (5 h) provided the highest peptide recovery from both biomasses (≈34%), but the peptide sizes were lower than 10 kDa. Low peptide recoveries (<20%) but larger peptide sizes (up to 135 kDa) were obtained with Protamex. Pure microalgae resulted in remarkably higher losses, but similar amino acid profiles and peptide sizes were obtained from both biomasses.
Collapse
Affiliation(s)
- Elena M Rojo
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain; Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid. Spain
| | - Irene Piedra
- Department of Analytical Chemistry, Faculty of Sciences, University of Valladolid, Campus Miguel Delibes, Paseo de Belén 7, 47011 Valladolid, Spain
| | | | - Marisol Vega
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid. Spain; Department of Analytical Chemistry, Faculty of Sciences, University of Valladolid, Campus Miguel Delibes, Paseo de Belén 7, 47011 Valladolid, Spain
| | - Silvia Bolado
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain; Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid. Spain.
| |
Collapse
|
43
|
Echave J, Fraga-Corral M, Garcia-Perez P, Popović-Djordjević J, H. Avdović E, Radulović M, Xiao J, A. Prieto M, Simal-Gandara J. Seaweed Protein Hydrolysates and Bioactive Peptides: Extraction, Purification, and Applications. Mar Drugs 2021; 19:md19090500. [PMID: 34564162 PMCID: PMC8471739 DOI: 10.3390/md19090500] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 08/28/2021] [Accepted: 08/28/2021] [Indexed: 02/06/2023] Open
Abstract
Seaweeds are industrially exploited for obtaining pigments, polysaccharides, or phenolic compounds with application in diverse fields. Nevertheless, their rich composition in fiber, minerals, and proteins, has pointed them as a useful source of these components. Seaweed proteins are nutritionally valuable and include several specific enzymes, glycoproteins, cell wall-attached proteins, phycobiliproteins, lectins, or peptides. Extraction of seaweed proteins requires the application of disruptive methods due to the heterogeneous cell wall composition of each macroalgae group. Hence, non-protein molecules like phenolics or polysaccharides may also be co-extracted, affecting the extraction yield. Therefore, depending on the macroalgae and target protein characteristics, the sample pretreatment, extraction and purification techniques must be carefully chosen. Traditional methods like solid-liquid or enzyme-assisted extraction (SLE or EAE) have proven successful. However, alternative techniques as ultrasound- or microwave-assisted extraction (UAE or MAE) can be more efficient. To obtain protein hydrolysates, these proteins are subjected to hydrolyzation reactions, whether with proteases or physical or chemical treatments that disrupt the proteins native folding. These hydrolysates and derived peptides are accounted for bioactive properties, like antioxidant, anti-inflammatory, antimicrobial, or antihypertensive activities, which can be applied to different sectors. In this work, current methods and challenges for protein extraction and purification from seaweeds are addressed, focusing on their potential industrial applications in the food, cosmetic, and pharmaceutical industries.
Collapse
Affiliation(s)
- Javier Echave
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (J.E.); (M.F.-C.); (P.G.-P.); (J.X.)
| | - Maria Fraga-Corral
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (J.E.); (M.F.-C.); (P.G.-P.); (J.X.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - Pascual Garcia-Perez
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (J.E.); (M.F.-C.); (P.G.-P.); (J.X.)
| | - Jelena Popović-Djordjević
- Department of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, 11080 Belgrade, Serbia;
| | - Edina H. Avdović
- Department of Science, Institute for Information Technologies Kragujevac, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Milanka Radulović
- Department of Bio-Medical Sciences, State University of Novi Pazar, Vuka Karadžića bb, 36300 Novi Pazar, Serbia;
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (J.E.); (M.F.-C.); (P.G.-P.); (J.X.)
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (J.E.); (M.F.-C.); (P.G.-P.); (J.X.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
- Correspondence: (M.A.P.); (J.S.-G.)
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (J.E.); (M.F.-C.); (P.G.-P.); (J.X.)
- Correspondence: (M.A.P.); (J.S.-G.)
| |
Collapse
|
44
|
Zhang K, Zhang F, Wu YR. Emerging technologies for conversion of sustainable algal biomass into value-added products: A state-of-the-art review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147024. [PMID: 33895504 DOI: 10.1016/j.scitotenv.2021.147024] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/28/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
Concerns regarding high energy demand and gradual depletion of fossil fuels have attracted the desire of seeking renewable and sustainable alternatives. Similar to but better than the first- and second-generation biomass, algae derived third-generation biorefinery aims to generate value-added products by microbial cell factories and has a great potential due to its abundant, carbohydrate-rich and lignin-lacking properties. However, it is crucial to establish an efficient process with higher competitiveness over the current petroleum industry to effectively utilize algal resources. In this review, we summarize the recent technological advances in maximizing the bioavailability of different algal resources. Following an overview of approaches to enhancing the hydrolytic efficiency, we review prominent opportunities involved in microbial conversion into various value-added products including alcohols, organic acids, biogas and other potential industrial products, and also provide key challenges and trends for future insights into developing biorefineries of marine biomass.
Collapse
Affiliation(s)
- Kan Zhang
- Department of Biology, Shantou University, Shantou 515063, Guangdong, China
| | - Feifei Zhang
- Department of Biology, Shantou University, Shantou 515063, Guangdong, China
| | - Yi-Rui Wu
- Department of Biology, Shantou University, Shantou 515063, Guangdong, China; Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, Guangdong, China; Institute of Marine Sciences, Shantou University, Shantou, Guangdong 515063, China.
| |
Collapse
|
45
|
Shi Y, Huang K, Pan X, Liu G, Cai Y, Zaidi AA, Zhang K. Substrate degradation, biodiesel production, and microbial community of two electro-fermentation systems on treating oleaginous microalgae Nannochloropsis sp. BIORESOURCE TECHNOLOGY 2021; 329:124932. [PMID: 33713901 DOI: 10.1016/j.biortech.2021.124932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Electro-fermentation system (EFS) emerges its effectiveness on treating microalgae for biodiesel production, but much is unknown about biodegradation behaviors, biodiesel characteristics, and microbial community. Compared with conventional fermentation system (CFS), microbial electrolysis cell-based EFS (MEC-EFS) and microbial fuel cell-based EFS (MFC-EFS) were investigated for the performance while treating microalgae Nannochloropsis sp. Results indicated that MEC-EFS presented much higher first-order decomposition rate coefficients of carbohydrates and proteins (1.212/d and 0.951/d) than those of CFS (0.615/d and 0.794/d) and MFC-EFS (0.518/d and 0.415/d). Compared with MFC-EFS, MEC-EFS showed better electrochemical performance (2.17 A/m3vs. 0.95 A/m3). Moreover, MEC-EFS reached the highest extracted lipid to biomass ratio (43.3%), followed by MFC-EFS (32.3%) and CFS (27.7%). By strengthened microbial biohydrogenation, MEC-EFS and MFC-EFS had higher saturated fatty acids ratio (78.8% and 70.6%) than that of CFS (56.1%). For MEC-EFS, enriched Ruminococcus and Geobacter in anodic biofilm might contribute to favorable biohydrogenation and electrochemical performance.
Collapse
Affiliation(s)
- Yue Shi
- College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China
| | - Kaiguo Huang
- College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China
| | - Xinxiang Pan
- Maritime College, Guangdong Ocean University, Zhanjiang 524088, Guangdong, China; Marine Engineering College, Dalian Maritime University, Dalian 116026, China
| | - Guobing Liu
- College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China
| | - Yuhang Cai
- College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China
| | - Asad A Zaidi
- Department of Engineering Sciences, Pakistan Navy Engineering College, National University of Sciences and Technology, Karachi 75350, Pakistan
| | - Kun Zhang
- College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China.
| |
Collapse
|
46
|
Martin Juárez J, Martínez-Páramo S, Maté-González M, García Encina PA, Muñoz Torre R, Bolado Rodríguez S. Evaluation of pretreatments for solubilisation of components and recovery of fermentable monosaccharides from microalgae biomass grown in piggery wastewater. CHEMOSPHERE 2021; 268:129330. [PMID: 33359992 DOI: 10.1016/j.chemosphere.2020.129330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/06/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
Microalgae-bacteria biomass cultured in wastewater is an interesting renewable material capable of metabolising nutrients from wastes into carbohydrates, proteins, and lipids through photosynthesis. Despite the interest in the valorisation of this biomass to improve the viability of microalgae-based wastewater treatment processes, very scarce research has been devoted to the fractional recovery of its components. This work evaluates the effect of different pretreatments coupled with enzymatic hydrolysis on the solubilisation of biomass components and on the recovery of fermentable monosaccharides (glucose and xylose) from Scenedesmaceae based biomass grown in a thin layer reactor feed with piggery wastewater. Chemical pretreatments generated high concentrations of byproducts, mainly organic acids. No bacterial DNA was found in these pretreated biomasses. The acid pretreatment provided the highest carbohydrate solubilisation (98%) and monosaccharide recovery (81%). Enzymatic hydrolysis coupled with alkaline NaOH 2 M pretreatment achieved almost complete solubilisation of the biomass components, but high carbohydrate losses. Physical pretreatments remarkably increased the solubilisation of the biomass components during the enzymatic hydrolysis step, especially bead milling, which achieved solubilisation yields of 83% of carbohydrates, 43% of proteins, and 60% of lipids. The presence of viable bacteria in these pretreated biomasses could be related to the high carbohydrate losses and the generation of methanol and ethanol in addition to organic acids as byproducts.
Collapse
Affiliation(s)
- Judit Martin Juárez
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr Mergelina S/n, 47011, Valladolid, Spain; Institute of Sustainable Processes, University of Valladolid, Dr Mergelina S/n, 47011, Valladolid, Spain.
| | - Sonia Martínez-Páramo
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr Mergelina S/n, 47011, Valladolid, Spain; Institute of Sustainable Processes, University of Valladolid, Dr Mergelina S/n, 47011, Valladolid, Spain.
| | - María Maté-González
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr Mergelina S/n, 47011, Valladolid, Spain.
| | - Pedro A García Encina
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr Mergelina S/n, 47011, Valladolid, Spain; Institute of Sustainable Processes, University of Valladolid, Dr Mergelina S/n, 47011, Valladolid, Spain.
| | - Raúl Muñoz Torre
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr Mergelina S/n, 47011, Valladolid, Spain; Institute of Sustainable Processes, University of Valladolid, Dr Mergelina S/n, 47011, Valladolid, Spain.
| | - Silvia Bolado Rodríguez
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr Mergelina S/n, 47011, Valladolid, Spain; Institute of Sustainable Processes, University of Valladolid, Dr Mergelina S/n, 47011, Valladolid, Spain.
| |
Collapse
|
47
|
A Systemic Review on Microalgal Peptides: Bioprocess and Sustainable Applications. SUSTAINABILITY 2021. [DOI: 10.3390/su13063262] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nowadays, microalgal research is predominantly centered on an industrial scale. In general, multipotent bioactive peptides are the advantages over focal points over utilitarian nourishment as well as nutraceuticals. Microalgal peptides are now profoundly connected with biological properties rather than nutritive. Numerous techniques are employed to purify active peptides from algal protein using enzymatic hydrolysis; it is broadly used for numerous favorable circumstances. There is a chance to utilize microalgal peptides for human well-being as nutritive enhancements. This exhaustive survey details the utilization of microalgal peptides as antioxidant, anti-cancerous, anti-hypersensitive, anti-atherosclerotic, and nutritional functional foods. It is also exploring the novel technologies for the production of active peptides, for instance, the use of algal peptides as food for human health discovered restrictions, where peptides are sensitive to hydrolysis protease degradation. This review emphasizes the issue of active peptides in gastrointestinal transit, which has to be solved in the future, and prompt impacts.
Collapse
|
48
|
Barros de Medeiros VP, da Costa WKA, da Silva RT, Pimentel TC, Magnani M. Microalgae as source of functional ingredients in new-generation foods: challenges, technological effects, biological activity, and regulatory issues. Crit Rev Food Sci Nutr 2021; 62:4929-4950. [PMID: 33544001 DOI: 10.1080/10408398.2021.1879729] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Microalgae feasibility as food ingredients or source of nutrients and/or bioactive compounds and their health effects have been widely studied. This review aims to provide an overview of the use of microalgae biomass in food products, the technological effects of its incorporation, and their use as a source of health-promoting bioactive compounds. In addition, it presents the regulatory aspects of commercialization and consumption, and the main trends and market challenges Microalgae have stood out as sources of nutritional compounds (polysaccharides, proteins, lipids, vitamins, minerals, and dietary fiber) and biologically active compounds (asthaxanthin, β-carotene, omega-3 fatty acids). The consumption of microalgae biomass proved to have several health effects, such as hypoglycemic activity, gastroprotective and anti-steatotic properties, improvements in neurobehavioral and cognitive dysfunction, and hypolipidemic properties. Its addition to food products can improve the nutritional value, aroma profile, and technological properties, with important alterations on the syneresis of yogurts, meltability in cheeses, overrun values and melting point in ice creams, physical properties and mechanical characteristics in crisps, and texture, cooking and color characteristics in pastas. However, more studies are needed to prove the health effects in humans, expand the market size, reduce the cost of production, and tighter constraints related to regulations.
Collapse
Affiliation(s)
- Viviane Priscila Barros de Medeiros
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Technology Center, Federal University of Paraíba, João Pessoa, Brazil
| | - Whyara Karoline Almeida da Costa
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Technology Center, Federal University of Paraíba, João Pessoa, Brazil
| | - Ruthchelly Tavares da Silva
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Technology Center, Federal University of Paraíba, João Pessoa, Brazil
| | | | - Marciane Magnani
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Technology Center, Federal University of Paraíba, João Pessoa, Brazil
| |
Collapse
|
49
|
The Application of Catalytic Processes on the Production of Algae-Based Biofuels: A Review. Catalysts 2020. [DOI: 10.3390/catal11010022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Over the last decades, microalgal biomass has gained a significant role in the development of different high-end (nutraceuticals, colorants, food supplements, and pharmaceuticals) and low-end products (biodiesel, bioethanol, and biogas) due to its rapid growth and high carbon-fixing efficiency. Therefore, microalgae are considered a useful and sustainable resource to attain energy security while reducing our current reliance on fossil fuels. From the technologies available for obtaining biofuels using microalgae biomass, thermochemical processes (pyrolysis, Hydrothermal Liquefaction (HTL), gasification) have proven to be processed with higher viability, because they use all biomass. However, due to the complex structure of the biomass (lipids, carbohydrates, and proteins), the obtained biofuels from direct thermochemical conversion have large amounts of heteroatoms (oxygen, nitrogen, and sulfur). As a solution, catalyst-based processes have emerged as a sustainable solution for the increase in biocrude production. This paper’s objective is to present a comprehensive review of recent developments on the catalyst-mediated conversion of algal biomass. Special attention will be given to operating conditions, strains evaluated, and challenges for the optimal yield of algal-based biofuels through pyrolysis and HTL.
Collapse
|
50
|
Isolation, structures and biological activities of polysaccharides from Chlorella: A review. Int J Biol Macromol 2020; 163:2199-2209. [DOI: 10.1016/j.ijbiomac.2020.09.080] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/28/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023]
|