1
|
Wang T, Wang H, Li X, Wang Y. Unveiling the mechanism underlying in-situ enhancement on anammox system by sulfide: Integration of biological and isotope analysis. WATER RESEARCH 2024; 267:122483. [PMID: 39326183 DOI: 10.1016/j.watres.2024.122483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 09/01/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
The in-situ utilization of sulfide to remove the nitrate produced during the anaerobic ammonium oxidation (anammox) process can avoid prolonged sludge acclimatization, facilitating the rapid initiation of coupled nitrogen removal processes. However, the understanding of in-situ enhancement on anammox system by sulfide remains unclear. Herein, sulfide (Na2S) was introduced as an additional electron donor to remove the nitrate derived from the anammox under varying sulfide/nitrogen (S/N, S2--S/NO3--N, molar ratio) ratios (0.004-4.375). The underlying mechanisms were elucidated by molecular biology techniques including flow cytometry, quantitative polymerase chain reaction, and 16S rRNA amplicon sequencing, alongside isotope tracer analysis. Results revealed that anammox reactors, when operated with in-situ sulfide addition, exhibited a significant enhancement in total nitrogen removal efficiency (NRE) ranging from 11.5 %-41.7 % (achieved 96 %), with the optimal S/N ratios of 0.01-0.8. Isotope tracer analysis indicated the successful coupling of the anammox, sulfur autotrophic denitrification (SADN), and dissimilatory nitrate reduction to ammonium (DNRA) processes within the system, with their contributions to nitrogen removal being 46 %-50 %, 24 %-30 %, and 20 %-22 %, respectively. Moreover, a notable increase in the abundance of sulfur-oxidizing bacteria (SOB) (20 %-40 % increase) and DNRA bacteria (10 %-20 % increase) were observed. Effective collaboration was further supported by the sustained viability of microbial communities. It is speculated that the heightened presence of SOB and DNRA bacteria created a low toxicity environment by converting sulfide to biogenic sulfur, thereby promoting the well-being of anammox bacteria. However, the excessive dosage of sulfide (S/N = 1.8) intensified the DNRA process (contribution>35 %) and weakened the anammox process, leading to an increase in effluent NH4+-N concentration and a decline in NRE. This study confirms that the in-situ adding an appropriate amount of sulfide favors achieving complete nitrogen removal in anammox system, which provides a novel avenue to resolve the issue of the residual nitrate in anammox process.
Collapse
Affiliation(s)
- Tong Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Han Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China.
| | - Xiang Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| |
Collapse
|
2
|
Zhi J, Ma G, Shi X, Dong G, Yu D, Zhang J, Zhang Y, Li J, Zhao X, Xia H, Chen X, Tian Z, Miao Y. Synergy between Nitrogen Removal and Fermentation Bacteria Ensured Efficient Nitrogen Removal of a Mainstream Anammox System at Low Temperatures. TOXICS 2024; 12:629. [PMID: 39330557 PMCID: PMC11436091 DOI: 10.3390/toxics12090629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/29/2024] [Accepted: 08/24/2024] [Indexed: 09/28/2024]
Abstract
Simultaneous partial nitrification, anammox, denitrification, and fermentation (SNADF) is a novel process achieving simultaneous advanced sludge reduction and nitrogen removal. The influence of low temperatures on the SNADF reactor was explored to facilitate the application of mainstream anammox. When temperature decreased from 32 to 16 °C, efficient nitrogen removal was achieved, with a nitrogen removal efficiency of 81.9-94.9%. Microbial community structure analysis indicated that the abundance of Candidatus Brocadia (dominant anaerobic ammonia oxidizing bacteria (AnAOB) in the system) increased from 0.03% to 0.18%. The abundances of Nitrospira and Nitrosomonas increased from 1.6% and 0.16% to 2.5% and 1.63%, respectively, resulting in an increase in the ammonia-oxidizing bacteria (AOB) to nitrite-oxidizing bacteria (NOB) abundance ratio from 0.1 to 0.64. This ensured sufficient nitrite for AnAOB, promoting nitrogen removal. In addition, Candidatus Competibacter, which plays a role in partial denitrification, was the dominant denitrification bacteria (DNB) and provided more nitrite for AnAOB, facilitating AnAOB enrichment. Based on the findings from microbial correlation network analysis, Nitrosomonas (AOB), Thauera, and Haliangium (DNB), and A4b and Saprospiraceae (fermentation bacteria), were center nodes in the networks and therefore essential for the stability of the SNADF system. Moreover, fermentation bacteria, DNB, and AOB had close connections in substrate cooperation and resistance to adverse environments; therefore, they also played important roles in maintaining stable nitrogen removal at low temperatures. This study provided new suggestions for mainstream anammox application.
Collapse
Affiliation(s)
- Jiaru Zhi
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; (J.Z.); (G.M.); (G.D.); (D.Y.); (Y.Z.); (J.L.); (X.Z.)
| | - Guocheng Ma
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; (J.Z.); (G.M.); (G.D.); (D.Y.); (Y.Z.); (J.L.); (X.Z.)
| | - Xueqing Shi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China; (X.S.); (J.Z.); (H.X.); (X.C.); (Z.T.)
| | - Guoqing Dong
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; (J.Z.); (G.M.); (G.D.); (D.Y.); (Y.Z.); (J.L.); (X.Z.)
| | - Deshuang Yu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; (J.Z.); (G.M.); (G.D.); (D.Y.); (Y.Z.); (J.L.); (X.Z.)
| | - Jianhua Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China; (X.S.); (J.Z.); (H.X.); (X.C.); (Z.T.)
| | - Yu Zhang
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; (J.Z.); (G.M.); (G.D.); (D.Y.); (Y.Z.); (J.L.); (X.Z.)
| | - Jiawen Li
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; (J.Z.); (G.M.); (G.D.); (D.Y.); (Y.Z.); (J.L.); (X.Z.)
| | - Xinchao Zhao
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; (J.Z.); (G.M.); (G.D.); (D.Y.); (Y.Z.); (J.L.); (X.Z.)
| | - Haizheng Xia
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China; (X.S.); (J.Z.); (H.X.); (X.C.); (Z.T.)
| | - Xinyu Chen
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China; (X.S.); (J.Z.); (H.X.); (X.C.); (Z.T.)
| | - Zhuoya Tian
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China; (X.S.); (J.Z.); (H.X.); (X.C.); (Z.T.)
| | - Yuanyuan Miao
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; (J.Z.); (G.M.); (G.D.); (D.Y.); (Y.Z.); (J.L.); (X.Z.)
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China; (X.S.); (J.Z.); (H.X.); (X.C.); (Z.T.)
| |
Collapse
|
3
|
Wang P, Ou R, Tan J, Li N, Zheng M, Jin Q, Yu J, He D. Effect of sludge redistribution strategy on stability of partial nitrification-anammox process: Further exploration of the potential value of sludge. CHEMOSPHERE 2024; 355:141707. [PMID: 38521102 DOI: 10.1016/j.chemosphere.2024.141707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/26/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024]
Abstract
The stability of the two-stage partial nitrification-anammox (PN/A) system was compromised by the inappropriate conversion of insoluble organic matter. In response, a sludge redistribution strategy was implemented. Through the redistribution of PN sludge and anammox sludge in the two-stage PN/A system, a transition was made to the Anammox-single stage PN/A (A-PN/A) system. This specific functional reorganization, facilitated by the rapid reorganization of microbial communities, has the potential to significantly decrease the current risk of suppression. The results of the study showed that implementing the sludge redistribution strategy led to a substantial enhancement in the total nitrogen removal rate (TNRR) by 87.51%, accompanied by a significant improvement of 34.78% in the chemical oxygen demand removal rate (CRR). Additionally, this approach resulted in a remarkable two-thirds reduction in the aeration requirements. High-throughput sequencing revealed that the strategy enriched anammox and ammonia-oxidizing bacteria while limiting denitrifying bacteria, as confirmed by quantitative polymerase chain reaction analysis. Furthermore, the principal component analysis revealed that the location and duration of aeration had direct and indirect effects on functional gene expression and the evolution of microbial communities. This study emphasizes the potential benefits of restructuring microbial communities through a sludge redistribution strategy, especially in integrated systems that encounter challenges with suppression.
Collapse
Affiliation(s)
- Peng Wang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China.
| | - Rui Ou
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China.
| | - Jun Tan
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China.
| | - Ning Li
- Pearl River Water Resources Research Institute, Guangzhou, 510611, PR China.
| | - Min Zheng
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, Queensland, Australia.
| | - Qinghai Jin
- Shenzhen Pangu Environmental Protection Technology Co. Ltd, Shenzhen, 518055, PR China.
| | - Jin Yu
- Shenzhen Pangu Environmental Protection Technology Co. Ltd, Shenzhen, 518055, PR China.
| | - Di He
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China.
| |
Collapse
|
4
|
Bicelli LG, Giordani A, Augusto MR, Okada DY, Moura RBD, Vich DV, Contrera RC, Cano V, Souza TSOD. Microbial interactions and nitrogen removal performance in an intermittently rotating biological contactor treating mature landfill leachate. BIORESOURCE TECHNOLOGY 2023; 389:129797. [PMID: 37769977 DOI: 10.1016/j.biortech.2023.129797] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023]
Abstract
Developing efficient landfill leachate treatment is still necessary to reduce environmental risks. However, nitrogen removal in biological treatment systems is often poor or costly. Studying biofilms in anoxic/aerobic zones of rotating biological contactors (RBC) can elucidate how microbial interactions confer resistance to shock loads and toxic substances in leachate treatment. This study assessed the nitritation-anammox performance in an intermittent-rotating bench-scale RBC treating mature leachate (diluted). Despite the leachate toxicity, the system achieved nitritation with an efficiency of up to 34 % under DO values between 0.8 and 1.8 mg.L-1. The highest average ammoniacal nitrogen removal was 45.3 % with 10 h of HRT. The 16S rRNA sequencing confirmed the presence of Nitrosonomas, Aquamicrobium, Gemmata, and Plantomyces. The coexistence of these bacteria corroborated the selective pressure exerted by leachate in the community structure. The microbial interactions found here highlight the potential application of RBC to remove nitrogen in landfill leachate treatment.
Collapse
Affiliation(s)
- Larissa Garcez Bicelli
- Department of Hydraulic and Environmental Engineering, Polytechnic School, University of São Paulo (USP), Av. Prof. Almeida Prado, 83, Travessa 2, Butantã, 05.508-900, São Paulo, SP, Brazil.
| | - Alessandra Giordani
- Department of Hydraulic and Environmental Engineering, Polytechnic School, University of São Paulo (USP), Av. Prof. Almeida Prado, 83, Travessa 2, Butantã, 05.508-900, São Paulo, SP, Brazil; Institute of Science and Technology, Federal University of Alfenas (UNIFAL-MG), Poços de Caldas, Brazil
| | - Matheus Ribeiro Augusto
- Department of Hydraulic and Environmental Engineering, Polytechnic School, University of São Paulo (USP), Av. Prof. Almeida Prado, 83, Travessa 2, Butantã, 05.508-900, São Paulo, SP, Brazil
| | | | - Rafael Brito de Moura
- Institute of Science and Technology, Federal University of Alfenas (UNIFAL-MG), Poços de Caldas, Brazil
| | | | - Ronan Cleber Contrera
- Department of Hydraulic and Environmental Engineering, Polytechnic School, University of São Paulo (USP), Av. Prof. Almeida Prado, 83, Travessa 2, Butantã, 05.508-900, São Paulo, SP, Brazil
| | - Vitor Cano
- Department of Hydraulic and Environmental Engineering, Polytechnic School, University of São Paulo (USP), Av. Prof. Almeida Prado, 83, Travessa 2, Butantã, 05.508-900, São Paulo, SP, Brazil
| | - Theo Syrto Octavio de Souza
- Department of Hydraulic and Environmental Engineering, Polytechnic School, University of São Paulo (USP), Av. Prof. Almeida Prado, 83, Travessa 2, Butantã, 05.508-900, São Paulo, SP, Brazil
| |
Collapse
|
5
|
Sun Y, Cao J, Xu R, Zhang T, Luo J, Xue Z, Chen S, Wang S, Zhou H. Influence of C/N ratio and ammonia on nitrogen removal and N 2O emissions from one-stage partial denitrification coupled with anammox. CHEMOSPHERE 2023; 341:140035. [PMID: 37660784 DOI: 10.1016/j.chemosphere.2023.140035] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 08/15/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023]
Abstract
The development of low carbon treatment processes is an important issue worldwide. Partial denitrification coupled with anammox (PD/A) is a novel strategy to remove nitrogen and reduce N2O emissions. The influence of C/N ratio and NH4+ concentration on nitrogen removal and N2O emissions was investigated in batch reactors filled with PD/A coupled sludge. A C/N ratio of 2.1 was effective for nitrogen removal and N2O reduction; higher ammonia concentration might make anammox more active and indirectly reduce N2O emissions. Long-term operation further confirmed that a C/N ratio of 2.1 resulted in a minimum effluent N2O concentration (mean value of 0.94 μmol L-1); as the influent NH4+ concentration decreased to 50 mg L-1 (NH4+-N/NO3--N: 1), the nitrogen removal rate increased to 82.41%. Microbial analysis showed that anammox bacteria (Candidatus Jettenia and Ca. Brocadia) were enriched in the PD/A system and Ca. Brocadia gradually dominated the anammox community, with the relative abundance increasing from 1.69% to 18.44% between days 97 and 141. Finally, functional gene analysis indicated that the abundance of nirS/K and hao involved in partial denitrification and anammox, respectively, increased during long-term operation of the reactor; this change benefitted nitrogen metabolism in anammox, which could indirectly reduce N2O emissions.
Collapse
Affiliation(s)
- Yiwen Sun
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Jiashun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China; Guohe Environmental Research Institute (Nanjing) Co, Ltd, Nanjing, 211599, China.
| | - Runze Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Teng Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China; Guohe Environmental Research Institute (Nanjing) Co, Ltd, Nanjing, 211599, China
| | - Zhaoxia Xue
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China; Guohe Environmental Research Institute (Nanjing) Co, Ltd, Nanjing, 211599, China
| | - Shaofeng Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Shilong Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Hailun Zhou
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
6
|
Yang W, Cheng L, Liang H, Xu A, Li Y, Nabi M, Wang H, Hu J, Gao D. Efficient nitrogen removal from mature landfill leachate by single-stage partial-nitritation anammox using expanded granular sludge bed. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118460. [PMID: 37384993 DOI: 10.1016/j.jenvman.2023.118460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 07/01/2023]
Abstract
The effective retention of anaerobic ammonia oxidizing (anammox) bacteria and its high sensitivity to toxic substances and oxygen posed a major challenge to the application of partial nitrification combined with anammox (PN/A) in mature landfill leachate treatment, although it is a promising and efficient nitrogen removal process. In this study, a single-stage PN/A process based on expanded granular sludge bed was proposed to treat the mature landfill leachate. During the last phase, when the NH+ 4-N concentration of mature landfill leachate in influent was 1150.0 mg/L, the nitrogen removal efficiency (NRE) was 83.64% with 1.07 kg N/(m3·d) nitrogen removal rate (NRR). The activity of anammox bacteria (AnAOB) and ammonia oxidizing bacteria (AOB) was 9.21 ± 0.22 mg N/(gVSS·h) and 14.34 ± 0.65 mg N/(gVSS·h), respectively. The bacteria produced a high amount of tightly bound extracellular polymeric substance (TB-EPS) i.e., 4071.79 mg/(g·VSS). This helped to create granular sludge and provided favorable spatial conditions for the distribution of functional bacteria that were adapted to different environments. Due to the efficient retention of functional bacteria by the granular sludge, the relative abundance of Ca.Brocadia and Ca.Kuneneia was 1.71% and 0.31%, respectively. Redundancy analysis (RDA) and microbial correlation network diagram showed that the relative abundance of Ca. Kuenenia, Nitrosomonas and Truepera had a stronger positive correlation with the increase of the proportion of mature landfill leachate added to the influent. Overall, the PN/A process based on granular sludge provides an effective method for autotrophic biological nitrogen removal from mature landfill leachate.
Collapse
Affiliation(s)
- Wenbo Yang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Lang Cheng
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Hong Liang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Key Laboratory of Urban Stormwater System & Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Ao Xu
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Yuqi Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Mohammad Nabi
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Huan Wang
- Shanghai SUS Environmental Remediation Co., LTD, Shanghai, 201703, China
| | - Jiachen Hu
- Shanghai SUS Environmental Remediation Co., LTD, Shanghai, 201703, China
| | - Dawen Gao
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Key Laboratory of Urban Stormwater System & Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| |
Collapse
|
7
|
Cheng L, Yang W, Liang H, Nabi M, Li Y, Wang H, Hu J, Chen T, Gao D. Nitrogen removal from mature landfill leachate through enhanced Partial Nitrification-Anammox process in an innovative multi-stage fixed biofilm reactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162959. [PMID: 36948321 DOI: 10.1016/j.scitotenv.2023.162959] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 05/06/2023]
Abstract
In the current integrated PN/A method/process for mature landfill leachate treatment, microbial inhibition and low nitrogen removal capacity are the big barriers due to high ammonia concentration and low C/N. This study aimed to evaluate the performance of a high-rate nitrogen removal lab-scale reactor, which combines pre-denitrification and Partial Nitrification-Anammox (PN/A) in a multi-stage fixed biofilm reactor (MFBR), for mature landfill leachate treatment. A nitrogen removal efficiency (NRE) of 90.43 % and an average nitrogen removal rate (NRR) of 0.94 kg/m3·d were observed at an influent NH+ 4-N concentration of 2274.39 mg/L during the last operational phase. The nitrogen mass balance showed that the nitrogen concentration gradually decreases along the course, and nitrogen was mainly removed in the aerobic chambers, in which Anammox contributed to 86.4 % of the removed nitrogen, while the front anoxic chamber is mainly used to remove NO- 3-N from the recirculation. Redundancy analysis showed that the variation in NH+ 4-N concentration along the course was the main factor affecting microbial community succession, which shows that the reactor configuration enables efficient cooperation and distribution of different microorganisms. Moreover, economic analysis of MFBR process showed that the energy consumption and carbon addition were reduced by 58.9 % and 100 %, respectively. Therefore, the MFBR established in this study, with its new configuration, achieves efficient treatment of landfill leachate in a single reactor and is environmentally friendly, and could be considered as a reference for full-scale landfill leachate treatment.
Collapse
Affiliation(s)
- Lang Cheng
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Wenbo Yang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Hong Liang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Key Laboratory of Urban Stormwater System & Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Mohammad Nabi
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Yuqi Li
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Huan Wang
- Shanghai SUS Environmental Remediation Co., LTD, Shanghai 201703, China
| | - Jiachen Hu
- Shanghai SUS Environmental Remediation Co., LTD, Shanghai 201703, China
| | - Tao Chen
- Key Laboratory of Urban Stormwater System & Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Dawen Gao
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Key Laboratory of Urban Stormwater System & Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Key Laboratory of Urban Stormwater System & Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| |
Collapse
|
8
|
Jiang M, Ji S, Wu R, Yang H, Li YY, Liu J. Exploiting refractory organic matter for advanced nitrogen removal from mature landfill leachate via anammox in an expanded granular sludge bed reactor. BIORESOURCE TECHNOLOGY 2023; 371:128594. [PMID: 36634882 DOI: 10.1016/j.biortech.2023.128594] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/31/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Anammox is an efficient low-carbon nitrogen removal technology for mature landfill leachate (MLL). However, it produces 11 % nitrate theoretically, which needs further removal. In this study, the mechanisms of exploiting refractory organic matter (ROM) from an MLL as an inner carbon source for advanced nitrogen removal via anammox were systematically analyzed, and the effects of hydraulic retention time on nitrogen and ROM removal/utilization were investigated. Without any external carbon source, a total nitrogen and organic carbon removal efficiency of 94.50 % and 27.12 %, respectively, were achieved, with a nitrogen loading rate of 2.4 kg N/(m3·d). The abundances of norank_f_norank_o_SBR1031, OLB13, and norank_f_A4b, which had the capacity to degrade ROM, increased from 21.63 % to 49.21 %. This study reveals that the ROM in an MLL can be exploited for synchronous advanced nitrogen and organic matter removal.
Collapse
Affiliation(s)
- Mengting Jiang
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Shenghao Ji
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Ruixin Wu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Huan Yang
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Jianyong Liu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China.
| |
Collapse
|
9
|
Zhang L, Hao S, Dou Q, Dong T, Qi WK, Huang X, Peng Y, Yang J. Multi-Omics Analysis Reveals the Nitrogen Removal Mechanism Induced by Electron Flow during the Start-up of the Anammox-Centered Process. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16115-16124. [PMID: 36215419 DOI: 10.1021/acs.est.2c02181] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Significant progress in understanding the key enzymes or species of anammox has been made; however, the nitrogen removal mechanism in complex coupling systems centered on anammox remains limited. In this study, by the combination of metagenomics-metatranscriptomics analyses, the nitrogen removal in the anammox-centered coupling system that entails partial denitrification (PD) and hydrolytic acidification (HA, A-PDHA) was elucidated to be the nitrogen transformation driven by the electron generation-transport-consumption process. The results showed that a total nitrogen (TN) removal efficiency of >98%, with a TN effluence of <1 mg/L and a TN removal contribution via anammox of >98%, was achieved after 59 days under famine operation and alkaline conditions during the start-up process. Further investigation confirmed that famine operation promoted the activity of genes responsible for electron generation in anammox, and increased the abundance or expression of genes related to electron consumption. Alkaline conditions enhanced the electron generation for PD by upregulating the activity of glyceraldehyde 3-phosphate dehydrogenase and strengthened electron transfer by increasing the gene encoding quinone pool. Altogether, these variations in the electron flow led to efficient nitrogen removal. These results improve our understanding of the nitrogen removal mechanism and application of the anammox-centered coupling systems in treating nitrogen wastewater.
Collapse
Affiliation(s)
- Li Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing100124, China
| | - Shiwei Hao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing100124, China
| | - Quanhao Dou
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing100124, China
| | - Tingjun Dong
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing100124, China
| | - Wei Kang Qi
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing100124, China
| | - Xiaowu Huang
- Environmental Science and Engineering Program, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong515063, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing100124, China
| | - Jiachun Yang
- Shuifa Shandong Water Development Group Co. Ltd.Shandong274200, China
| |
Collapse
|
10
|
Wang F, Liu W, Liu W, Xiao L, Ai S, Sun X, Bian D. Simultaneous removal of organic matter and nitrogen by heterotrophic nitrification-aerobic denitrification bacteria in an air-lift multi-stage circulating integrated bioreactor. BIORESOURCE TECHNOLOGY 2022; 363:127888. [PMID: 36070812 DOI: 10.1016/j.biortech.2022.127888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
This study aimed to propose a novel air-lift multi-stage circulating integrated bioreactor (AMCIB) to treat urban sewage. The AMCIB combined the reaction zone and sedimentation zone, the alternating circulation of activated sludge in separate aerobic and anaerobic environments facilitates the enrichment of HN-AD bacteria. The preliminary study showed that AMCIB had high removal efficiencies for COD, NH4+-N, TN and TP under high dissolved oxygen (DO) concentration conditions, with average removal rates of 93.21 %, 96.04 %, 75.06 % and 94.30 %, respectively. IlluminaMiSeq sequencing results showed that the system successfully cultured heterotrophic nitrification-aerobic denitrification (HN-AD) functional bacteria (Pseudomonas, Acinetobacter, Aeromonas) that played a crucial role in sewage treatment, and Tetrasphaera was the central phosphorus removing bacteria in the system. Functional gene predictions showed that the HN-AD played a dominant role in the system.
Collapse
Affiliation(s)
- Fan Wang
- Key Laboratory of Urban Sewage Treatment of Jilin Province, Changchun Institute of Technology, Changchun 130012, China
| | - Wanqi Liu
- Key Laboratory of Urban Sewage Treatment of Jilin Province, Changchun Institute of Technology, Changchun 130012, China
| | - Wenai Liu
- Key Laboratory of Urban Sewage Treatment of Jilin Province, Changchun Institute of Technology, Changchun 130012, China
| | - Letian Xiao
- Key Laboratory of Urban Sewage Treatment of Jilin Province, Changchun Institute of Technology, Changchun 130012, China
| | - Shengshu Ai
- Key Laboratory of Urban Sewage Treatment of Jilin Province, Changchun Institute of Technology, Changchun 130012, China
| | - Xuejian Sun
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, China
| | - Dejun Bian
- Key Laboratory of Urban Sewage Treatment of Jilin Province, Changchun Institute of Technology, Changchun 130012, China; Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, China.
| |
Collapse
|
11
|
Puigserver D, Herrero J, Carmona JM. Nitrate removal by combining chemical and biostimulation approaches using micro-zero valent iron and lactic acid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:156841. [PMID: 35750160 DOI: 10.1016/j.scitotenv.2022.156841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/07/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
The occurrence of nitrate is the most significant type of pollution affecting groundwater globally, being a major contributor to the poor condition of water bodies. This pollution is related to livestock-agricultural and urban activities, and the nitrate presence in drinking water has a clear impact on human health. For example, it causes the blue child syndrome. Moreover, the high nitrate content in aquifers and surface waters significantly affects aquatic ecosystems since it is responsible for the eutrophication of surface water bodies. A treatability test was performed in the laboratory to study the decrease of nitrate in the capture zone of water supply wells. For this purpose, two boreholes were drilled from which groundwater and sediments were collected to conduct the test. The goal was to demonstrate that nitrate in groundwater can be decreased much more efficiently using combined abiotic and biotic methods with micro-zero valent iron and biostimulation with lactic acid, respectively, than when both strategies are used separately. The broader implications of this goal derive from the fact that the separate use of these reagents decreases the efficiency of nitrate removal. Thus, while nitrate is removed using micro-valent iron, high concentrations of harmful ammonium are also generated. Furthermore, biostimulation alone leads to overgrowth of other microorganisms that do not result in denitrification, therefore complete denitrification requires more time to occur. In contrast, the combined strategy couples abiotic denitrification of nitrate with biostimulation of microorganisms capable of biotically transforming the abiotically generated harmful ammonium. The treatability test shows that the remediation strategy combining in situ chemical reduction using micro-zero valent iron and biostimulation with lactic acid could be a viable strategy for the creation of a reactive zone around supply wells located in regions where groundwater and porewater in low permeability layers are affected by diffuse nitrate contamination.
Collapse
Affiliation(s)
- Diana Puigserver
- Department of Mineralogy, Petrology and Applied Geology, Faculty of Earth Sciences, University of Barcelona (UB), Water Research Institute (IdRA-UB), C/ Martí i Franquès, s/n, E-08028 Barcelona, Spain.
| | - Jofre Herrero
- Department of Mineralogy, Petrology and Applied Geology, Faculty of Earth Sciences, University of Barcelona (UB), Water Research Institute (IdRA-UB), C/ Martí i Franquès, s/n, E-08028 Barcelona, Spain.
| | - José M Carmona
- Department of Mineralogy, Petrology and Applied Geology, Faculty of Earth Sciences, University of Barcelona (UB), Water Research Institute (IdRA-UB), C/ Martí i Franquès, s/n, E-08028 Barcelona, Spain.
| |
Collapse
|
12
|
Remmas N, Manfe N, Raga R, Akratos C. Activated sludge microbial communities and hydrolytic potential in a full-scale SBR system treating landfill leachate. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2022; 57:764-772. [PMID: 35946503 DOI: 10.1080/10934529.2022.2110478] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/28/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Landfill leachate, due to its recalcitrant nature and toxicity, poses a serious environmental threat, which requires the implementation of effective treatment processes. In this work, a full-scale treatment system consisting of two Sequencing Batch Reactors (SBRs) was used for the processing of landfill leachate of intermediate to mature age (BOD/COD ratio of 0.16). Biosystem operation resulted in BOD5, COD and TKN removal efficiencies of 81%, 39% and 76%, respectively, whereas the low residual NO3--N concentration in the effluent (4.01 ± 0.10 mg/L) was indicative of the efficient denitrification process. Assessment of hydrolytic potential of activated sludge revealed high endocellular and extracellular lipase activities, which reached values up to 206 and 141 U/g protein respectively, possibly as the consequence of plastics degradation during maturation process. Implementation of Illumina sequencing indicated the predominance of Alphaproteobacteria, accompanied by members of Bacteroidetes, Betaproteobacteria and Chloroflexi. Paracoccus was the predominant genus identified, followed by representatives of the genera Bellilinea, Flavobacterium, Thauera and Truepera. Nitrosomonas was the major ammonia-oxidizing bacterium (AOB), while nitrite oxidation was mainly achieved by the uncultured nitrite-oxidizing bacterium (NOB) Candidatus Nitrotoga.
Collapse
Affiliation(s)
- Nikolaos Remmas
- Laboratory of Wastewater Management and Treatment Technologies, Department of Environmental Engineering, Democritus University of Thrace, Xanthi, Greece
- Laboratory of Ecological Engineering and Technology, Department of Civil Engineering, Democritus University of Thrace, Xanthi, Greece
| | - Nicola Manfe
- Laboratory of Wastewater Management and Treatment Technologies, Department of Environmental Engineering, Democritus University of Thrace, Xanthi, Greece
- Department of Civil, Environmental and Architectural Engineering, University of Padua, Padua, Italy
| | - Roberto Raga
- Department of Civil, Environmental and Architectural Engineering, University of Padua, Padua, Italy
| | - Christos Akratos
- Laboratory of Ecological Engineering and Technology, Department of Civil Engineering, Democritus University of Thrace, Xanthi, Greece
| |
Collapse
|
13
|
Chen H, Yang E, Tu Z, Wang H, Liu K, Chen J, Wu S, Kong Z, Hendrik Sanjaya E, Yang M. Dual inner circulation and multi-partition driving single-stage autotrophic nitrogen removal in a bioreactor. BIORESOURCE TECHNOLOGY 2022; 355:127261. [PMID: 35526709 DOI: 10.1016/j.biortech.2022.127261] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/27/2022] [Accepted: 05/01/2022] [Indexed: 06/14/2023]
Abstract
The single-stage autotrophic nitrogen removal (ANR) process is impeded by a long start-up cycle and unstable operation performance. In this study, an airlift inner-circulation partition bioreactor (AIPBR) was operated continuously for 215 days to explore methods of strengthening the performance and stable operation of the single-stage ANR system. AIPBR start-up period took around 38 days, the total nitrogen removal efficiency was > 85% on day 35. With the decrease of hydraulic retention time and the increase of aeration rate, the nitrogen removal rate increased to 0.85 ± 0.02 kg-N/m3/day. The sludge morphology gradually changed into dark-red floc-coupled granular sludge. Nitrosomonas (9.95%) and Candidatus Brocadia (6.41%) were dominant in the sludge. During long-term operation, AIPBR achieved the dual inner circulation of sewage and sludge and then formed effective dissolved oxygen and sludge partitions to provide a suitable growth environment for various functional bacteria, promote synergy between them, and strengthen the ANR performance.
Collapse
Affiliation(s)
- Hong Chen
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha 410004, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences Beijing 100085, China
| | - Enzhe Yang
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha 410004, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences Beijing 100085, China
| | - Zhi Tu
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha 410004, China
| | - Hong Wang
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha 410004, China
| | - Ke Liu
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha 410004, China
| | - Jing Chen
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha 410004, China
| | - Sha Wu
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha 410004, China
| | - Zhe Kong
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | | | - Min Yang
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha 410004, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences Beijing 100085, China.
| |
Collapse
|
14
|
Ren S, Wang Z, Jiang H, Li X, Zhang Q, Peng Y. Efficient nitrogen removal from mature landfill leachate in a step feed continuous plug-flow system based on one-stage anammox process. BIORESOURCE TECHNOLOGY 2022; 347:126676. [PMID: 34999191 DOI: 10.1016/j.biortech.2022.126676] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/29/2021] [Accepted: 01/01/2022] [Indexed: 06/14/2023]
Abstract
A continuous plug-flow multistage anoxic/oxic (A/O) system based on one-stage partial nitrification coupled anammox (PNA) process with integrated fixed-film activated sludge (IFAS) was established and operated over 400 days. A step feed strategy effectively controlled free ammonia concentration and alleviated impacts on ammonia oxidizing bacteria (AOB) and anammox bacteria (AnAOB). During day 301-405, 98.1% of total inorganic nitrogen was removed from mature landfill leachate, whereas chemical oxygen demand (COD) removal efficiency was 52.9%. With the enrichment of AnAOB in oxic biofilm, nitrogen removal via the anammox pathway reached 94.3%-95.0%. During system operation, the dominant anammox genus shifted from Candidatus_Brocadia to Candidatus_Kuenenia. Fluorescent in situ hybridization (FISH) indicated AnAOB encapsulated by AOB colonies were mainly distributed inside of the biofilm, which promoted nitrite utilization by the anammox process. This innovative system and the results are of great value to practical applications.
Collapse
Affiliation(s)
- Shang Ren
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Zhong Wang
- Soil and Agricultural Rural Ecological Environment Supervision Technology Center, Beijing 100012, PR China
| | - Hao Jiang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
15
|
Hao M, Chen H, He Y, Wang X, Zhang Y, Lao H, Song H, Chen W, Xue G. Recycling sludge-derived hydrochar to facilitate advanced denitrification of secondary effluent: Role of extracellular electron transfer. CHEMOSPHERE 2022; 291:132683. [PMID: 34710461 DOI: 10.1016/j.chemosphere.2021.132683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/08/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
Sludge-derived hydrochar (SDHC) was recycled to enhance the denitrification of secondary effluent. Under different carbon to nitrogen (C/N) ratios, the nitrogen removal efficiency (NRE) and carbon source efficiency (CSE) of denitrification coupled with SDHC (DN-SDHC) were distinctly higher than that of denitrification alone (DN). Moreover, at the C/N ratios of 3.0-3.2 and 5.8-5.9, the nitrogen removal rate (NRR) of DN-SDHC was 3.6- and 1.5-fold that of DN, respectively. The characterization of SDHC before and after used in denitrification indicated that the metal ions and functional groups did not participate in denitrification. Although SDHC has no redox capacity to donate electron for denitrification, its higher conductivity enabled the acceleration of extracellular electron transfer from carbon source to denitrifiers. The abundance of denitrifying community and functional genes was synchronously promoted by SDHC. Especially, the significant increase of nosZ gene encoding nitrous oxide reductase was conducive to mitigating the emission of N2O greenhouse gas.
Collapse
Affiliation(s)
- Mingxin Hao
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Hong Chen
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China; National Engineering Research Center for Dyeing and Finishing of Textiles, Shanghai, 201620, China
| | - Yueling He
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xiaonuan Wang
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yu Zhang
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Hongbiao Lao
- Shaoxing Water Treatment Development Company, Shaoxing, 312000, China
| | - Hualong Song
- Shaoxing Water Treatment Development Company, Shaoxing, 312000, China
| | - Wei Chen
- Shaoxing Water Treatment Development Company, Shaoxing, 312000, China
| | - Gang Xue
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200000, China; National Engineering Research Center for Dyeing and Finishing of Textiles, Shanghai, 201620, China.
| |
Collapse
|
16
|
Zhang X, Wu P, Xu L, Ma L. A novel simultaneous partial nitritation, denitratation and anammox (SPNDA) process in sequencing batch reactor for advanced nitrogen removal from ammonium and nitrate wastewater. BIORESOURCE TECHNOLOGY 2022; 343:126105. [PMID: 34695589 DOI: 10.1016/j.biortech.2021.126105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
This study presented a novel simultaneous partial nitritation (PN), denitratation and anammox (SPNDA) process for treating ammonium and nitrate wastewater. Results indicated that SPNDA could achieve a great total nitrogen (TN) removal of 97.6 ± 0.5%, leading to effluent TN concentration of only 3.4 mg/L. Mass balance indicated that nitrogen removal rates via anammox, simultaneous nitrification and denitrification were 96.7% and 3.3%, respectively. Extended aerobic duration (12 h) and low dissolved oxygen (DO) concentration (0.15 mg/L) could improve ammonia-oxidizing bacteria (AOB) activity and maintain PN stability. The stable suppression of nitrite-oxidizing bacteria activity was attributed to the low DO (0.15 mg/L) and high free ammonia (3.63 mg/L) in SPND. Besides, the nitrogen conversion mechanisms for SPNDA were revealed based on a typical operational cycle. Microbial analysis showed that AOB (Nitrosomonas) and partial denitrifying bacteria (Thauera and Denitratisoma) coexisted with anammox bacteria (Candidatus Brocadia and Candidatus Anammoxoglobus) in the mixotrophic bio-community.
Collapse
Affiliation(s)
- Xingxing Zhang
- Environmental Microbiome and Biotechnology Lab, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Peng Wu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Lezhong Xu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Liping Ma
- Environmental Microbiome and Biotechnology Lab, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
17
|
Stein N, Podder A, Lee Weidhaas J, Goel R. Simultaneous reduction of perchlorate and nitrate using fast-settling anoxic sludge. CHEMOSPHERE 2022; 286:131788. [PMID: 34375826 DOI: 10.1016/j.chemosphere.2021.131788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Fast-settling, anoxic sludge (FAS) was cultivated and utilized in this study to simultaneously reduce elevated levels of perchlorate and nitrate in an anaerobic sequencing batch reactor (AnSBR). Average perchlorate and nitrate removal efficiencies of 96.5 ± 8.44 % and 99.8 ± 0.32 %, respectively, were achieved from an average perchlorate and nitrate loading rate of 159 ± 101 g ClO4-/m3·d and 10.8 ± 7.25 g NO3--N/m3·d, respectively, throughout long-term operation (>500-d). Batch activity tests revealed a preferential utilization of nitrate over perchlorate, where significant perchlorate reduction inhibition occurred when nitrate was present as a competing electron acceptor under carbon-limiting conditions. Specific perchlorate and nitrate reduction rates were shown to increase as the hydraulic retention time (HRT) of the AnSBR was step-wise decreased and subsequently the perchlorate and nitrate loading rates were step-wise increased. Functional, mRNA-based expression of the nitrite reductase (nirS and nirK), nitrous oxide reductase (nosZ), perchlorate reductase subunit A (pcrA), and the chlorite dismutase (cld) genes illustrated the simultaneous activity of heterotrophic denitrification and perchlorate reduction occurring throughout a complete standard reactor operational cycle, and allowed for expression trends to be documented as the HRT of the AnSBR was reduced from 5-d to 1.25-d. Nitrous oxide (N2O) production was detected as a result of incomplete denitrification, where the largest N2O production occurred at the highest nitrate loading rates investigated in this study. Thauera species were heavily enriched at a longer HRT of 5-d, but were out-competed by Dechloromonas species as the HRT of the AnSBR was step-wise reduced to 1.25-d.
Collapse
Affiliation(s)
- Nathan Stein
- Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Aditi Podder
- Department of Civil, Environmental and Construction Engineering, University of Central Florida, Orlando, FL, 32816, USA
| | - Jennifer Lee Weidhaas
- Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Ramesh Goel
- Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
18
|
Zou X, Chen C, Wang C, Zhang Q, Yu Z, Wu H, Zhuo C, Zhang TC. Combining electrochemical nitrate reduction and anammox for treatment of nitrate-rich wastewater: A short review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149645. [PMID: 34399327 DOI: 10.1016/j.scitotenv.2021.149645] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/14/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Treatment of nitrate-rich wastewater is important but challenging for the conventional biological denitrification process. Here, we propose combining the electrochemical reduction and anaerobic ammonium oxidation (anammox) processes together for treatment of nitrate-rich wastewater. This article reviews the mechanism and current research status of electrochemical reduction of nitrate to ammonium as well as the mechanism and applicability of the anammox process. This article discusses the principles, superiorities and challenges of this combined process. The feasibility of the combined process depends on the efficiency of electrochemical nitrate reduction to ammonium and the conditions in the anammox process to use the reduced ammonium as the substrate to achieve deep nitrogen removal. The article provides a feasible strategy for using the electrochemical reduction and anammox combined process to treat nitrate-rich wastewater.
Collapse
Affiliation(s)
- Xinyi Zou
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Chongjun Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; Tianping College of Suzhou University of Science and Technology, Suzhou 215009, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, PR China.
| | - Changhong Wang
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, PR China; School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, PR China
| | - Qun Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Zhuowei Yu
- Ecolord (Suzhou) Environment Protect Technology Co., Ltd, Suzhou 215011, PR China
| | - Haiping Wu
- Ecolord (Suzhou) Environment Protect Technology Co., Ltd, Suzhou 215011, PR China
| | - Chao Zhuo
- Ecolord (Suzhou) Environment Protect Technology Co., Ltd, Suzhou 215011, PR China
| | - Tian C Zhang
- Civil & Environmental Engineering Dept., University of Nebraska-Lincoln, Omaha, NE 68182-0178, USA
| |
Collapse
|
19
|
Ren S, Wang Z, Jiang H, Qiu J, Li X, Zhang Q, Peng Y. Stable nitritation of mature landfill leachate via in-situ selective inhibition by free nitrous acid. BIORESOURCE TECHNOLOGY 2021; 340:125647. [PMID: 34385123 DOI: 10.1016/j.biortech.2021.125647] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/18/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
In-situ free nitrous acid (FNA) and free ammonia (FA) treatments are more feasible than side-stream methods to achieve nitritation. To assess the optimum conditions and long-term performance of in-situ inhibition by FNA, batch tests and a sequencing batch reactor (SBR) treating mature landfill leachate were conducted and established. As a result, the selective inhibition characteristic by FNA was more conspicuous than FA, and FNA (0.175 mg N/L, 6 h) treatment are more biocidal to nitrite oxidizing bacteria (NOB). Moreover, ammonia oxidizing bacteria (AOB) were more sensitive to the FA environment but its activity recovered preferentially compared to NOB. The SBR achieved a sustained nitrite accumulation rate above 90% for 200 days, with a significant decrease of NOB activity and microbial abundance according to qPCR and 16S rRNA gene sequencing results. In-situ selective inhibition by FNA (0.175 mg N/L, 6 h) has been proved to be effective to maintain stable nitritation.
Collapse
Affiliation(s)
- Shang Ren
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Zhong Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hao Jiang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jingang Qiu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
20
|
Fang D, Wang J, Cui D, Dong X, Tang C, Zhang L, Yue D. Recent Advances of Landfill Leachate Treatment. J Indian Inst Sci 2021. [DOI: 10.1007/s41745-021-00262-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Podder A, Sadmani AHMA, Reinhart D, Chang NB, Goel R. Per and poly-fluoroalkyl substances (PFAS) as a contaminant of emerging concern in surface water: A transboundary review of their occurrences and toxicity effects. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126361. [PMID: 34157464 DOI: 10.1016/j.jhazmat.2021.126361] [Citation(s) in RCA: 177] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 05/27/2023]
Abstract
Per and poly-fluoroalkyl substances (PFAS) have been recognized as contaminants of emerging concerns by the United States Environmental Protection Agency (US EPA) due to their environmental impact. Several advisory guidelines were proposed worldwide aimed at limiting their occurrences in the aquatic environments, especially for perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA). This review paper aims to provide a holistic review in the emerging area of PFAS research by summarizing the spatiotemporal variations in PFAS concentrations in surface water systems globally, highlighting the possible trends of occurrences of PFAS, and presenting potential human health impacts as a result of PFAS exposure through surface water matrices. From the data analysis in this study, occurrences of PFOA and PFOS in many surface water matrices were observed to be several folds higher than the US EPA health advisory level of 70 ng/L for lifetime exposure from drinking water. Direct discharge and atmospheric deposition were identified as primary sources of PFAS in surface water and cryosphere, respectively. While global efforts focused on limiting usages of long-chain PFAS such as PFOS and PFOA, the practices of using short-chain PFAS such as perfluorobutanoic acid (PFBA) and perfluorobutane sulfonic acid (PFBS) and PFAS alternatives increased substantially. These compounds are also potentially associated with adverse impacts on human health, animals and biota.
Collapse
Affiliation(s)
- Aditi Podder
- Department of Civil, Environmental and Construction Engineering, University of Central Florida, Orlando, FL 32816, United States.
| | - A H M Anwar Sadmani
- Department of Civil, Environmental and Construction Engineering, University of Central Florida, Orlando, FL 32816, United States
| | - Debra Reinhart
- Department of Civil, Environmental and Construction Engineering, University of Central Florida, Orlando, FL 32816, United States
| | - Ni-Bin Chang
- Department of Civil, Environmental and Construction Engineering, University of Central Florida, Orlando, FL 32816, United States
| | - Ramesh Goel
- Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, UT 84112, United States
| |
Collapse
|
22
|
Ismail S, Elreedy A, Fujii M, Ni SQ, Tawfik A, Elsamadony M. Fatigue of anammox consortia under long-term 1,4-dioxane exposure and recovery potential: N-kinetics and microbial dynamics. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125533. [PMID: 34030408 DOI: 10.1016/j.jhazmat.2021.125533] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/22/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
Long-term exposure of anammox process to 1,4-dioxane was investigated using periodic anammox baffled reactor (PABR) under different 1,4-dioxane concentrations. The results generally indicated that PABR (composed of 4 compartments) has robust resistance to 10 mg-dioxane/L. The 1st compartment acted as a shield to protect subsequent compartments from 1,4-dioxane toxicity through secretion of high extracellular polymeric substance (EPS) of 152.9 mg/gVSS at 10 mg-dioxane/L. However, increasing 1,4-dioxane to 50 mg/L significantly inhibited anammox bacteria; e.g., ~ 93% of total nitrogen removal was lost within 14 days. The inhibition of anammox process at this dosage was most likely due to bacterial cell lysis, resulting in the decrease of EPS secretion and specific anammox activity (SAA) to 105.9 mg/gVSS and 0.04 mg N/gVSS/h, respectively, in the 1st compartment. However, anammox bacteria were successfully self-recovered within 41 days after the cease of 1,4-dioxane exposure. The identification of microbial compositions further emphasized the negative impacts of 1,4-dioxane on abundance of C. Brocadia among samples. Furthermore, the development of genus Planococcus in the 1st compartment, where removal of 1,4-dioxane was consistently observed, highlights its potential role as anoxic 1,4-dioxane degrader. Overall, long-term exposure to 1,4-dioxane should be controlled not exceeding 10 mg/L for a successful application.
Collapse
Affiliation(s)
- Sherif Ismail
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China; Environmental Engineering Department, Zagazig University, Zagazig 44519, Egypt; Suzhou Research Institute, Shandong University, Suzhou, Jiangsu 215123, China
| | - Ahmed Elreedy
- Sanitary Engineering Department, Alexandria University, Alexandria 21544, Egypt; Department of Applied Biology, Institute for Applied Biosciences, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Manabu Fujii
- Civil and Environmental Engineering Department, Tokyo Institute of Technology, Meguro-Ku, Tokyo 152-8552, Japan
| | - Shou-Qing Ni
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China; Suzhou Research Institute, Shandong University, Suzhou, Jiangsu 215123, China.
| | - Ahmed Tawfik
- Water Pollution Research Department, National Research Centre, Giza 12622, Egypt
| | - Mohamed Elsamadony
- Civil and Environmental Engineering Department, Tokyo Institute of Technology, Meguro-Ku, Tokyo 152-8552, Japan; Department of Public Works Engineering, Faculty of Engineering, Tanta University, 31521 Tanta City, Egypt
| |
Collapse
|
23
|
Response of anammox bacteria to short-term exposure of 1,4-dioxane: Bacterial activity and community dynamics. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118539] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
24
|
Ali P, Zalivina N, Le T, Riffat R, Ergas S, Wett B, Murthy S, Al-Omari A, deBarbadillo C, Bott C, De Clippeleir H. Primary sludge fermentate as carbon source for mainstream partial denitrification-anammox (PdNA). WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:1044-1059. [PMID: 33277759 DOI: 10.1002/wer.1492] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/05/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
Primary sludge fermentate, a concentrated hydrolyzed wastewater carbon, was evaluated for use as an alternative carbon source for mainstream partial denitrification-anammox (PdNA) in a suspended growth activated sludge process in terms of partial denitrification (PdN) efficiency, PdNA nitrogen removal contributions, and final effluent quality. Fermenter operation at a 2-day sludge retention time (SRT) resulted in the maximum achievable yield of 0.14 ± 0.05 g sCOD/g VSS without release of excessive ammonia and phosphorus to the system. Based on the results of batch experiments, fermentate addition led to PdN efficiency of 93 ± 14%, which was similar to acetate at a nitrate residual of 2-3 mg N/L. In the pilot-scale mainstream deammonification reactor, PdN efficiency using fermentate was 49 ± 24%, which was lower than acetate (66 ± 24% during acetate period I and 70 ± 21% during acetate period II), most probably due to lower nitrate and ammonium kinetics in the PdN zone. Methanol cost-saving potential for the application of PdNA as the main short-cut nitrogen pathway was estimated to be 30% to 55% depending on the PdN efficiency achieved. PRACTITIONER POINTS: Primary sludge fermentate was evaluated as an alternative carbon source for mainstream partial denitrification-anammox (PdNA). Fermenter operated at a 1 to 2 day SRT resulted in the maximum achievable yield without the release of excessive ammonia and phosphorus to the system. Although 93% partial denitrification efficiency was achieved with fermentate in batch experiments, around 49% PdN efficiency was achieved in pilot studies. Application of PdNA with fermentate can result in significant methanol cost savings.
Collapse
Affiliation(s)
- Priyanka Ali
- Department of Civil and Environmental Engineering, The George Washington University, Washington, DC, USA
- DC Water and Sewer Authority, Washington, DC, USA
| | - Nadezhda Zalivina
- DC Water and Sewer Authority, Washington, DC, USA
- Department of Civil & Environmental Engineering, University of South Florida, Tampa, FL, USA
| | - Tri Le
- DC Water and Sewer Authority, Washington, DC, USA
- Environmental Engineering, The Catholic University of America, Washington, DC, USA
| | - Rumana Riffat
- Department of Civil and Environmental Engineering, The George Washington University, Washington, DC, USA
| | - Sarina Ergas
- Department of Civil & Environmental Engineering, University of South Florida, Tampa, FL, USA
| | | | | | | | | | - Charles Bott
- Hampton Roads Sanitation District, Virginia Beach, VA, USA
| | | |
Collapse
|
25
|
Wang F, Xu S, Liu L, Wang S, Ji M. One-stage partial nitrification and anammox process in a sequencing batch biofilm reactor: Start-up, nitrogen removal performance and bacterial community dynamics in response to temperature. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:145529. [PMID: 33581528 DOI: 10.1016/j.scitotenv.2021.145529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/06/2021] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
A one-stage partial nitrification and anammox (PN/A) process was started up and operated under varying temperatures in a lab-scale sequencing batch biofilm reactor. The start‑up phase took 110 days with an intermittent aeration strategy, and the removal efficiencies of ammonia‑nitrogen and total nitrogen were found to be 92.22% and 76.07%, respectively. The total nitrogen removal efficiency (NRE) increased by 9.49% when temperature decreased from 30 °C to 25 °C, but declined by 83.84% from 25 °C to 20 °C. The PN process was inhibited and subsequently limited the nitrogen removal performance at 20 °C. When temperature returned to 28 °C, the NRE recovered to 67.27%, but it was still lower than the value before the decrease in temperature (79.40%). Microbial community analysis showed that the predominant ammonia oxidation bacteria and anammox bacteria were Nitrosomonas and Candidatus Kuenenia, respectively. Nitrosomonas grew, while the relative abundance of Candidatus Kuenenia increased as temperature decreased and vice versa.
Collapse
Affiliation(s)
- Fen Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Sihan Xu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Lingjie Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Siyu Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China; China Urban Construction Design & Research Institute Co., Ltd, Beijing 100120, China
| | - Min Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
26
|
Chen W, Gu Z, Ran G, Li Q. Application of membrane separation technology in the treatment of leachate in China: A review. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 121:127-140. [PMID: 33360812 DOI: 10.1016/j.wasman.2020.12.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/16/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
To comprehensively investigate the application of membrane separation technology in the treatment of landfill leachate in China, the performance of nearly 200 waste management enterprises of different sizes in China were analyzed, with an emphasis on their scale, regional features, processes, and economic characteristics. It was found that membrane separation technologies, mainly nanofiltration (NF), reverse osmosis (RO), and NF + RO, have been used in China since 2004. The treatment capacity of the two most dominant membrane separation technologies, i.e., NF and RO, were both almost 60,000 m3/d in 2018, and both technologies are widely used in landfills and incineration plants. Their distribution is mainly concentrated in eastern and southwestern China, where the amount of municipal solid waste (MSW) is relatively high and the economy is developing rapidly. Membrane separation technology is the preferred technique for the advanced treatment of leachate because more contaminants can be effectively removed by the technology than by other advanced processes. However, the membrane retentate that is produced using this technology-commonly known as leachate concentrate-is heavily contaminated due to the enrichment of almost all the inorganic anions, heavy metals, and organic matter that remain after bioprocessing. An economic cost analysis revealed that the operating cost of membrane separation technology has stabilized and is between 1.77 USD/m3 and 4.90 USD/m3; electricity consumption is the most expensive cost component. This review describes the current problems with the use of membrane separation technology and recommends strategies and solutions for its future use.
Collapse
Affiliation(s)
- Weiming Chen
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Zhepei Gu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Gang Ran
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Qibin Li
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China.
| |
Collapse
|
27
|
Zhang T, Yin Q, Shi Y, Wu G. Microbial physiology and interactions in anammox systems with the intermittent addition of organic carbons. BIORESOURCE TECHNOLOGY 2021; 319:124226. [PMID: 33049442 DOI: 10.1016/j.biortech.2020.124226] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/27/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
Organic carbon can affect nitrogen removal in the anaerobic ammonia oxidation (anammox) process. Two continuous up-flow anaerobic sludge blanket (UASB) reactors were operated under autotrophic (UASBN, without organic carbon) and mixotrophic (UASBCN, with the intermittent addition of acetate and propionate) conditions. Stable operation of anammox systems was achieved, with the nitrogen removal rate and percentage of 2.12 g/(L·d) and 86.4% in UASBN, and 2.09 g/(L·d) and 85.0% in UASBCN, respectively. The network of Candidatus Kuenenia, Thauera, and Nitrosomanas contributed to both nitrogen and carbon metabolisms, and the intermittent addition of acetate and propionate strengthened Ca. Kuenenia's ability to utilize several types of carbon sources. Anammox bacteria showed activity in the presence of organic carbon and without inorganic carbon, confirming the mixotrophic characteristic of Ca. Kuenenia. Cross-feeding of amino acids and vitamins existed among functional microorganisms, with extracellular polymeric substances acting as the media for microbial interactions.
Collapse
Affiliation(s)
- Tianqi Zhang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China
| | - Qidong Yin
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China
| | - Yunhong Shi
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, Dublin, Ireland
| | - Guangxue Wu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China.
| |
Collapse
|