1
|
Zou L, Qi Z, Cheng H, Yu B, Li YY, Liu J. Advanced anaerobic digestion of household food waste pretreated by in situ-produced mixed enzymes via solid-state fermentation: Feasibility and application perspectives. ENVIRONMENTAL RESEARCH 2024; 252:119137. [PMID: 38740290 DOI: 10.1016/j.envres.2024.119137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
Enzymatic pretreatment is an effective method which can improve the anaerobic digestion (AD) efficiency of household food waste (HFW). As an alternative to expensive commercial enzymes, mixed enzymes (MEs) produced in situ from HFW by solid-state fermentation (SSF) can greatly promote the hydrolysis rate of HFW and achieve advanced anaerobic digestion (AAD) economically sustainable. In this paper, strategies for improving the efficiency of the enzyme-production process and the abundance of MEs are briefly discussed, including SSF, fungal co-cultivation, and stepwise fermentation. The feasibility of using HFW as an applicable substrate for producing MEs (amylase, protease, and lignocellulose-degrading enzymes) and its potential advantages in HFW anaerobic digestion are comprehensively illustrated. Based on the findings, an integrated AAD process of HFW pretreated with MEs produced in situ was proposed to maximise bioenergy recovery. The mass balance results showed that the total volatile solids removal rate could reach 98.56%. Moreover, the net energy output could reach 2168.62 MJ/t HFW, which is 9.79% higher than that without in situ-produced MEs and pretreatment. Finally, perspectives for further study are presented.
Collapse
Affiliation(s)
- Lianpei Zou
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai, 200444, China
| | - Zhuoying Qi
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai, 200444, China
| | - Hui Cheng
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai, 200444, China
| | - Bohan Yu
- BioCo Research Group, Department of Green Chemistry and Technology, Ghent University, Ghent, Belgium
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| | - Jianyong Liu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai, 200444, China.
| |
Collapse
|
2
|
Sharma V, Sharma D, Tsai ML, Ortizo RGG, Yadav A, Nargotra P, Chen CW, Sun PP, Dong CD. Insights into the recent advances of agro-industrial waste valorization for sustainable biogas production. BIORESOURCE TECHNOLOGY 2023; 390:129829. [PMID: 37839650 DOI: 10.1016/j.biortech.2023.129829] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/03/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023]
Abstract
Recent years have seen a transition to a sustainable circular economy model that uses agro-industrial waste biomass waste to produce energy while reducing trash and greenhouse gas emissions. Biogas production from lignocellulosic biomass (LCB) is an alternative option in the hunt for clean and renewable fuels. Different approaches are employed to transform the LCB to biogas, including pretreatment, anaerobic digestion (AD), and biogas upgradation to biomethane. To maintain process stability and improve AD performance, machine learning (ML) tools are being applied in real-time monitoring, predicting, and optimizing the biogas production process. An environmental life cycle assessment approach for biogas production systems is essential to calculate greenhouse gas emissions. The current review presents a detailed overview of the utilization of agro-waste for sustainable biogas production. Different methods of waste biomass processing and valorization are discussed that contribute towards developing an efficient agro-waste to biogas-based circular economy.
Collapse
Affiliation(s)
- Vishal Sharma
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Diksha Sharma
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Mei-Ling Tsai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Rhessa Grace Guanga Ortizo
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Aditya Yadav
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Parushi Nargotra
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Pei-Pei Sun
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|
3
|
Zou L, Wang Y, Wu R, Ji S, Wan Y, Cheng H, Li YY, Liu J. Increasing the organic loading rate of household food waste anaerobic digestion by landfill leachate addition: Performance and mechanism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118170. [PMID: 37196624 DOI: 10.1016/j.jenvman.2023.118170] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/04/2023] [Accepted: 05/12/2023] [Indexed: 05/19/2023]
Abstract
A high amount of easily degradable organics and the absence of trace metals (TMs) in household food waste (HFW) lowered the stability and efficiency of anaerobic digestion (AD) of HFW. Leachate addition to the AD of HFW can provide ammonia nitrogen and TMs to address the accumulation of volatile fatty acids and the lack of TMs. To study the effect of leachate addition on increasing organic loading rate (OLR), both mono-digestion of HFW and AD of HFW with leachate addition were evaluated using two continuously stirred tank reactors. The OLR of the mono-digestion reactor only reached 2.5 g COD/L/d. However, with the addition of ammonia nitrogen and TMs, the OLR of the failed mono-digestion reactor increased by 2 and 3.5 g COD/L/d, respectively. The specific methanogenic activity increased by 94.4% and the hydrolysis efficiency increased by 135%. Finally, the OLR of mono-digestion of HFW reached 8 g COD/L/d, with a hydraulic retention time (HRT) of 8 days and methane production rate of 2.4 L/L/d. In the leachate addition reactor, the OLR reached 15 g COD/L/d, while the HRT and methane production were 7 days and 3.4 L/L/d, respectively. This study demonstrates that leachate addition substantially improves the AD efficiency of HFW. The two main mechanisms of increasing the OLR of an AD reactor are the buffer capacity of ammonia nitrogen and the stimulation of methanogen by TMs from leachate.
Collapse
Affiliation(s)
- Lianpei Zou
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Yi Wang
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Ruixin Wu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Shenghao Ji
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Yulan Wan
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Hui Cheng
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Jianyong Liu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China.
| |
Collapse
|
4
|
Liu Y, Lv Y, Cheng H, Zou L, Li YY, Liu J. High-efficiency anaerobic co-digestion of food waste and mature leachate using expanded granular sludge blanket reactor. BIORESOURCE TECHNOLOGY 2022; 362:127847. [PMID: 36031119 DOI: 10.1016/j.biortech.2022.127847] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Anaerobic digestion of food waste receives more and more attention for waste-to-energy conversion, while easy acidification and limited efficiency hinder its wide application. To improve anaerobic digestion of food waste, its anaerobic co-digestion with mature leachate was performed using an expanded granular sludge blanket reactor. With the chemical oxidation demand (COD) removal of around 80%, the methane production and organic loading rate of the reactor reached 5.87 ± 0.45 L/L/d and 23.6 g COD/L/d, respectively. The rate of COD converted to methane was ranging from 74% to 87%. The addition of mature leachate provided ammonium to avoid acidification and trace metals for microbial growth, and the efficiencies of four stages of anaerobic digestion were all enhanced. The predominant methanogenic genera were shifted to adapt the changing condition, thus stabilizing the system. These findings support high-efficiency bioenergy recovery from food waste and leachate in practice.
Collapse
Affiliation(s)
- Yanxu Liu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Yuanyuan Lv
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Hui Cheng
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Lianpei Zou
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Jianyong Liu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China.
| |
Collapse
|
5
|
Abstract
Biological wastewater treatment processes such as activated sludge and anaerobic digestion remain the most favorable when compared to processes such as chemical precipitation and ion exchange due to their cost-effectiveness, eco-friendliness, ease of operation, and low maintenance. Since Abattoir Wastewater (AWW) is characterized as having high organic content, anaerobic digestion is slow and inadequate for complete removal of all nutrients and organic matter when required to produce a high-quality effluent that satisfies discharge standards. Multi-integrated systems can be designed in which additional stages are added before the anaerobic digester (pre-treatment), as well as after the digester (post-treatment) for nutrient recovery and pathogen removal. This can aid the water treatment plant effluent to meet the discharge regulations imposed by the legislator and allow the possibility for reuse on-site. This review aims to provide information on the principles of anaerobic digestion, aeration pre-treatment technology using enzymes and a hybrid membrane bioreactor, describing their various roles in AWW treatment. Simultaneous nitrification and denitrification are essential to add after anaerobic digestion for nutrient recovery utilizing a single step process. Nutrient recovery has become more favorable than nutrient removal in wastewater treatment because it consumes less energy, making the process cost-effective. In addition, recovered nutrients can be used to make nutrient-based fertilizers, reducing the effects of eutrophication and land degradation. The downflow expanded granular bed reactor is also compared to other high-rate anaerobic reactors, such as the up-flow anaerobic sludge blanket (UASB) and the expanded granular sludge bed reactor (EGSB).
Collapse
|
6
|
Usmani Z, Sharma M, Awasthi AK, Sharma GD, Cysneiros D, Nayak SC, Thakur VK, Naidu R, Pandey A, Gupta VK. Minimizing hazardous impact of food waste in a circular economy - Advances in resource recovery through green strategies. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126154. [PMID: 34492935 DOI: 10.1016/j.jhazmat.2021.126154] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/08/2021] [Accepted: 05/15/2021] [Indexed: 06/13/2023]
Abstract
Recent trends in food waste and its management have increasingly started to focus on treating it as a reusable resource. The hazardous impact of food waste such as the release of greenhouse gases, deterioration of water quality and contamination of land areas are a major threat posed by food waste. Under the circular economy principles, food waste can be used as a sustainable supply of high-value energy, fuel, and nutrients through green techniques such as anaerobic digestion, co-digestion, composting, enzymatic treatment, ultrasonic, hydrothermal carbonization. Recent advances made in anaerobic co-digestion are helping in tackling dual or even multiple waste streams at once with better product yields. Integrated approaches that employ pre-processing the food waste to remove obstacles such as volatile fractions, oils and other inhibitory components from the feedstock to enhance their bioconversion to reduce sugars. Research efforts are also progressing in optimizing the operational parameters such as temperature, pressure, pH and residence time to enhance further the output of products such as methane, hydrogen and other platform chemicals such as lactic acid, succinic acid and formic acid. This review brings together some of the recent progress made in the green strategies towards food waste valorization.
Collapse
Affiliation(s)
- Zeba Usmani
- Department of Applied Biology, University of Science and Technology, Meghalaya 793101, India
| | - Minaxi Sharma
- Department of Applied Biology, University of Science and Technology, Meghalaya 793101, India; Food Technology, Akal College of Agriculture, Eternal University, Baru Sahib, Himachal Pradesh 173101, India
| | | | | | | | - S Chandra Nayak
- DOS in Biotechnology, University of Mysore Manasagangotri, Mysore, India
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Faculty of Science, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, India; Centre for Energy and Environmental Sustainability, Lucknow-226 029, India
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK; Center for Safe and Improved Food, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK.
| |
Collapse
|