1
|
Martínez-Cartas ML, Cuevas-Aranda M, Sánchez S. Harnessing of Sunflower Stalks by Hydrolysis and Fermentation with Hansenula polymorpha to Produce Biofuels. Polymers (Basel) 2024; 16:3548. [PMID: 39771400 PMCID: PMC11678814 DOI: 10.3390/polym16243548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/09/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
A sequential valorization process of sunflower stalks was carried out using nitric acid (0.1-2 mol dm-3) as a hydrolytic agent and fermenting the hydrolysate of higher sugar concentration in the presence of the non-conventional yeast Hansenula polymorpha. Values reached for ethanol yield (0.25 g g-1) and xylitol yield (0.14 g g-1) were higher than those achieved after pretreatment with other acids in previous studies. The effect of acid treatment with nitric, phosphoric, and sulfuric acids on the separated solid fractions was evaluated to determine its potential use as solid biofuel by FTIR and SEM determinations. A significant loss of lignin and hemicellulose was found in the solid treated with nitric acid, while a higher HHV was obtained when pretreated with phosphoric acid (19.16 MJ kg-1) and sulfuric acid (19.12 MJ kg-1). A subsequent enzymatic hydrolysis of acid-pretreated solids showed that the nitric acid pretreatment increased the availability of glucose from the cellulose fraction to a greater extent than the other two acids, by reducing the hemicellulose fraction to 0.7% and the lignin fraction to 2.5%. This study shows that pretreatment of biomass with nitric acid leads to better fermentation results to obtain biofuels such as ethanol, which could be further increased by additional enzymatic hydrolysis, while pretreatment with the other two acids generates better solid fuels.
Collapse
Affiliation(s)
- Mª Lourdes Martínez-Cartas
- Department of Chemical, Environmental and Materials Engineering, Higher Polytechnical School of University of Jaén, Avda. de la Universidad s/n, 23700 Linares, Spain; (M.C.-A.); (S.S.)
- University Institute of Research in Olive Grove and Olive Oils, University of Jaén, Science and Technology Park GEOLIT, 23620 Mengíbar, Spain
| | - Manuel Cuevas-Aranda
- Department of Chemical, Environmental and Materials Engineering, Higher Polytechnical School of University of Jaén, Avda. de la Universidad s/n, 23700 Linares, Spain; (M.C.-A.); (S.S.)
- University Institute of Research in Olive Grove and Olive Oils, University of Jaén, Science and Technology Park GEOLIT, 23620 Mengíbar, Spain
| | - Sebastián Sánchez
- Department of Chemical, Environmental and Materials Engineering, Higher Polytechnical School of University of Jaén, Avda. de la Universidad s/n, 23700 Linares, Spain; (M.C.-A.); (S.S.)
- University Institute of Research in Olive Grove and Olive Oils, University of Jaén, Science and Technology Park GEOLIT, 23620 Mengíbar, Spain
| |
Collapse
|
2
|
Queiroz SDS, Jofre FM, Bianchini IDA, Boaes TDS, Bordini FW, Chandel AK, Felipe MDGDA. Current advances in Candida tropicalis: Yeast overview and biotechnological applications. Biotechnol Appl Biochem 2023; 70:2069-2087. [PMID: 37694532 DOI: 10.1002/bab.2510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/28/2023] [Indexed: 09/12/2023]
Abstract
Candida tropicalis is a nonconventional yeast with medical and industrial significance, belonging to the CTG clade. Recent advancements in whole-genome sequencing and genetic analysis revealed its close relation to other unconventional yeasts of biotechnological importance. C. tropicalis is known for its immense potential in synthesizing various valuable biomolecules such as ethanol, xylitol, biosurfactants, lipids, enzymes, α,ω-dicarboxylic acids, single-cell proteins, and more, making it an attractive target for biotechnological applications. This review provides an update on C. tropicalis biological characteristics and its efficiency in producing a diverse range of biomolecules with industrial significance from various feedstocks. The information presented in this review contributes to a better understanding of C. tropicalis and highlights its potential for biotechnological applications and market viability.
Collapse
Affiliation(s)
- Sarah de Souza Queiroz
- Department of Biotechnology, Engineering School of Lorena, Universidade de São Paulo, São Paulo, Brazil
| | - Fanny Machado Jofre
- Department of Biotechnology, Engineering School of Lorena, Universidade de São Paulo, São Paulo, Brazil
| | | | - Tatiane da Silva Boaes
- Department of Biotechnology, Engineering School of Lorena, Universidade de São Paulo, São Paulo, Brazil
| | - Fernanda Weber Bordini
- Department of Biotechnology, Engineering School of Lorena, Universidade de São Paulo, São Paulo, Brazil
| | - Anuj Kumar Chandel
- Department of Biotechnology, Engineering School of Lorena, Universidade de São Paulo, São Paulo, Brazil
| | | |
Collapse
|
3
|
Ergün BG, Laçın K, Çaloğlu B, Binay B. Second generation Pichia pastoris strain and bioprocess designs. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:150. [PMID: 36581872 PMCID: PMC9798597 DOI: 10.1186/s13068-022-02234-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/04/2022] [Indexed: 12/30/2022]
Abstract
Yeast was the first microorganism used by mankind for biotransformation processes that laid the foundations of industrial biotechnology. In the last decade, Pichia pastoris has become the leading eukaryotic host organism for bioproduct generation. Most of the P. pastoris bioprocess operations has been relying on toxic methanol and glucose feed. In the actual bioeconomy era, for sustainable value-added bioproduct generation, non-conventional yeast P. pastoris bioprocess operations should be extended to low-cost and renewable substrates for large volume bio-based commodity productions. In this review, we evaluated the potential of P. pastoris for the establishment of circular bioeconomy due to its potential to generate industrially relevant bioproducts from renewable sources and waste streams in a cost-effective and environmentally friendly manner. Furthermore, we discussed challenges with the second generation P. pastoris platforms and propose novel insights for future perspectives. In this regard, potential of low cost substrate candidates, i.e., lignocellulosic biomass components, cereal by-products, sugar industry by-products molasses and sugarcane bagasse, high fructose syrup by-products, biodiesel industry by-product crude glycerol, kitchen waste and other agri-food industry by products were evaluated for P. pastoris cell growth promoting effects and recombinant protein production. Further metabolic pathway engineering of P. pastoris to construct renewable and low cost substrate utilization pathways was discussed. Although, second generation P. pastoris bioprocess operations for valorisation of wastes and by-products still in its infancy, rapidly emerging synthetic biology tools and metabolic engineering of P. pastoris will pave the way for more sustainable environment and bioeconomy. From environmental point of view, second generation bioprocess development is also important for waste recycling otherwise disposal of carbon-rich effluents creates environmental concerns. P. pastoris high tolerance to toxic contaminants found in lignocellulosic biomass hydrolysate and industrial waste effluent crude glycerol provides the yeast with advantages to extend its applications toward second generation P. pastoris strain design and bioprocess engineering, in the years to come.
Collapse
Affiliation(s)
- Burcu Gündüz Ergün
- grid.18376.3b0000 0001 0723 2427National Nanotechnology Research Center (UNAM), Bilkent University, 06800 Ankara, Turkey ,Biotechnology Research Center, Ministry of Agriculture and Forestry, 06330 Ankara, Turkey
| | - Kübra Laçın
- grid.448834.70000 0004 0595 7127Department of Bioengineering, Gebze Technical University, 41400 Gebze, Kocaeli Turkey
| | - Buse Çaloğlu
- grid.448834.70000 0004 0595 7127Department of Bioengineering, Gebze Technical University, 41400 Gebze, Kocaeli Turkey
| | - Barış Binay
- grid.448834.70000 0004 0595 7127Department of Bioengineering, Gebze Technical University, 41400 Gebze, Kocaeli Turkey ,grid.448834.70000 0004 0595 7127BAUZYME Biotechnology Co., Gebze Technical University Technopark, 41400 Gebze Kocaeli, Turkey
| |
Collapse
|
4
|
Mastella L, Senatore VG, Guzzetti L, Coppolino M, Campone L, Labra M, Beltrani T, Branduardi P. First report on Vitamin B9 production including quantitative analysis of its vitamers in the yeast Scheffersomyces stipitis. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:98. [PMID: 36123695 PMCID: PMC9487109 DOI: 10.1186/s13068-022-02194-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/26/2022] [Indexed: 11/10/2022]
Abstract
Abstract
Background
The demand for naturally derived products is continuously growing. Nutraceuticals such as pre- and post-biotics, antioxidants and vitamins are prominent examples in this scenario, but many of them are mainly produced by chemical synthesis. The global folate market is expected to register a CAGR of 5.3% from 2019 to 2024 and reach USD 1.02 billion by the end of 2024. Vitamin B9, commonly known as folate, is an essential micronutrient for humans. Acting as a cofactor in one-carbon transfer reactions, it is involved in many biochemical pathways, among which the synthesis of nucleotides and amino acids. In addition to plants, many microorganisms can naturally produce it, and this can pave the way for establishing production processes. In this work, we explored the use of Scheffersomyces stipitis for the production of natural vitamin B9 by microbial fermentation as a sustainable alternative to chemical synthesis.
Results
Glucose and xylose are the main sugars released during the pretreatment and hydrolysis processes of several residual lignocellulosic biomasses (such as corn stover, wheat straw or bagasse). We optimized the growth conditions in minimal medium formulated with these sugars and investigated the key role of oxygenation and nitrogen source on folate production. Vitamin B9 production was first assessed in shake flasks and then in bioreactor, obtaining a folate production up to 3.7 ± 0.07 mg/L, which to date is the highest found in literature when considering wild type microorganisms. Moreover, the production of folate was almost entirely shifted toward reduced vitamers, which are those metabolically active for humans.
Conclusions
For the first time, the non-Saccharomyces yeast S. stipitis was used to produce folate. The results confirm its potential as a microbial cell factory for folate production, which can be also improved both by genetic engineering strategies and by fine-tuning the fermentation conditions and nutrient requirements.
Collapse
|
5
|
Zhang G, Zabed HM, An Y, Yun J, Huang J, Zhang Y, Li X, Wang J, Ravikumar Y, Qi X. Biocatalytic conversion of a lactose-rich dairy waste into D-tagatose, D-arabitol and galactitol using sequential whole cell and fermentation technologies. BIORESOURCE TECHNOLOGY 2022; 358:127422. [PMID: 35688312 DOI: 10.1016/j.biortech.2022.127422] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/28/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Dairy industry waste has been explored as a cheap and attractive raw material to produce various commercially important rare sugars. In this study, a lactose-rich dairy byproduct, namely cheese whey powder (CWP), was microbially converted into three low caloric sweeteners using whole-cell and fermentation technologies. Firstly, the simultaneous lactose hydrolysis and isomerization of lactose-derived D-galactose into D-tagatose was performed by an engineered Escherichia coli strain co-expressing β-galactosidase and L-arabinose isomerase, which eventually produced 68.35 g/L D-tagatose during sequential feeding of CWP. Subsequently, the mixed syrup containing lactose-derived D-glucose and residual D-galactose was subjected to fermentation by Metschnikowia pulcherrima E1, which produced 60.12 g/L D-arabitol and 28.26 g/L galactitol. The net titer of the three rare sugars was 156.73 g/L from 300 g/L lactose (equivalent to 428.57 g/L CWP), which was equivalent to 1.12 mol product/mol lactose and 52.24% conversion efficiency in terms of lactose.
Collapse
Affiliation(s)
- Guoyan Zhang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Hossain M Zabed
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Yingfeng An
- College of Biosciences and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110161, Liaoning, China
| | - Junhua Yun
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Jiaqi Huang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Yufei Zhang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Xiaolan Li
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Jiangfei Wang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Yuvaraj Ravikumar
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Xianghui Qi
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
6
|
Integrated bioinformatics, modelling, and gene expression analysis of the putative pentose transporter from Candida tropicalis during xylose fermentation with and without glucose addition. Appl Microbiol Biotechnol 2022; 106:4587-4606. [PMID: 35708749 DOI: 10.1007/s00253-022-12005-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 05/18/2022] [Accepted: 05/27/2022] [Indexed: 11/02/2022]
Abstract
The transport of substrates across the cell membrane plays an essential role in nutrient assimilation by yeasts. The establishment of an efficient microbial cell factory, based on the maximum use of available carbon sources, can generate new technologies that allow the full use of lignocellulosic constituents. These technologies are of interest because they could promote the formation of added-value products with economic feasibility. In silico analyses were performed to investigate gene sequences capable of encoding xylose transporter proteins in the Candida tropicalis genome. The current study identified 11 putative transport proteins that have not yet been functionally characterized. A phylogenetic tree highlighted the potential C. tropicalis xylose-transporter proteins CtXUT1, CtXUT4, CtSTL1, CtSTL2, and CtGXT2, which were homologous to previously characterized and reported xylose transporters. Their expression was quantified through real-time qPCR at defined times, determined through a kinetic analysis of the microbial growth curve in the absence/presence of glucose supplemented with xylose as the main carbon source. The results indicated different mRNA expression levels for each gene. CtXUT1 mRNA expression was only found in the absence of glucose in the medium. Maximum CtXUT1 expression was observed in intervals of the highest xylose consumption (21 to 36 h) that corresponded to consumption rates of 1.02 and 0.82 g/L/h in the formulated media, with xylose as the only carbon source and with glucose addition. These observations indicate that CtXUT1 is an important xylose transporter in C. tropicalis. KEY POINTS: • Putative xylose transporter proteins were identified in Candida tropicalis; • The glucose concentration in the cultivation medium plays a key role in xylose transporter regulation; • The transporter gene CtXUT1 has an important role in xylose consumption by Candida tropicalis.
Collapse
|
7
|
Rodriguez-Ocasio E, Khalid A, Truka CJ, Blenner MA, Jarboe LR. Survey of non-conventional yeasts for lipid and hydrocarbon biotechnology. J Ind Microbiol Biotechnol 2022; 49:6554550. [PMID: 35348703 PMCID: PMC9338885 DOI: 10.1093/jimb/kuac010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/14/2022] [Indexed: 11/29/2022]
Abstract
Nonconventional yeasts have an untapped potential to expand biotechnology and enable process development necessary for a circular economy. They are especially convenient for the field of lipid and hydrocarbon biotechnology because they offer faster growth than plants and easier scalability than microalgae and exhibit increased tolerance relative to some bacteria. The ability of industrial organisms to import and metabolically transform lipids and hydrocarbons is crucial in such applications. Here, we assessed the ability of 14 yeasts to utilize 18 model lipids and hydrocarbons from six functional groups and three carbon chain lengths. The studied strains covered 12 genera from nine families. Nine nonconventional yeasts performed better than Saccharomyces cerevisiae, the most common industrial yeast. Rhodotorula toruloides, Candida maltosa, Scheffersomyces stipitis, and Yarrowia lipolytica were observed to grow significantly better and on more types of lipids and lipid molecules than other strains. They were all able to utilize mid- to long-chain fatty acids, fatty alcohols, alkanes, alkenes, and dicarboxylic acids, including 28 previously unreported substrates across the four yeasts. Interestingly, a phylogenetic analysis showed a short evolutionary distance between the R. toruloides, C. maltosa, and S. stipitis, even though R. toruloides is classified under a different phylum. This work provides valuable insight into the lipid substrate range of nonconventional yeasts that can inform species selection decisions and viability of lipid feedstocks.
Collapse
Affiliation(s)
- Efrain Rodriguez-Ocasio
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Ammara Khalid
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Charles J Truka
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
- Griswold Undergraduate Internship Program, Ames, IA, 50011, USA
| | - Mark A Blenner
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Laura R Jarboe
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
8
|
Erian AM, Sauer M. Utilizing yeasts for the conversion of renewable feedstocks to sugar alcohols - a review. BIORESOURCE TECHNOLOGY 2022; 346:126296. [PMID: 34798255 DOI: 10.1016/j.biortech.2021.126296] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
Sugar alcohols are widely marketed compounds. They are useful building block chemicals and of particular value as low- or non-calorigenic sweeteners, serving as sugar substitutes in the food industry. To date most sugar alcohols are produced by chemical routes using pure sugars, but a transition towards the use of renewable, non-edible feedstocks is anticipated. Several yeasts are naturally able to convert renewable feedstocks, such as lignocellulosic substrates, glycerol and molasses, into sugar alcohols. These bioconversions often face difficulties to obtain sufficiently high yields and productivities necessary for industrialization. This review provides insight into the most recent studies on utilizing yeasts for the conversion of renewable feedstocks to diverse sugar alcohols, including xylitol, erythritol, mannitol and arabitol. Moreover, metabolic approaches are highlighted that specifically target shortcomings of sugar alcohol production by yeasts from these renewable substrates.
Collapse
Affiliation(s)
- Anna Maria Erian
- CD-Laboratory for Biotechnology of Glycerol, Muthgasse 18, Vienna, Austria; University of Natural Resources and Life Sciences, Vienna, Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, Muthgasse 18, 1190 Vienna, Austria
| | - Michael Sauer
- CD-Laboratory for Biotechnology of Glycerol, Muthgasse 18, Vienna, Austria; University of Natural Resources and Life Sciences, Vienna, Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, Muthgasse 18, 1190 Vienna, Austria.
| |
Collapse
|
9
|
Prado CA, Antunes FAF, Rocha TM, Sánchez-Muñoz S, Barbosa FG, Terán-Hilares R, Cruz-Santos MM, Arruda GL, da Silva SS, Santos JC. A review on recent developments in hydrodynamic cavitation and advanced oxidative processes for pretreatment of lignocellulosic materials. BIORESOURCE TECHNOLOGY 2022; 345:126458. [PMID: 34863850 DOI: 10.1016/j.biortech.2021.126458] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 06/13/2023]
Abstract
Environmental problems due to utilization of fossil-derived materials for energy and chemical generation has prompted the use of renewable alternative sources, such as lignocellulose biomass (LB). Indeed, the production of biomolecules and biofuels from LB is among the most important current research topics aiming to development a sustainable bioeconomy. Yet, the industrial use of LB is limited by the recalcitrance of biomass, which impairs the hydrolysis of the carbohydrate fractions. Hydrodynamic cavitation (HC) and Advanced Oxidative Processes (AOPs) has been proposed as innovative pretreatment strategies aiming to reduce process time and chemical inputs. Therefore, the underlying mechanisms, procedural strategies, influence on biomass structure, and research gaps were critically discussed in this review. The performed discussion can contribute to future developments, giving a wide overview of the main involved aspects.
Collapse
Affiliation(s)
- C A Prado
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, postal code 12602-810 Lorena, Brazil
| | - F A F Antunes
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, postal code 12602-810 Lorena, Brazil
| | - T M Rocha
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, postal code 12602-810 Lorena, Brazil
| | - S Sánchez-Muñoz
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, postal code 12602-810 Lorena, Brazil
| | - F G Barbosa
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, postal code 12602-810 Lorena, Brazil
| | - R Terán-Hilares
- Laboratorio de Materiales, Universidad Católica de Santa María - UCSM, Urb. San José, San Jose S/n, Yanahuara, Arequipa, Perú
| | - M M Cruz-Santos
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, postal code 12602-810 Lorena, Brazil
| | - G L Arruda
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, postal code 12602-810 Lorena, Brazil
| | - S S da Silva
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, postal code 12602-810 Lorena, Brazil
| | - J C Santos
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, postal code 12602-810 Lorena, Brazil.
| |
Collapse
|
10
|
Raj T, Chandrasekhar K, Naresh Kumar A, Rajesh Banu J, Yoon JJ, Kant Bhatia S, Yang YH, Varjani S, Kim SH. Recent advances in commercial biorefineries for lignocellulosic ethanol production: Current status, challenges and future perspectives. BIORESOURCE TECHNOLOGY 2022; 344:126292. [PMID: 34748984 DOI: 10.1016/j.biortech.2021.126292] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 05/26/2023]
Abstract
Cellulosic ethanol production has received global attention to use as transportation fuels with gasoline blending virtue of carbon benefits and decarbonization. However, due to changing feedstock composition, natural resistance, and a lack of cost-effective pretreatment and downstream processing, contemporary cellulosic ethanol biorefineries are facing major sustainability issues. As a result, we've outlined the global status of present cellulosic ethanol facilities, as well as main roadblocks and technical challenges for sustainable and commercial cellulosic ethanol production. Additionally, the article highlights the technical and non-technical barriers, various R&D advancements in biomass pretreatment, enzymatic hydrolysis, fermentation strategies that have been deliberated for low-cost sustainable fuel ethanol. Moreover, selection of a low-cost efficient pretreatment method, process simulation, unit integration, state-of-the-art in one pot saccharification and fermentation, system microbiology/ genetic engineering for robust strain development, and comprehensive techno-economic analysis are all major bottlenecks that must be considered for long-term ethanol production in the transportation sector.
Collapse
Affiliation(s)
- Tirath Raj
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - K Chandrasekhar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - A Naresh Kumar
- Department of Environmental Science and Technology, University of Maryland, College Park, MD 20742, USA
| | - J Rajesh Banu
- Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur 610 005, India
| | - Jeong-Jun Yoon
- Green and Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan-si, Chungcheongnam-do 31056, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat 382 010, India
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
11
|
Liu Z, Natalizio F, Dragone G, Mussatto SI. Maximizing the simultaneous production of lipids and carotenoids by Rhodosporidium toruloides from wheat straw hydrolysate and perspectives for large-scale implementation. BIORESOURCE TECHNOLOGY 2021; 340:125598. [PMID: 34330003 DOI: 10.1016/j.biortech.2021.125598] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
This study aimed to select fermentation conditions able to simultaneously maximize the production of lipids and carotenoids by oleaginous yeast cultivated in wheat straw hydrolysate. An evolved strain of Rhodosporidium toruloides with improved tolerance to toxic compounds present in hydrolysate medium was used. Experiments were performed in order to investigate the effect of the temperature and inoculum load on the production of lipids and carotenoids by R. toruloides. Results revealed that the accumulation of both products can be simultaneously maximized when performing the fermentation at 17 °C and using 3.5 g/L of inoculum. This maximum simultaneous production opens up new perspectives for the establishment of a feasible and more sustainable large-scale process for the production of lipids and carotenoids. Even corresponding to only 1% of the cell mass, due to the high market value, carotenoids would account for more than 90% of the total income of the industrial plant.
Collapse
Affiliation(s)
- Zhijia Liu
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kongens Lyngby, Denmark
| | - Francesca Natalizio
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kongens Lyngby, Denmark
| | - Giuliano Dragone
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 223, 2800 Kongens Lyngby, Denmark
| | - Solange I Mussatto
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 223, 2800 Kongens Lyngby, Denmark.
| |
Collapse
|
12
|
Monteiro de Oliveira P, Aborneva D, Bonturi N, Lahtvee PJ. Screening and Growth Characterization of Non-conventional Yeasts in a Hemicellulosic Hydrolysate. Front Bioeng Biotechnol 2021; 9:659472. [PMID: 33996782 PMCID: PMC8116571 DOI: 10.3389/fbioe.2021.659472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/30/2021] [Indexed: 11/17/2022] Open
Abstract
Lignocellulosic biomass is an attractive raw material for the sustainable production of chemicals and materials using microbial cell factories. Most of the existing bioprocesses focus on second-generation ethanol production using genetically modified Saccharomyces cerevisiae, however, this microorganism is naturally unable to consume xylose. Moreover, extensive metabolic engineering has to be carried out to achieve high production levels of industrially relevant building blocks. Hence, the use of non-Saccharomyces species, or non-conventional yeasts, bearing native metabolic routes, allows conversion of a wide range of substrates into different products, and higher tolerance to inhibitors improves the efficiency of biorefineries. In this study, nine non-conventional yeast strains were selected and screened on a diluted hemicellulosic hydrolysate from Birch. Kluyveromyces marxianus CBS 6556, Scheffersomyces stipitis CBS 5773, Lipomyces starkeyi DSM 70295, and Rhodotorula toruloides CCT 7815 were selected for further characterization, where their growth and substrate consumption patterns were analyzed under industrially relevant substrate concentrations and controlled environmental conditions in bioreactors. K. marxianus CBS 6556 performed poorly under higher hydrolysate concentrations, although this yeast was determined among the fastest-growing yeasts on diluted hydrolysate. S. stipitis CBS 5773 demonstrated a low growth and biomass production while consuming glucose, while during the xylose-phase, the specific growth and sugar co-consumption rates were among the highest of this study (0.17 h–1 and 0.37 g/gdw*h, respectively). L. starkeyi DSM 70295 and R. toruloides CCT 7815 were the fastest to consume the provided sugars at high hydrolysate conditions, finishing them within 54 and 30 h, respectively. R. toruloides CCT 7815 performed the best of all four studied strains and tested conditions, showing the highest specific growth (0.23 h–1), substrate co-consumption (0.73 ± 0.02 g/gdw*h), and xylose consumption (0.22 g/gdw*h) rates. Furthermore, R. toruloides CCT 7815 was able to produce 10.95 ± 1.37 gL–1 and 1.72 ± 0.04 mgL–1 of lipids and carotenoids, respectively, under non-optimized cultivation conditions. The study provides novel information on selecting suitable host strains for biorefinery processes, provides detailed information on substrate consumption patterns, and pinpoints to bottlenecks possible to address using metabolic engineering or adaptive evolution experiments.
Collapse
Affiliation(s)
| | - Daria Aborneva
- Institute of Technology, University of Tartu, Tartu, Estonia
| | | | | |
Collapse
|
13
|
Frank C, Hoffmann T, Zelder O, Felle MF, Bremer E. Enhanced Glutamate Synthesis and Export by the Thermotolerant Emerging Industrial Workhorse Bacillus methanolicus in Response to High Osmolarity. Front Microbiol 2021; 12:640980. [PMID: 33897645 PMCID: PMC8060640 DOI: 10.3389/fmicb.2021.640980] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/01/2021] [Indexed: 11/13/2022] Open
Abstract
The thermotolerant methylotroph Bacillus methanolicus MGA3 was originally isolated from freshwater marsh soil. Due to its ability to use methanol as sole carbon and energy source, B. methanolicus is increasingly explored as a cell factory for the production of amino acids, fine chemicals, and proteins of biotechnological interest. During high cell density fermentation in industrial settings with the membrane-permeable methanol as the feed, the excretion of low molecular weight products synthesized from it will increase the osmotic pressure of the medium. This in turn will impair cell growth and productivity of the overall biotechnological production process. With this in mind, we have analyzed the core of the physiological adjustment process of B. methanolicus MGA3 to sustained high osmolarity surroundings. Through growth assays, we found that B. methanolicus MGA3 possesses only a restricted ability to cope with sustained osmotic stress. This finding is consistent with the ecophysiological conditions in the habitat from which it was originally isolated. None of the externally provided compatible solutes and proline-containing peptides affording osmostress protection for Bacillus subtilis were able to stimulate growth of B. methanolicus MGA3 at high salinity. B. methanolicus MGA3 synthesized the moderately effective compatible solute L-glutamate in a pattern such that the cellular pool increased concomitantly with increases in the external osmolarity. Counterintuitively, a large portion of the newly synthesized L-glutamate was excreted. The expression of the genes (gltAB and gltA2) for two L-glutamate synthases were upregulated in response to high salinity along with that of the gltC regulatory gene. Such a regulatory pattern of the system(s) for L-glutamate synthesis in Bacilli is new. Our findings might thus be generally relevant to understand the production of the osmostress protectant L-glutamate by those Bacilli that exclusively rely on this compatible solute for their physiological adjustment to high osmolarity surroundings.
Collapse
Affiliation(s)
- Christine Frank
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Tamara Hoffmann
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Marburg, Germany.,Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
| | - Oskar Zelder
- BASF SE, RWB/EC - A030 - L3/10, Ludwigshafen, Germany
| | - Max F Felle
- BASF SE, RWB/EC - A030 - L3/10, Ludwigshafen, Germany
| | - Erhard Bremer
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Marburg, Germany.,Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
14
|
Advanced Bioethanol Production: From Novel Raw Materials to Integrated Biorefineries. Processes (Basel) 2021. [DOI: 10.3390/pr9020206] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The production of so-called advanced bioethanol offers several advantages compared to traditional bioethanol production processes in terms of sustainability criteria. This includes, for instance, the use of nonfood crops or residual biomass as raw material and a higher potential for reducing greenhouse gas emissions. The present review focuses on the recent progress related to the production of advanced bioethanol, (i) highlighting current results from using novel biomass sources such as the organic fraction of municipal solid waste and certain industrial residues (e.g., residues from the paper, food, and beverage industries); (ii) describing new developments in pretreatment technologies for the fractionation and conversion of lignocellulosic biomass, such as the bioextrusion process or the use of novel ionic liquids; (iii) listing the use of new enzyme catalysts and microbial strains during saccharification and fermentation processes. Furthermore, the most promising biorefinery approaches that will contribute to the cost-competitiveness of advanced bioethanol production processes are also discussed, focusing on innovative technologies and applications that can contribute to achieve a more sustainable and effective utilization of all biomass fractions. Special attention is given to integrated strategies such as lignocellulose-based biorefineries for the simultaneous production of bioethanol and other high added value bioproducts.
Collapse
|
15
|
Paes BG, Steindorff AS, Formighieri EF, Pereira IS, Almeida JRM. Physiological characterization and transcriptome analysis of Pichia pastoris reveals its response to lignocellulose-derived inhibitors. AMB Express 2021; 11:2. [PMID: 33389238 PMCID: PMC7779389 DOI: 10.1186/s13568-020-01170-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022] Open
Abstract
The negative effects of lignocellulose-derived inhibitors such as acetic acid and furaldehydes on microbial metabolism constitute a significant drawback to the usage of biomass feedstocks for the production of fuels and chemicals. The yeast Pichia pastoris has shown a great biotechnological potential for producing heterologous proteins and renewable chemicals. Despite its relevance, the performance of P. pastoris in presence of lignocellulose-derived inhibitors remains unclear. In this work, our results show for the first time the dose-dependent response of P. pastoris to acetic acid, furaldehydes (HMF and furfural), and sugarcane biomass hydrolysate, both at physiological and transcriptional levels. The yeast was able to grow in synthetic media with up to 6 g.L-1 acetic acid, 1.75 g.L-1 furaldehydes or hydrolysate diluted to 10% (v/v). However, its metabolism was completely hindered in presence of hydrolysate diluted to 30% (v/v). Additionally, the yeast was capable to co-consume acetic acid and glucose. At the transcriptional level, P. pastoris response to lignocellulose-derived inhibitors relays on the up-regulation of genes related to transmembrane transport, oxidoreductase activities, RNA processing, and the repression of pathways related to biosynthetic processes and central carbon metabolism. These results demonstrate a polygenetic response that involves detoxification activities, and maintenance of energy and cellular homeostasis. In this context, ALD4, OYE3, QOR2, NTL100, YCT1, and PPR1 were identified as target genes to improve P. pastoris tolerance. Altogether, this work provides valuable insights into the P. pastoris stress tolerance, which can be useful to expand its use in different bioprocesses.
Collapse
Affiliation(s)
- Barbara G Paes
- Laboratory of Genetics and Biotechnology, Embrapa Agroenergia, Parque Estação Biológica, PqEB - W3 Norte Final s/no, Brasília, DF, 70.770-901, Brazil
- Graduate Program of Molecular Biology, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, Brazil
| | - Andrei Stecca Steindorff
- Laboratory of Genetics and Biotechnology, Embrapa Agroenergia, Parque Estação Biológica, PqEB - W3 Norte Final s/no, Brasília, DF, 70.770-901, Brazil
| | - Eduardo F Formighieri
- Laboratory of Genetics and Biotechnology, Embrapa Agroenergia, Parque Estação Biológica, PqEB - W3 Norte Final s/no, Brasília, DF, 70.770-901, Brazil
| | - Ildinete Silva Pereira
- Laboratory of Genetics and Biotechnology, Embrapa Agroenergia, Parque Estação Biológica, PqEB - W3 Norte Final s/no, Brasília, DF, 70.770-901, Brazil
- Graduate Program of Molecular Biology, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, Brazil
| | - João Ricardo M Almeida
- Laboratory of Genetics and Biotechnology, Embrapa Agroenergia, Parque Estação Biológica, PqEB - W3 Norte Final s/no, Brasília, DF, 70.770-901, Brazil.
- Graduate Program of Microbial Biology, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, Brazil.
| |
Collapse
|