1
|
Pei S, Fan X, Qiu C, Liu N, Li F, Li J, Qi L, Wang S. Effect of biochar addition on the anaerobic digestion of food waste: microbial community structure and methanogenic pathways. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 90:894-907. [PMID: 39141040 DOI: 10.2166/wst.2024.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 04/20/2024] [Indexed: 08/15/2024]
Abstract
This study assessed the effects of the addition of biochar prepared at 700 °C with different dosages on the anaerobic digestion of food waste. The biochar addition at a concentration of 10.0 g/L increased the cumulative methane yield by 128%, and daily methane production was also significantly promoted. The addition of biochar derived from poplar sawdust significantly increased the relative abundance of dominant bacteria for anaerobic digestion by 85.54-2530% and promoted the degradation of refractory organic matter and the transfer of materials between the hydrolysis and acid production stages. Further analysis has demonstrated that Bathyarchaeia and hydrogenotrophic methanogens were enriched by the biochar addition. Meanwhile, the relative abundances of functional genes, including C5-branched dibasic acid metabolism, and pyruvate metabolism, were increased by 11.38-26.27%. The relative abundances of genes related to major amino acid metabolism, including histidine metabolism, lysine biosynthesis, and phenylalanine, tyrosine, and tryptophan biosynthesis, were increased by 11.96-15.71%. Furthermore, the relative abundances of genes involved in major replication and repair were increased by 14.76-22.76%, and the major folding, sorting, degradation, and translation were increased by 14.47-19.95%, respectively. The relative abundances of genes related to major membrane transport and cell motility were increased by 10.02 and 83.09%, respectively.
Collapse
Affiliation(s)
- Siyao Pei
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Xiaodan Fan
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aqueous Science and Technology, Tianjin 300384, China
| | - Chunsheng Qiu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aqueous Science and Technology, Tianjin 300384, China
| | - Nannan Liu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aqueous Science and Technology, Tianjin 300384, China E-mail:
| | - Fei Li
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Jiakang Li
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Li Qi
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aqueous Science and Technology, Tianjin 300384, China
| | - Shaopo Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aqueous Science and Technology, Tianjin 300384, China
| |
Collapse
|
2
|
Guo Z, Qu F, Wang J, Geng M, Gao S, Tian J. Enhancing electron transfer in anaerobic process by supercapacitor materials: Polyaniline functionated activated carbon. BIORESOURCE TECHNOLOGY 2024; 406:131051. [PMID: 38944315 DOI: 10.1016/j.biortech.2024.131051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Strengthening the direct interspecies electron transfer (DIET) is an effective strategy to improve the performance of anaerobic digestion (AD) process. In this study, the polyaniline functionated activated carbon (AC-PANi) was prepared by chemical oxidative polymerization. This material possessed pseudo-capacitance properties as well as excellent charge transfer capability. The experimental results demonstrated that the incorporation of AC-PANi in AD process could efficiently increase the chemical oxygen demand (COD) removal (18.6 %) and daily methane production rate (35.3 %). The AC-PANi can also act as an extracellular acceptor to promote the synthesis of adenosine triphosphate (ATP) and secretion of extracellular enzymes as well as cytochrome C (Cyt-C). The content of coenzyme F420 on methanogens was also shown to be increased by 60.9 % with the addition of AC-PANi in AD reactor. Overall, this work provides an easy but feasible way to enhance AD performance by promoting DIET between acetate-producing bacteria and methanogens.
Collapse
Affiliation(s)
- Zijing Guo
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Fangshu Qu
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jie Wang
- School of Environmental Science and Technology, Tiangong University, Tianjin 300387, China
| | - Mingyue Geng
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Shanshan Gao
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Jiayu Tian
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China.
| |
Collapse
|
3
|
Wang Z, Li L, Gao H, Jiang J, Zhao Q, Li X, Mei W, Gao Q, Zhou H, Wang K, Wei L. Simultaneously enhancement of methane production and active phosphorus transformation by sludge-based biochar during high solids anaerobic co-digestion of dewatered sludge and food waste: Performance and mechanism. BIORESOURCE TECHNOLOGY 2024; 406:130987. [PMID: 38885724 DOI: 10.1016/j.biortech.2024.130987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Biochar has been proved to improve methane production in high solids anaerobic co-digestion (HS-AcoD) of dewatered sludge (DS) and food waste (FW), but its potential mechanism for simultaneous methane production and phosphorus (P) transformation has not been sufficiently revealed. Results showed that the optimal preparation temperature and dosage of sludge-based biochar were selected as 300 °C and 0.075 g·g-1, respectively. Under this optimized condition, the methane production of the semi-continuous reactor increased by 54%, and the active phosphorus increased by 18%. The functional microorganisms, such as Methanosarcina, hydrogen-producing, sulfate-reducing, and iron-reducing bacteria, were increased. Metabolic pathways associated with sulfate reduction and methanogenesis, especially hydrogenotrophic methanogenesis, were enhanced, which in turn promoted methanogenesis and phosphorus transformation and release. This study provides theoretical support for simultaneously recovery of carbon and phosphorus resources from DS and FW using biochar.
Collapse
Affiliation(s)
- Zhaoxia Wang
- Department of Environment Science and Engineering, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lili Li
- Department of Environment Science and Engineering, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hongyuan Gao
- Department of Environment Science and Engineering, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Junqiu Jiang
- Department of Environment Science and Engineering, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Qingliang Zhao
- Department of Environment Science and Engineering, School of Environment, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xinwen Li
- Department of Environment Science and Engineering, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wangyang Mei
- Department of Environment Science and Engineering, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qingwei Gao
- Department of Environment Science and Engineering, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Huimin Zhou
- Department of Environment Science and Engineering, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Kun Wang
- Department of Environment Science and Engineering, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liangliang Wei
- Department of Environment Science and Engineering, School of Environment, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
4
|
Paritosh K, Bose A. Multi-criteria-based decision-making assessment for anaerobic digestion of ammonia-rich distillery wastewater: Effect of pyrochar and temperature. BIORESOURCE TECHNOLOGY 2024; 397:130493. [PMID: 38403171 DOI: 10.1016/j.biortech.2024.130493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Energy-efficient wastewater treatment units are imperative to achieve carbon neutrality and a circular economy at the industrial scale. In the present study, pyrochar loading and digestion temperature were tested to assess their impact on the performance of an anaerobic digester running on distillery wastewater. The digestion temperature (37 °C and 55 °C) and pyrochar loading (7.5 - 30 g/L.feed) were selected as two primary design factors. Experiments were designed using Taguchi's design of experiments and specific methane yield, total ammonia nitrogen, pH and buffering capacity were selected as experimental outputs for multi-criteria assessment. The results from the confirmation test indicated that the addition of pyrochar (7.5 g/Lfeed) improved the methane yield (276 ± 15 L/kg VS) significantly compared to the control (167 ± 15 L/kg VS) at 37 °C. The detailed post-digestion analysis showed that the adsorption of ammonia on pyrochar may be the primary reason for enhanced digester performance.
Collapse
Affiliation(s)
- Kunwar Paritosh
- MaREI Centre, Environmental Research Institute, University College Cork, Cork, Ireland; Civil, Structural and Environmental Engineering, School of Engineering and Architecture, University College Cork, Cork, Ireland.
| | - Archishman Bose
- MaREI Centre, Environmental Research Institute, University College Cork, Cork, Ireland; Process and Chemical Engineering, School of Engineering and Architecture, University College Cork, Cork, Ireland.
| |
Collapse
|
5
|
Shi Z, Xing K, Rameezdeen R, Chow CWK. Current trends and future directions of global research on wastewater to energy: a bibliometric analysis and review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:20792-20813. [PMID: 38400981 PMCID: PMC10948484 DOI: 10.1007/s11356-024-32560-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 02/16/2024] [Indexed: 02/26/2024]
Abstract
This paper presents a structured bibliometric analysis and review of the research publications recorded in the Web of Science database from 2000 to 2023 to methodically examine the landscape and development of the 'wastewater to energy' research field in relation to global trends, potential hotspots, and future research directions. The study highlights three main research themes in 'wastewater to energy', which are biogas production through anaerobic digestion of sewage sludge, methane generation from microbial wastewater treatment, and hydrogen production from biomass. The analysis reveals activated sludge, biochar, biomethane, biogas upgrading, hydrogen, and circular economy as key topics increasingly gaining momentum in recent research publications as well as representing potential future research directions. The findings also signify transformation to SDGs and circular economy practices, through the integration of on-site renewables and biogas upgrading for energy self-sufficiency, optimising energy recovery from wastewater treatment systems, and fostering research and innovation in 'wastewater to energy' supported by policy incentives. By shedding light on emerging trends, cross-cutting themes, and potential policy implications, this study contributes to informing both knowledge and practices of the 'wastewater to energy' research community.
Collapse
Affiliation(s)
- Zhining Shi
- UniSA STEM, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Ke Xing
- UniSA STEM, University of South Australia, Mawson Lakes, SA, 5095, Australia.
| | - Rameez Rameezdeen
- UniSA STEM, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | | |
Collapse
|
6
|
Zhao W, Hu T, Ma H, Li D, Zhao Q, Jiang J, Wei L. A review of microbial responses to biochar addition in anaerobic digestion system: Community, cellular and genetic level findings. BIORESOURCE TECHNOLOGY 2024; 391:129929. [PMID: 37923231 DOI: 10.1016/j.biortech.2023.129929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/11/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
The biochar is a well-developed porous material with various excellent properties, that has been proven with excellent ability in anaerobic digestion (AD) efficiency promotion. Current research is usually focused on the macro effects of biochar on AD, while the systematic review about the mechanisms of biochar on microbial behavior are still lacking. This review summarizes the effects and potential mechanisms of biochar on microorganisms in AD systems, and found that biochar addition can provide habitats for microbial colonization, alleviate toxins stress, supply essential nutrients, and accelerate interspecies electron transferring. Moreover, it also improves microbial community diversity, facilitates EPS secretion, enhances functional enzyme activity, promotes functional genes expression, and inhibits the antibiotic resistance genes transformation. Future research directions including biochar targeted design, in-depth microbial mechanisms revelation, and modified model development were suggested, which could promote the widely practical application of of biochar-amended AD technology.
Collapse
Affiliation(s)
- Weixin Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Tianyi Hu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hao Ma
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dan Li
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Junqiu Jiang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
7
|
Alam M, Dhar BR. Boosting thermophilic anaerobic digestion with conductive materials: Current outlook and future prospects. CHEMOSPHERE 2023; 343:140175. [PMID: 37714472 DOI: 10.1016/j.chemosphere.2023.140175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/15/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Thermophilic anaerobic digestion (TAD) can provide superior process kinetics, higher methane yields, and more pathogen destruction than mesophilic anaerobic digestion (MAD). However, the broader application of TAD is still very limited, mainly due to process instabilities such as the accumulation of volatile fatty acids and ammonia inhibition in the digesters. An emerging technique to overcome the process disturbances in TAD and enhance the methane production rate is to add conductive materials (CMs) to the digester. Recent studies have revealed that CMs can promote direct interspecies electron transfer (DIET) among the microbial community, increasing the TAD performance. CMs exhibited a high potential for alleviating the accumulation of volatile fatty acids and inhibition caused by high ammonia levels. However, the types, properties, sources, and dosage of CMs can influence the process outcomes significantly, along with other process parameters such as the organic loading rates and the type of feedstocks. Therefore, it is imperative to critically review the recent research to understand the impacts of using different CMs in TAD. This review paper discusses the types and properties of CMs applied in TAD and the mechanisms of how they influence methanogenesis, digester start-up time, process disturbances, microbial community, and biogas desulfurization. The engineering challenges for industrial-scale applications and environmental risks were also discussed. Finally, critical research gaps have been identified to provide a framework for future research.
Collapse
Affiliation(s)
- Monisha Alam
- Civil and Environmental Engineering, University of Alberta, 116 Street NW, Edmonton, AB, T6G 1H9, Canada
| | - Bipro Ranjan Dhar
- Civil and Environmental Engineering, University of Alberta, 116 Street NW, Edmonton, AB, T6G 1H9, Canada.
| |
Collapse
|
8
|
Kundu R, Kunnoth B, Pilli S, Polisetty VR, Tyagi RD. Biochar symbiosis in anaerobic digestion to enhance biogas production: A comprehensive review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118743. [PMID: 37572403 DOI: 10.1016/j.jenvman.2023.118743] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/24/2023] [Accepted: 08/05/2023] [Indexed: 08/14/2023]
Abstract
In recent years, anaerobic digestion (AD) has gained popularity as a practical method for generating clean energy and efficiently managing organic waste. However, the effectiveness of the reactor is compromised by the accumulation of ammonia, acids, and nutrients, leading to inhibition and instability. Because of its adaptability, biochar (BC) has sparked a substantial interest in biogas production and can be created by charring biomass and waste materials. Adding BC to the AD process could yield the following benefits: mitigating toxic inhibition, reducing the duration of the methanogenic lag phase, immobilising functional bacteria, and enhancing the rate of electron transfer between methanogenic and acetogenic microorganisms. Nonetheless, there remains to be more comprehensive knowledge regarding the multifaceted function of BC and its intricate mechanisms in the generation of biogas in AD. The research summarises scattered information from the literature on BC production from various feedstocks and factors affecting its characteristics. Additionally, a comprehensive analysis of the utilisation of BC as an additive within AD is presented here, emphasising how BC characteristics impact AD processes and how they effectively engage key challenges.
Collapse
Affiliation(s)
- Ranarup Kundu
- Water and Environment Division, Department of Civil Engineering, National Institute of Technology, Warangal, Telangana, India
| | - Bella Kunnoth
- Water and Environment Division, Department of Civil Engineering, National Institute of Technology, Warangal, Telangana, India
| | - Sridhar Pilli
- Water and Environment Division, Department of Civil Engineering, National Institute of Technology, Warangal, Telangana, India.
| | - Venkateswara Rao Polisetty
- Water and Environment Division, Department of Civil Engineering, National Institute of Technology, Warangal, Telangana, India.
| | - R D Tyagi
- BOSK Bioproducts, Quebec City, QC, Canada
| |
Collapse
|
9
|
Krebsbach S, He J, Adhikari S, Olshansky Y, Feyzbar F, Davis LC, Oh TS, Wang D. Mechanistic understanding of perfluorooctane sulfonate (PFOS) sorption by biochars. CHEMOSPHERE 2023; 330:138661. [PMID: 37044140 DOI: 10.1016/j.chemosphere.2023.138661] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/20/2023] [Accepted: 04/08/2023] [Indexed: 05/14/2023]
Abstract
Biochar has recently emerged as a cost-effective solution to combat per- and polyfluoroalkyl substances (PFAS) pollution in water, but mechanistic understanding of which physicochemical properties of biochars dictate PFAS sorptive removal from water remains elusive. Herein, 15 biochars were pyrolyzed from five feedstocks (corn, Douglas fir, eucalyptus, poplar, and switchgrass) at three pyrolysis temperatures (500, 700, and 900 °C) to investigate their removal efficiencies and mechanisms of perfluorooctane sulfonate (PFOS) from water. A commercial biochar was also included for comparison. Biochar physiochemical properties, including elemental composition, pH, specific surface area (SSA), pore structure, hydrophobicity, surface charge, surface functional groups, and crystalline structure were systematically characterized. Batch sorption data showed that the Douglas fir 900 biochar (Douglas fir and 900 are the feedstock type and pyrolysis temperature, respectively; this naming rule applies to other biochars), poplar 900 biochar, and commercial biochar can remove over 95% of PFOS from water. Structural equation model (SEM) was used to elucidate which biochar properties affect PFOS sorption. Interestingly, biochar pore diameter was identified as the most critical factor controlling PFOS removal, but pore diameter/pore volume ratio, SSA, pyrolysis temperature, hydrophobicity, and elemental composition all played variable roles. Hypothetically, biochars with small pore diameters and large pore volumes had a narrow yet deep pore structure that traps PFOS molecules inside once already sorbed, resulting in an enhanced PFOS sorption. Biochars with small pore diameter, low nitrogen content, and high pyrolysis temperature were also favorable for enhanced PFOS sorption. Our findings advance the knowledge of using biochars with optimized properties to remove PFOS and possibly other similar PFAS compounds from water.
Collapse
Affiliation(s)
- Samuel Krebsbach
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Jianzhou He
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Sushil Adhikari
- Biosystems Engineering Department, Auburn University, Auburn, AL 36849, USA
| | - Yaniv Olshansky
- Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL 36849, USA
| | - Farshad Feyzbar
- Department of Chemical Engineering Auburn University, Auburn, AL, 36849, USA
| | - Leonard C Davis
- Department of Biological and Environmental Sciences, East Central University, Ada, OK, 74820, USA
| | - Tae-Sik Oh
- Department of Chemical Engineering Auburn University, Auburn, AL, 36849, USA
| | - Dengjun Wang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
10
|
Duan S, He J, Xin X, Li L, Zou X, Zhong Y, Zhang J, Cui X. Characteristics of digested sludge-derived biochar for promoting methane production during anaerobic digestion of waste activated sludge. BIORESOURCE TECHNOLOGY 2023:129245. [PMID: 37268088 DOI: 10.1016/j.biortech.2023.129245] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/04/2023]
Abstract
This study investigated a novel method for enhancing methane production during anaerobic digestion of waste activated sludge with digested sludge-derived biochar (DSBC). Using response surface methodology, the following process conditions for DSBC synthesis were optimized: heating rate = 13.23 °C/min, pyrolysis temperature = 516 °C, and heating time = 192 min. DSBC significantly enhanced the methane production by 48 % and improved key coenzyme activity that accelerated the bioconversion of organic matter while promoting the decomposition and transformation of volatile fatty acids. Consequently, the lag period of methane production was shortened to 4.89 days, while the average proportion of methane greatly increased to 73.22%. Thus, DSBC could facilitate efficient methanogenesis in the anaerobic system by promoting electron transfer between syntrophic partners through the charge-discharge cycle of surface oxygen-containing functional groups. The study provides a reference for the resource utilization of anaerobic sludge residues and efficient anaerobic methanogenesis from sludge.
Collapse
Affiliation(s)
- Shengye Duan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Junguo He
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Xiaodong Xin
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Lin Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Xiang Zou
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Yijie Zhong
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Jie Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xinxin Cui
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China
| |
Collapse
|
11
|
Faisal S, Ebaid R, Xiong M, Huang J, Wang Q, El-Hefnawy M, Abomohra A. Maximizing the energy recovery from rice straw through two-step conversion using eggshell-catalytic pyrolysis followed by enhanced anaerobic digestion using calcium-rich biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159984. [PMID: 36356751 DOI: 10.1016/j.scitotenv.2022.159984] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Anaerobic digestion of lignocelluloses for biogas production is greatly restricted by the poor biomass degradability. Herein, a novel approach is suggested to enhance the energy recovery from rice straw through a two-step conversion using eggshell-based catalytic pyrolysis followed by biochar-based anaerobic co-digestion. Pyrolysis with eggshell significantly enhanced the crude bio-oil yield by 4.6 %. Anaerobic digestion of rice straw using 4 g L-1 of rice straw biochar (RB) showed the highest recorded biogas yield of 503.7 L kg-1 VS, with 268.6 L kg-1 VS biomethane yield. However, 4 g L-1 of calcium-enriched eggshell rice straw biochar (ERB) enhanced the biomethane yield to 281.8 L kg-1 VS, which represented 95.6 % higher than the control. It was attributed to enhancement of biomethanation, which resulted in 74.5 % maximum recorded biomethane content at the 7th day of anaerobic digestion. Microbial analysis confirmed that Methanosarciniales was the most dominant Archael group in the control (14.84 %), which increased sharply to 73.91 % and 91.66 % after addition of 4 g L-1 RB and ERB, respectively. The suggested route enhanced the energy recovery in the form of bio-oil and biomethane by 41.6 %.
Collapse
Affiliation(s)
- Shah Faisal
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, PR China; Institute of New Energy and Low-carbon Technology, Sichuan University, Chengdu 610065, PR China
| | - Reham Ebaid
- Institute of New Energy and Low-carbon Technology, Sichuan University, Chengdu 610065, PR China
| | - Min Xiong
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, PR China
| | - Jin Huang
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, PR China
| | - Qingyuan Wang
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, PR China; Institute of New Energy and Low-carbon Technology, Sichuan University, Chengdu 610065, PR China.
| | - Mohamed El-Hefnawy
- Department of Chemistry, Rabigh College of Science and Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia; Chemistry Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Abdelfatah Abomohra
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, PR China.
| |
Collapse
|
12
|
Chozhavendhan S, Karthigadevi G, Bharathiraja B, Praveen Kumar R, Abo LD, Venkatesa Prabhu S, Balachandar R, Jayakumar M. Current and prognostic overview on the strategic exploitation of anaerobic digestion and digestate: A review. ENVIRONMENTAL RESEARCH 2023; 216:114526. [PMID: 36252837 DOI: 10.1016/j.envres.2022.114526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/15/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
The depletion of fossil fuels and increasing demand for energy are encountered by generating renewable biogas. Anaerobic digestion (AD) produces not only biogas, also other value-added products from the digestate using various organic, municipal and industrial wastes which have several benefits like remediating waste, reduces greenhouse gas emissions, renewable energy generation and securing socio-economic status of bio-based industries. This review work critically analyzes the biorefinery approaches on AD process for the production of biogas and digestate, and their direct and indirect utilization. The left-out residue obtained from AD is called 'digestate' which enriched with organic matter, nitrogen, heavy metals and other valuable micronutrients. However, the direct disposal of digestate to the land as fertilizer/landfills creates various environmental issues. Keeping this view, the digestate should be upgraded or transformed into high valued products such as biofertilizer, pyrochar, biodiesel, syngas and soil conditioner that can aid to enrich the soil nutrients and ensures the safe environment as well. In this context, the present review focused to illustrate the current techniques and different strategic exploitations on AD proper management of digestate products for storage and further applications. Such a technology transfer provides a proven strategic mechanism towards the enhancement of the sustainability of bio-based industries, attaining the energy demand, safest waste management, protection of environment and reduces the socio-economic issues of the industrial sector.
Collapse
Affiliation(s)
- S Chozhavendhan
- Department of Biotechnology, Vivekanandha College of Engineering for Women, Tiruchengode, Tamil Nadu, India
| | - G Karthigadevi
- Department of Biotechnology, Sri Venkateswara College of Engineering, Sriperumbudur, India
| | - B Bharathiraja
- Department of Chemical Engineering, Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Chennai, Tamil Nadu, India
| | | | - Lata Deso Abo
- Department of Chemical Engineering, Haramaya Institute of Technology, Haramaya University, Haramaya, Dire Dawa, Ethiopia
| | - S Venkatesa Prabhu
- Center of Excellence for Bioprocess and Biotechnology, Department of Chemical Engineering, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Ethiopia
| | - Ramalingam Balachandar
- Department of Biotechnology, Prathyusha Engineering College, Tiruvallur, 602 025, Tamil Nadu, India
| | - Mani Jayakumar
- Department of Chemical Engineering, Haramaya Institute of Technology, Haramaya University, Haramaya, Dire Dawa, Ethiopia.
| |
Collapse
|
13
|
Jiao Y, Zhang N, He C, Ma X, Liu X, Liu L, Hou T, Wang Z, Pan X. Preparation of sludge-corn stalk biochar and its enhanced anaerobic fermentation. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Kizito S, Jjagwe J, Mdondo SW, Nagawa CB, Bah H, Tumutegyereize P. Synergetic effects of biochar addition on mesophilic and high total solids anaerobic digestion of chicken manure. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 315:115192. [PMID: 35550972 DOI: 10.1016/j.jenvman.2022.115192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/09/2022] [Accepted: 04/25/2022] [Indexed: 06/15/2023]
Abstract
High solids anaerobic digestion (AD) of chicken manure (CM) is often challenging due to ammonia-N inhibition and accumulation of volatile fatty acids (VFAs). This study evaluated the effect of adding biochars from different feedstock to ameliorate semi-dry AD of fresh CM during batch fermentation. Experiments were performed in 300 mL at two total solid (TS) levels (12% and 15%) under mesophilic (36 ±1ᵒC) conditions for 55 d, using activated sludge as inoculum. Treatments included: fresh CM (at 12% or 15% TS) mixed separately with rice husks char (RB), wood char (WB) and bamboo char (BB) at biochar dosages of 2.5%, 5% and 10% of TS in the CM, inoculum only and inoculum plus CM without addition of char as the control. Results indicated that addition of biochar reduced the lag phases to 4-5.4 d and AD performances were significantly improved with total volatile solids removal of 53-67% and 62-71%, and cumulative methane of 277-380 mL/gVS (CH4 content ≈ 51-63%) and 297-438 mL/gVS (CH4 content ≈ 49-67%) at 12% and 15% TS, respectively. Biochar buffered over acidification and stabilized pH in the range of 6.5-7.8 but mild ammonia inhibition still occurred in all biochar treatments due to the high residual total ammonia-N (4.3 g-5.6 g/L). For all the investigated parameters, WB amended digesters exhibited the best results owing to its high specific surface area, porosity, cationic exchange capacity, and elemental composition which were superior to those of RB and BB. At 10% dosage of all tested biochars, the AD process was more stable and methane content neared optimal of >65% CH4. Therefore, addition of biochar from lignocellulosic materials at a given threshold dosage could promote semi-dry and dry biogas production from chicken manure and thus add value to this waste which in most cases is improperly managed.
Collapse
Affiliation(s)
- Simon Kizito
- Department of Forestry, Biodiversity and Tourism, School of Forestry, Environmental and Geographical Sciences, Makerere University, P.O.Box 7062, Kampala, Uganda.
| | - Joseph Jjagwe
- Department of Mechanical Engineering, College of Engineering, Design, Art and Technology, Makerere University, P.O.Box.7062, Kampala, Uganda
| | - Simon Wandera Mdondo
- Department of Civil, Construction and Environmental Engineering, Jomo Kenyatta University of Agriculture and Technology, P. O. Box 43844-00100, Nairobi, Kenya
| | - Christine Betty Nagawa
- Department of Forestry, Biodiversity and Tourism, School of Forestry, Environmental and Geographical Sciences, Makerere University, P.O.Box 7062, Kampala, Uganda
| | - Hamidou Bah
- Institute Superior Agronomy and Veterinary of Faranah (ISAV/F), Faranah 131, Guinea
| | - Peter Tumutegyereize
- Department of Agricultural and Biosystems Engineering, School of Food Technology, Nutrition and Bioengineering, Makerere University, P.O. Box 7062, Kampala, Uganda
| |
Collapse
|
15
|
Chiappero M, Berruti F, Mašek O, Fiore S. Semi-continuous anaerobic digestion of mixed wastewater sludge with biochar addition. BIORESOURCE TECHNOLOGY 2021; 340:125664. [PMID: 34358988 DOI: 10.1016/j.biortech.2021.125664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
This work analysed the effects of Biochar (BC) addition to the Anaerobic digestion (AD) of wastewater Mixed sludge (MS) in semi-continuous mode. A 3 L digester was operated at 37 °C for 100 days, feeding MS collected every three weeks in the same wastewater treatment plant, and 10 g L-1 of BC. The average performance of MS digestion (biogas 188 NmL d-1, 68% methane) improved in presence of BC (biogas 244 NmL d-1, 69% methane). According to the results of the multiple linear regression analysis performed on the experimental data, the 79% variation of the soluble COD in the MS was the driving factor for the 38% increase of biogas and methane yields. In conclusion, in the considered experimental conditions, the variability of the substrate's composition was the key factor driving the performances of the AD of MS, independently of the addition of BC.
Collapse
Affiliation(s)
- Marco Chiappero
- DIATI (Department of Engineering for Environment, Land and Infrastructures), Politecnico di Torino, Corso Duca Degli Abruzzi 24, Torino 10129, Italy
| | - Franco Berruti
- Institute for Chemicals and Fuels from Alternative Resources (ICFAR), Department of Chemical and Biochemical Engineering, Faculty of Engineering, Western University, London, Ontario N6A 5B9, Canada
| | - Ondřej Mašek
- UK Biochar Research Centre (UKBRC), School of GeoSciences, University of Edinburgh, King's Buildings, Edinburgh EH9 3JN, United Kingdom
| | - Silvia Fiore
- DIATI (Department of Engineering for Environment, Land and Infrastructures), Politecnico di Torino, Corso Duca Degli Abruzzi 24, Torino 10129, Italy.
| |
Collapse
|
16
|
Mishra A, Kumar M, Bolan NS, Kapley A, Kumar R, Singh L. Multidimensional approaches of biogas production and up-gradation: Opportunities and challenges. BIORESOURCE TECHNOLOGY 2021; 338:125514. [PMID: 34265593 DOI: 10.1016/j.biortech.2021.125514] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
The expanding interest towards biogas generation from biowaste via complex anaerobic digestion (AD) opened new avenues in the improvement of biogas production processes and their up-gradation. The adsorption/removal of impurities particularly hydrogen sulfide (H2S) and carbon dioxide (CO2) from the biogas stream will significantly improve the efficiency of biogas for its further use as a renewable energy fuel. The production and up-gradation of biogas rely upon the types of feedstocks, AD condition, microbial diversity, purification methods along with the application of various additives. In that context, this review aims to emphasize the current state of the art in the field of biogas production via AD using diverse bio-waste. Further, this review will critically explore the biogas up-gradation technologies adopted so far and their pros and cons. Finally, techno-economic and environmental impact assessment of the biogas production process will be underlined to make the process cost-effective and environmentally sustainable.
Collapse
Affiliation(s)
- Apurva Mishra
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur 440020, Maharashtra, India
| | - Manish Kumar
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur 440020, Maharashtra, India
| | - Nanthi S Bolan
- Global Centre for Environmental Remediation, University of Newcastle, Callaghan 2308, NSW, Australia
| | - Atya Kapley
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur 440020, Maharashtra, India
| | - Rakesh Kumar
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur 440020, Maharashtra, India
| | - Lal Singh
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur 440020, Maharashtra, India.
| |
Collapse
|
17
|
Addition of Different Biochars as Catalysts during the Mesophilic Anaerobic Digestion of Mixed Wastewater Sludge. Catalysts 2021. [DOI: 10.3390/catal11091094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Biochar (BC) recently gained attention as an additive for anaerobic digestion (AD). This work aims at a critical analysis of the effect of six BCs, with different physical and chemical properties, on the AD of mixed wastewater sludge at 37 °C, comparing their influence on methane production and AD kinetics. AD batch tests were performed at the laboratory scale operating 48 reactors (0.25 L working volume) for 28 days with the addition of 10 g L−1 of BC. Most reactors supplemented with BCs exhibited higher (up to 22%) methane yields than the control reactors (0.15 Nm3 kgVS−1). The modified Gompertz model provided maximum methane production rate values, and in all reactors the lag-phase was equal to zero days, indicating a good adaptation of the inoculum to the substrate. The potential correlations between BCs’ properties and AD performance were assessed using principal component analysis (PCA). The PCA results showed a reasonable correlation between methane production and the BCs’ O–C and H–C molar ratios, and volatile matter, and between biogas production and BCs’ pore volume, specific surface area, and fixed and total carbon. In conclusion, the physic-chemical properties of BC (specifically, hydrophobicity and morphology) showed a key role in improving the AD of mixed wastewater sludge.
Collapse
|
18
|
Wang P, Sakhno Y, Adhikari S, Peng H, Jaisi D, Soneye T, Higgins B, Wang Q. Effect of ammonia removal and biochar detoxification on anaerobic digestion of aqueous phase from municipal sludge hydrothermal liquefaction. BIORESOURCE TECHNOLOGY 2021; 326:124730. [PMID: 33548815 DOI: 10.1016/j.biortech.2021.124730] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Hydrothermal liquefaction is a promising method to convert municipal sludge into an energy-dense fuel. The inevitable by-product aqueous phase is rich in complex organics, which has the potential for energy and nutrient recovery and can be treated by anaerobic digestion to produce methane. However, toxic compounds such as ammonia and phenolics present would inhibit the function of micro-organisms. This study investigated the influence of ammonia and phenolics removal on anaerobic digestion. The results showed that the treated aqueous phase resulted in up to 225 ml CH4/g COD. The highest methane production was obtained in the culture with both ammonia and phenolics removal at pH 7.0, which was about 90% higher than only ammonia removal and seven times higher than only phenolics removal. The microbial community analysis results showed that these two treatments could increase microbial diversity and upregulate the relative abundance of methanogens.
Collapse
Affiliation(s)
- Pixiang Wang
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, USA
| | - Yuriy Sakhno
- Plant & Soil Sciences Department, University of Delaware, Newark, DE 19713, USA
| | - Sushil Adhikari
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, USA; Center for Bioenergy and Bioproducts, Auburn University, Auburn, AL 36849, USA.
| | - Haixin Peng
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, USA
| | - Deb Jaisi
- Plant & Soil Sciences Department, University of Delaware, Newark, DE 19713, USA
| | - Temitope Soneye
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, USA
| | - Brendan Higgins
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, USA
| | - Qichen Wang
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
19
|
Wang W, Lee DJ. Valorization of anaerobic digestion digestate: A prospect review. BIORESOURCE TECHNOLOGY 2021; 323:124626. [PMID: 33418353 DOI: 10.1016/j.biortech.2020.124626] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
Anaerobic digestion is recognized as promising technology for bioenergy production from biowaste, with huge quantity of digestate being produced as the residual waste. The digestate contains substantial amounts of organic and inorganic matters that be considered highly risky contaminants to the receiving environments if not properly treated, but also potential renewable resources if are adequately recovered. This prospect review summarized the current research efforts on digestate valorization, including aspects of resource recovery and the proposed applications, particularly on the conversion techniques and economic feasibility. The prospects for digestate valorization were highlighted at the end of this review.
Collapse
Affiliation(s)
- Wei Wang
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
20
|
Yu Q, Sun C, Liu R, Yellezuome D, Zhu X, Bai R, Liu M, Sun M. Anaerobic co-digestion of corn stover and chicken manure using continuous stirred tank reactor: The effect of biochar addition and urea pretreatment. BIORESOURCE TECHNOLOGY 2021; 319:124197. [PMID: 33038654 DOI: 10.1016/j.biortech.2020.124197] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/21/2020] [Accepted: 09/27/2020] [Indexed: 05/22/2023]
Abstract
The performance of biochar mediated anaerobic co-digestion (co-AD) of corn stover (CS) and chicken manure (CM) using continuous stirred tank reactor (CSTR) was studied. Results showed that urea pretreated CS (UPCS) and biochar addition in anaerobic digestion (AD) system can improve co-AD. The effect of urea pretreatment is similar to that of biochar addition, and their synergistic effect was apparent under medium and high OLR conditions. When the OLR was 4.2 and 6.3 g VS/L/d, the biochar mediated UPCS/CM co-AD operated stably with the VMP of 2.160 and 1.616 L/L/d, and VMP of the biochar mediated UPCS /CM were 32.8%-89.6% and 27.8%-96.4% higher than other reactors, respectively. The results reveal that urea pretreatment and biochar addition promoted AD process through strengthening the buffer capacity system established by ammonia nitrogen and volatile fatty acids and improving the degradation of lignocellulosic biomass.
Collapse
Affiliation(s)
- Qiong Yu
- Biomass Energy Engineering Research Centre, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China; Key Laboratory of Urban Agriculture (South), Ministry of Agriculture and Rural Affairs, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Chen Sun
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang Province 314001, PR China
| | - Ronghou Liu
- Biomass Energy Engineering Research Centre, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China; Key Laboratory of Urban Agriculture (South), Ministry of Agriculture and Rural Affairs, 800 Dongchuan Road, Shanghai 200240, PR China.
| | - Dominic Yellezuome
- Biomass Energy Engineering Research Centre, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China; Key Laboratory of Urban Agriculture (South), Ministry of Agriculture and Rural Affairs, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Xianpu Zhu
- Biomass Energy Engineering Research Centre, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China; Key Laboratory of Urban Agriculture (South), Ministry of Agriculture and Rural Affairs, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Ruifeng Bai
- Biomass Energy Engineering Research Centre, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Mingquan Liu
- Biomass Energy Engineering Research Centre, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Mengzeng Sun
- Biomass Energy Engineering Research Centre, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| |
Collapse
|
21
|
Zhao Z, Li Y, Zhang Y, Lovley DR. Sparking Anaerobic Digestion: Promoting Direct Interspecies Electron Transfer to Enhance Methane Production. iScience 2020; 23:101794. [PMID: 33294801 PMCID: PMC7695907 DOI: 10.1016/j.isci.2020.101794] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Anaerobic digestion was one of the first bioenergy strategies developed, yet the interactions of the microbial community that is responsible for the production of methane are still poorly understood. For example, it has only recently been recognized that the bacteria that oxidize organic waste components can forge electrical connections with methane-producing microbes through biologically produced, protein-based, conductive circuits. This direct interspecies electron transfer (DIET) is faster than interspecies electron exchange via diffusive electron carriers, such as H2. DIET is also more resilient to perturbations such as increases in organic load inputs or toxic compounds. However, with current digester practices DIET rarely predominates. Improvements in anaerobic digestion associated with the addition of electrically conductive materials have been attributed to increased DIET, but experimental verification has been lacking. This deficiency may soon be overcome with improved understanding of the diversity of microbes capable of DIET, which is leading to molecular tools for determining the extent of DIET. Here we review the microbiology of DIET, suggest molecular strategies for monitoring DIET in anaerobic digesters, and propose approaches for re-engineering digester design and practices to encourage DIET.
Collapse
Affiliation(s)
- Zhiqiang Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003-9298, USA
| | - Yang Li
- School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003-9298, USA
| | - Yaobin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Derek R. Lovley
- Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003-9298, USA
| |
Collapse
|
22
|
Wang G, Li Y, Sheng L, Xing Y, Liu G, Yao G, Ngo HH, Li Q, Wang XC, Li YY, Chen R. A review on facilitating bio-wastes degradation and energy recovery efficiencies in anaerobic digestion systems with biochar amendment. BIORESOURCE TECHNOLOGY 2020; 314:123777. [PMID: 32665106 DOI: 10.1016/j.biortech.2020.123777] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
In this review, progress in the potential mechanisms of biochar amendment for AD performance promotion was summarized. As adsorbents, biochar was beneficial for alleviating microbial toxicity, accelerating refractory substances degradation, and upgrading biogas quality. The buffering capacity of biochar balanced pH decreasing caused by volatile fatty acids accumulation. Moreover, biochar regulated microbial metabolism by boosting activities, mediating electron transfer between syntrophic partners, and enriching functional microbes. Recent studies also suggested biochar as potential useful additives for membrane fouling alleviation in anaerobic membrane bioreactors (AnMBR). By analyzing the reported performances based on different operation models or substrate types, debatable issues and associated research gaps of understanding the real role of biochar in AD were critically discussed. Accordingly, Future perspectives of developing biochar-amended AD technology for real-world applications were elucidated. Lastly, with biochar-amended AD as a core process, a novel integrated scheme was proposed towards high-efficient energy-resource recovery from various bio-wastes.
Collapse
Affiliation(s)
- Gaojun Wang
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Yu Li
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Li Sheng
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Yao Xing
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Guohao Liu
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Gaofei Yao
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Huu Hao Ngo
- International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Qian Li
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Xiaochang C Wang
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan
| | - Rong Chen
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China.
| |
Collapse
|