1
|
Xu H, Wang H, Wang X, Tang Z, Chen X, Chen Y, Dai X, Chen H, Wang H. Fluidized bed photobioreactor based on diatomite powder and high light intensity improved microalgae harvesting, nutrient removal and lipid accumulation: Performance and microscopic mechanism. WATER RESEARCH 2024; 264:122172. [PMID: 39146848 DOI: 10.1016/j.watres.2024.122172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/19/2024] [Accepted: 07/27/2024] [Indexed: 08/17/2024]
Abstract
Cultivation of microalgae using anaerobic digestate is a gain-win strategy for algal biomass production and achieving environmental benefits. However, the low biomass concentration and high harvest cost of the conventional suspended microalgae culture system are troublesome issues. In this study, a novel fluidized bed photobioreactor (FBPBR) based on diatomite powder was constructed for cultivating Scenedesmus quadricauda and treating diluted anaerobic digestate. The optimized diatomite carrier dosage of 750 mg/L increased microalgal biomass concentration to 1.58 g/L compared to suspended microalgae without carrier (0.99 g/L). When the light intensity was increased from 100 to 200 μmol/m2/s, the microalgal biomass in the FBPBR increased to 1.84 g/L and the settling efficiency increased to 93.58 %. This was due to the 1.60-fold enhancement of extracellular polymeric substance (EPS) secretion and changes in EPS properties. The increase in hydrophobic functional groups of EPS under high light intensity, coupled with the reconstitution of protein secondary structure, facilitated the initial attachment of algae to diatomite and the thickening of microalgal biofilm. Moreover, transcriptomic analysis demonstrated that diatomite promoted antioxidant defense and photosynthesis in S. quadricauda cells, alleviating the adverse effect of anaerobic digestate stress. The diatomite addition and elevated light intensity contributed to the highest lipid content (60.37 %), which was owing to the upregulated genes encoding fatty acid and triacylglycerol synthesis under the stress of localized nutrient starvation in the inner layer of microalgae biofilms. Furthermore, the regulation of phosphorus metabolism and NH4+-N assimilation improved nutrient removal (93.24 % and 96.86 % for NH4+-N and TP removal). This work will provide guidance for the development of FBPBR based on diatomite powder.
Collapse
Affiliation(s)
- Haolian Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Hong Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiankai Wang
- YANGTZE Eco-Environment Engineering Research Center, China Three Gorges Corporation, Wuhan 430010, China; National Engineering Research Center of Eco-environment Protection for Yangtze River Economic Belt, China Three Gorges Corporation, Wuhan 430010, China
| | - Zhenzhen Tang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiang Chen
- YANGTZE Eco-Environment Engineering Research Center, China Three Gorges Corporation, Wuhan 430010, China; National Engineering Research Center of Eco-environment Protection for Yangtze River Economic Belt, China Three Gorges Corporation, Wuhan 430010, China
| | - Yongdong Chen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Hongbin Chen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Hang Wang
- YANGTZE Eco-Environment Engineering Research Center, China Three Gorges Corporation, Wuhan 430010, China; National Engineering Research Center of Eco-environment Protection for Yangtze River Economic Belt, China Three Gorges Corporation, Wuhan 430010, China
| |
Collapse
|
2
|
Eng Nkonogumo PL, Zhu Z, Emmanuel N, Zhang X, Zhou L, Wu P. Novel and innovative approaches to partial denitrification coupled with anammox: A critical review. CHEMOSPHERE 2024; 358:142066. [PMID: 38670502 DOI: 10.1016/j.chemosphere.2024.142066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/25/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
The partial denitrification (PD) coupled with anaerobic ammonium oxidation (Anammox) (PD/A) process is a unique biological denitrification method for sewage that concurrently removes nitrate (NO3--N) and ammonium (NH4+-N) in sewage. Comparing PD/A to conventional nitrification and denitrification technologies, noticeable improvements are shown in energy consumption, carbon source demand, sludge generation and emissions of greenhouse gasses. The PD is vital to obtaining nitrites (NO2--N) in the Anammox process. This paper provided valuable insight by introduced the basic principles and characteristics of the process and then summarized the strengthening strategies. The functional microorganisms and microbial competition have been discussed in details, the S-dependent denitrification-anammox has been analyzed in this review paper. Important factors affecting the PD/A process were examined from different aspects, and finally, the paper pointed out the shortcomings of the coupling process in experimental research and engineering applications. Thus, this research provided insightful information for the PD/A process's optimization technique in later treating many types of real and nitrate-based wastewater. The review paper also provided the prospective economic and environmental position for the actual design implementation of the PD/A process in the years to come.
Collapse
Affiliation(s)
- Paul Luchanganya Eng Nkonogumo
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Zixuan Zhu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Nshimiyimana Emmanuel
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xiaonong Zhang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Li Zhou
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Peng Wu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
3
|
Zhang YM, Qiao B, Shang W, Ding MZ, Xu QM, Duan TX, Cheng JS. Improving salt-tolerant artificial consortium of Bacillus amyloliquefaciens for bioconverting food waste to lipopeptides. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 181:89-100. [PMID: 38598883 DOI: 10.1016/j.wasman.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/20/2024] [Accepted: 04/03/2024] [Indexed: 04/12/2024]
Abstract
High-salt content in food waste (FW) affects its resource utilization during biotransformation. In this study, adaptive laboratory evolution (ALE), gene editing, and artificial consortia were performed out to improve the salt-tolerance of Bacillus amyloliquefaciens for producing lipopeptide under FW and seawater. High-salt stress significantly decreased lipopeptide production in the B. amyloliquefaciens HM618 and ALE strains. The total lipopeptide production in the recombinant B. amyloliquefaciens HM-4KSMSO after overexpressing the ion transportor gene ktrA and proline transporter gene opuE and replacing the promoter of gene mrp was 1.34 times higher than that in the strain HM618 in medium containing 30 g/L NaCl. Lipopeptide production under salt-tolerant consortia containing two strains (HM-4KSMSO and Corynebacterium glutamicum) and three-strains (HM-4KSMSO, salt-tolerant C. glutamicum, and Yarrowia lipolytica) was 1.81- and 2.28-fold higher than that under pure culture in a medium containing FW or both FW and seawater, respectively. These findings provide a new strategy for using high-salt FW and seawater to produce value-added chemicals.
Collapse
Affiliation(s)
- Yu-Miao Zhang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, People's Republic of China
| | - Bin Qiao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, People's Republic of China
| | - Wei Shang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, People's Republic of China
| | - Ming-Zhu Ding
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, People's Republic of China
| | - Qiu-Man Xu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Binshuixi Road 393, Xiqing District, Tianjin 300387, People's Republic of China
| | - Tian-Xu Duan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, People's Republic of China
| | - Jing-Sheng Cheng
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, People's Republic of China.
| |
Collapse
|
4
|
Pereira ASADP, Silva TAD, Magalhães IB, Ferreira J, Braga MQ, Lorentz JF, Assemany PP, Couto EDAD, Calijuri ML. Biocompounds from wastewater-grown microalgae: a review of emerging cultivation and harvesting technologies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170918. [PMID: 38354809 DOI: 10.1016/j.scitotenv.2024.170918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/22/2024] [Accepted: 02/10/2024] [Indexed: 02/16/2024]
Abstract
Microalgae biomass has attracted attention as a feedstock to produce biofuels, biofertilizers, and pigments. However, the high production cost associated with cultivation and separation stages is a challenge for the microalgae biotechnology application on a large scale. A promising approach to overcome the technical-economic limitations of microalgae production is using wastewater as a nutrient and water source for cultivation. This strategy reduces cultivation costs and contributes to valorizing sanitation resources. Therefore, this article presents a comprehensive literature review on the status of microalgae biomass cultivation in wastewater, focusing on production strategies and the accumulation of valuable compounds such as lipids, carbohydrates, proteins, fatty acids, and pigments. This review also covers emerging techniques for harvesting microalgae biomass cultivated in wastewater, discussing the advantages and limitations of the process, as well as pointing out the main research opportunities. The novelty of the study lies in providing a detailed analysis of state-of-the-art and potential advances in the cultivation and harvesting of microalgae, with a special focus on the use of wastewater and implementing innovative strategies to enhance productivity and the accumulation of compounds. In this context, the work aims to guide future research concerning emerging technologies in the field, emphasizing the importance of innovative approaches in cultivating and harvesting microalgae for advancing knowledge and practical applications in this area.
Collapse
Affiliation(s)
| | | | - Iara Barbosa Magalhães
- Federal University of Viçosa, Department of Civil Engineering, Viçosa, Minas Gerais, Brazil.
| | - Jessica Ferreira
- Federal University of Viçosa, Department of Civil Engineering, Viçosa, Minas Gerais, Brazil.
| | - Matheus Quintão Braga
- Federal University of Viçosa, Department of Civil Engineering, Viçosa, Minas Gerais, Brazil.
| | | | - Paula Peixoto Assemany
- Federal University of Lavras, Department of Environmental Engineering, Lavras, Minas Gerais, Brazil.
| | | | - Maria Lúcia Calijuri
- Federal University of Viçosa, Department of Civil Engineering, Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
5
|
Mkpuma VO, Moheimani NR, Ennaceri H. Biofilm cultivation of chlorella species. MUR 269 to treat anaerobic digestate food effluent (ADFE): Total ammonia nitrogen (TAN) concentrations effect. CHEMOSPHERE 2024; 354:141688. [PMID: 38484996 DOI: 10.1016/j.chemosphere.2024.141688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/06/2024] [Accepted: 03/10/2024] [Indexed: 03/17/2024]
Abstract
Microalgal-based treatment of anaerobic digestate food effluent (ADFE) has been found to be efficient and effective. However, turbidity and high total ammonia nitrogen (TAN)) content of ADFE is a major setback, requiring significant dilution. Although the possibility of growing microalgae in a high-strength ADFE with minimal dilution has been demonstrated in suspension cultures, such effluents remain highly turbid and affect the light path in suspension cultures. Here, the feasibility of growing Chlorella sp.MUR 269 in biofilm to treat ADFE with high TAN concentrations was investigated. Six different TAN concentrations in ADFE were evaluated for their effects on biofilm growth and nutrient removal by Chlorella sp. MUR 269 using the perfused biofilm technique. Biomass yields and productivities of this alga at various TAN concentrations (mg N NH3 L-1) were 55a (108 g m-2 and 9.80 g m-2 d-1)>100b > 200c = 300c = 500c > 1000d. Growth was inhibited, resulting in a 28% reduction in yield of Chlorella biofilm when this alga was grown at 1000 mg N NH3 L-1. A survey of the photosynthetic parameters reveals evidence of stress occurring in the following sequence: 55 < 100<200 < 300<1000. A significant nutrient removal was observed across various TAN concentrations. The removal pattern also followed the concentration gradients except COD, where the highest removal occurred at 500 mg N NH3 L-1. Higher removal rates were seen at higher nutrient concentrations and declined gradually over time. In general, our results indicated that the perfused biofilm strategy is efficient, minimizes water consumption, offers easy biomass harvesting, and better exposure to light. Therefore, it can be suitable for treating turbid and concentrated effluent with minimal treatment to reduce the TAN concentration.
Collapse
Affiliation(s)
- Victor Okorie Mkpuma
- Algae R&D Centre, School of Environmental and Conservation Sciences, Murdoch University, Murdoch, Western Australia, 6150, Australia
| | - Navid Reza Moheimani
- Algae R&D Centre, School of Environmental and Conservation Sciences, Murdoch University, Murdoch, Western Australia, 6150, Australia; Centre for Water, Energy and Waste, Harry Butler Institute, Murdoch University, Perth, 6150, Australia
| | - Houda Ennaceri
- Algae R&D Centre, School of Environmental and Conservation Sciences, Murdoch University, Murdoch, Western Australia, 6150, Australia; Centre for Water, Energy and Waste, Harry Butler Institute, Murdoch University, Perth, 6150, Australia.
| |
Collapse
|
6
|
Nguyen VT, Le VA, Do QH, Le TNC, Vo TDH. Emerging revolving algae biofilm system for algal biomass production and nutrient recovery from wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168911. [PMID: 38016564 DOI: 10.1016/j.scitotenv.2023.168911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/06/2023] [Accepted: 11/24/2023] [Indexed: 11/30/2023]
Abstract
Toward the direction of zero‑carbon emission and green technologies for wastewater treatment, algae-based technologies are considered promising candidates to deal with the current situation of pollution and climate change. Recent developments of algae-based technologies have been introduced in previous studies in which their performances were optimized for wastewater treatment and biomass production. Among these, revolving algae biofilm (RAB) reactors have been proven to have a great potential in high biomass productivity, simple harvesting method, great CO2 transfer rate, high light-use efficiency, heavy metal capture, nutrient removal, and acid mine drainage treatment in previous studies. However, there were few articles detailing RAB performance, which concealed its enormous potential and diminished interest in the model. Hence, this review aims to reveal the major benefit of RAB reactors in simultaneous wastewater treatment and biomass cultivation. However, there is still a lack of research on aspects to upgrade this technology which requires further investigations to improve performance or fulfill the concept of circular economy.
Collapse
Affiliation(s)
- Van-Truc Nguyen
- Faculty of Environment, Saigon University, Ho Chi Minh City 700000, Viet Nam.
| | - Vu-Anh Le
- Department of Environmental Engineering, Zhongli District, Chung Yuan Christian University, No. 200, Zhongbei Road, Taoyuan City 32023, Taiwan
| | - Quoc-Hoang Do
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Thi-Ngoc-Chau Le
- Institute for Environment and Resources (IER), Ho Chi Minh City 700000, Viet Nam; Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Viet Nam.
| | - Thi-Dieu-Hien Vo
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Viet Nam.
| |
Collapse
|
7
|
Saleem S, Sheikh Z, Iftikhar R, Zafar MI. Eco-friendly cultivation of microalgae using a horizontal twin layer system for treatment of real solid waste leachate. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119847. [PMID: 38142597 DOI: 10.1016/j.jenvman.2023.119847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/30/2023] [Accepted: 12/11/2023] [Indexed: 12/26/2023]
Abstract
Solid waste leachate (SWL) requires dilution with water to offset the negative effects of high nutrient concentration and organic compounds for its microalgae-based treatment. Among attached cultivation systems, twin layer is a technology in which limited information is available on treatment of high strength wastewater using microalgae. Moreover, widespread application of twin layer technology is limited due to cost of substrate and source layer used. In the present study, potential of Scenedesmus sp. for the treatment of SWL was assessed on horizontal twin layer system (HTLS). Novel and cost-effective substrate layers were tested as attachment material. Wetland treated municipal wastewater (WMW) was used to prepare SWL dilutions viz, 5%, 10%, 15%, 20% and 25% SWL. Recycled printing paper showed maximum biomass productivity of 5.19 g m-2 d-1. Among all the SWL dilutions, Scenedesmus sp. achieved maximum growth of 103.05 g m-2 in 5% SWL which was 16% higher than WMW alone. The maximum removal rate of NH4+ -N, TKN, and PO43- P was obtained in 20% SWL which was 1371, 1588 and 153 mg m-2 d-1 respectively. Varying concentrations of nutrients in different SWL dilutions significantly affected lipid biosynthesis, with enhanced productivity of 2.28 g m-2 d-1 achieved in 5% SWL compared to 0.97 g m-2 d-1 in 20% SWL. Hence, it can be concluded that 5% SWL dilution was good for biomass and lipid production, while the highest nutrient removal rates were obtained at 20% SWL mainly attributed to biotic and abiotic processes. Based on these results HTLS can be a promising technology for pilot scale to explore industrialized application of wastewater treatment and algal production.
Collapse
Affiliation(s)
- Sahar Saleem
- Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan.
| | - Zeshan Sheikh
- Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan.
| | - Rashid Iftikhar
- Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan.
| | - Mazhar Iqbal Zafar
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
8
|
Li C, Wang JX, Wang JH, Chi ZY. Effects of staged multiple phytohormones application on capillary-driven attached Chlorella sp. biofilm. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119886. [PMID: 38142601 DOI: 10.1016/j.jenvman.2023.119886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/15/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
Comparing with single phytohormone application, applying multiple phytohormones to microalgae-based wastewater treatment systems can offer more extensive growth-promoting and stress-protecting effects for microalgae, yet the advantage of stress-relieving salicylic acid (SA) under combined phytohormones application scenario has not been exploited. Employing the improved capillary-driven attached microalgae culturing device (CD-PBR) previously used for single phytohormone application, this study compared the effects of mixed and single phytohormone(s) addition under as low as 10-7 M dosage. In order to make the best of SA for its stress-relieving property, postponed SA addition combined with applying other phytohormone(s) at the beginning of microalgae cultivation was also investigated. Combination of 10-6 M 6-benzylaminopurine (6-BA) with 10-7 M SA was sufficient for enhancing growth-promoting effects and anti-oxidative responses for attached Chlorella sp., while indole-3-acetic acid (IAA) addition was unnecessary. Combination of 6-BA addition at the beginning while postponed SA addition on Day 4 could further sustain such beneficial effects, while removing up to 99.7% total nitrogen (TN) and 97.9% total phosphorus (TP) from the bulk liquid. These results provided innovative strategies on mixed phytohormones addition for microalgae.
Collapse
Affiliation(s)
- Chi Li
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116024, PR China
| | - Jian-Xia Wang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116024, PR China
| | - Jing-Han Wang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116024, PR China; Key Laboratory of Environment Controlled Aquaculture, Dalian Ocean University, Dalian, 116023, PR China.
| | - Zhan-You Chi
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116024, PR China
| |
Collapse
|
9
|
Yu M, Wang L, Feng P, Wang Z, Zhu S. Treatment of mixed wastewater by vertical rotating microalgae-bacteria symbiotic biofilm reactor. BIORESOURCE TECHNOLOGY 2024; 393:130057. [PMID: 37984669 DOI: 10.1016/j.biortech.2023.130057] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/11/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
A novel vertical rotating microalgae-bacteria symbiotic biofilm reactor was built to treat the mixed wastewater containing municipal and soybean soaking wastewater. The reactor was operated in both sequential batch and semi-continuous modes. Under the sequential batch operation mode, the maximum removal rates for Chemical Oxygen Demand (COD), Total Nitrogen (TN), Total Phosphorus (TP), and Ammonia Nitrogen (NH4+-N) of the mixed wastewater were 95.6 %, 96.1 %, 97.6 %, and 100 %, respectively. During the semi-continuous operation, the water discharge indices decreased gradually and eventually stabilized. At stabilization, the removal rates of COD, TN, and NH4+-N achieved 98 %, 95 %, and 99.9 %, respectively. The maximum biomass productivity of the biofilm was 2.69 g·m-2·d-1. Additionally, the carbohydrate, protein and lipid comprised approximately 22 %, 51 % and 10 % of the dry weight of Chlorella. This study demonstrates the great potential of the microalgae-bacteria symbiotic biofilm system to treat food and domestic wastewater while harvesting microalgal biomass.
Collapse
Affiliation(s)
- Mingran Yu
- School of Energy Science and Engineering, University of Science and Technology of China, China; Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Li Wang
- School of Energy Science and Engineering, University of Science and Technology of China, China; Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Pingzhong Feng
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China.
| | - Zhongming Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Shunni Zhu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| |
Collapse
|
10
|
Wang M, Ye X, Bi H, Shen Z. Microalgae biofuels: illuminating the path to a sustainable future amidst challenges and opportunities. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:10. [PMID: 38254224 PMCID: PMC10804497 DOI: 10.1186/s13068-024-02461-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024]
Abstract
The development of microalgal biofuels is of significant importance in advancing the energy transition, alleviating food pressure, preserving the natural environment, and addressing climate change. Numerous countries and regions across the globe have conducted extensive research and strategic planning on microalgal bioenergy, investing significant funds and manpower into this field. However, the microalgae biofuel industry has faced a downturn due to the constraints of high costs. In the past decade, with the development of new strains, technologies, and equipment, the feasibility of large-scale production of microalgae biofuel should be re-evaluated. Here, we have gathered research results from the past decade regarding microalgae biofuel production, providing insights into the opportunities and challenges faced by this industry from the perspectives of microalgae selection, modification, and cultivation. In this review, we suggest that highly adaptable microalgae are the preferred choice for large-scale biofuel production, especially strains that can utilize high concentrations of inorganic carbon sources and possess stress resistance. The use of omics technologies and genetic editing has greatly enhanced lipid accumulation in microalgae. However, the associated risks have constrained the feasibility of large-scale outdoor cultivation. Therefore, the relatively controllable cultivation method of photobioreactors (PBRs) has made it the mainstream approach for microalgae biofuel production. Moreover, adjusting the performance and parameters of PBRs can also enhance lipid accumulation in microalgae. In the future, given the relentless escalation in demand for sustainable energy sources, microalgae biofuels should be deemed a pivotal constituent of national energy planning, particularly in the case of China. The advancement of synthetic biology helps reduce the risks associated with genetically modified (GM) microalgae and enhances the economic viability of their biofuel production.
Collapse
Affiliation(s)
- Min Wang
- Institute of Agricultural Remote Sensing and Information, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China.
| | - Xiaoxue Ye
- Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, 572025, China
| | - Hongwen Bi
- Institute of Agricultural Remote Sensing and Information, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Zhongbao Shen
- Grass and Science Institute of Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China.
| |
Collapse
|
11
|
Zhang JT, Wang JX, Liu Y, Zhang Y, Wang JH, Chi ZY, Kong FT. Microalgal-bacterial biofilms for wastewater treatment: Operations, performances, mechanisms, and uncertainties. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167974. [PMID: 37884155 DOI: 10.1016/j.scitotenv.2023.167974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/28/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023]
Abstract
Microalgal-bacterial biofilms have been increasingly considered of great potential in wastewater treatment due to the advantages of microalgal-bacterial synergistic pollutants removal/recovery, CO2 sequestration, and cost-effective biomass-water separation. However, such advantages may vary widely among different types of microalgal-bacterial biofilms, as the biofilms could be formed on different shapes and structures of attachment substratum, generating "false hope" for certain systems in large-scale wastewater treatment if the operating conditions and pollutants removal properties are evaluated based on the general term "microalgal-bacterial biofilm". This study, therefore, classified microalgal-bacterial biofilms into biofilms formed on 2D substratum, biofilms formed on 3D substratum, and biofilms formed without substratum (i.e. microalgal-bacterial granular sludge, MBGS). Biofilms formed on 2D substratum display higher microalgae fractions and nutrients removal efficiencies, while the adopted long hydraulic retention times were unacceptable for large-scale wastewater treatment. MBGS are featured with much lower microalgae fractions, most efficient pollutants removal, and acceptable retention times for realistic application, yet the feasibility of using natural sunlight should be further explored. 3D substratum systems display wide variations in operating conditions and pollutants removal properties because of diversified substratum shapes and structures. 2D and 3D substratum biofilms share more common in eukaryotic and prokaryotic microbial community structures, while MGBS biofilms are more enriched with microorganisms favoring EPS production, biofilm formation, and denitrification. The specific roles of stratified extracellular polymeric substances (EPS) in nutrients adsorption and condensation still require in-depth exploration. Nutrients removal uncertainties caused by microalgal-bacterial synergy decoupling under insufficient illumination, limited microbial community control, and possible greenhouse gas emission exacerbation arising from microalgal N2O generation were also indicated. This review is helpful for revealing the true potential of applying various microalgal-bacterial biofilms in large-scale wastewater treatment, and will provoke some insights on the challenges to the ideal state of synergistic pollutants reclamation and carbon neutrality via microalgal-bacterial interactions.
Collapse
Affiliation(s)
- Jing-Tian Zhang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Jian-Xia Wang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Yang Liu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Ying Zhang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Jing-Han Wang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China; Key Laboratory of Environment Controlled Aquaculture, Dalian Ocean University, Dalian 116023, PR China.
| | - Zhan-You Chi
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Fan-Tao Kong
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| |
Collapse
|
12
|
Díaz O, González E, Vera L, Fernández LJ, Díaz-Marrero AR, Fernández JJ. Recirculating packed-bed biofilm photobioreactor combined with membrane ultrafiltration as advanced wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27309-2. [PMID: 37140860 DOI: 10.1007/s11356-023-27309-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/25/2023] [Indexed: 05/05/2023]
Abstract
Packed-bed biofilm photobioreactor combined with ultrafiltration membrane was investigated for intensifying the process for secondary wastewater effluent treatment. Cylindrical glass carriers were used as supporting material for the microalgal-bacterial biofilm, which developed from indigenous microbial consortium. Glass carriers allowed adequate growth of the biofilm with limited suspended biomass. Stable operation was achieved after a start-up period of 1000 h, where supernatant biopolymer clusters were minimized and complete nitrification was observed. After that time, biomass productivity was 54 ± 18 mg·L-1·day-1. Green microalgae Tetradesmus obliquus and several strains of heterotrophic nitrification-aerobic denitrification bacteria and fungi were identified. Combined process exhibited COD, nitrogen and phosphorus removal rates of 56 ± 5%, 12 ± 2% and 20 ± 6%, respectively. Membrane fouling was mainly caused by biofilm formation, which was not effectively mitigated by air-scouring aided backwashing.
Collapse
Affiliation(s)
- Oliver Díaz
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Facultad de Ciencias, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez s/n, 38206, La Laguna, Spain.
| | - Enrique González
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Facultad de Ciencias, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez s/n, 38206, La Laguna, Spain
| | - Luisa Vera
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Facultad de Ciencias, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez s/n, 38206, La Laguna, Spain
| | - Luis Javier Fernández
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Facultad de Ciencias, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez s/n, 38206, La Laguna, Spain
| | - Ana R Díaz-Marrero
- Instituto de Productos Naturales y Agrobiología (IPNA)-CSIC, Avenida Astrofísico Francisco Sánchez 3, 38206, La Laguna, Spain
- Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206, La Laguna, Spain
| | - José J Fernández
- Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206, La Laguna, Spain
- Departamento de Química Orgánica, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206, La Laguna, Spain
| |
Collapse
|
13
|
Ji C, Wang H, Cui H, Zhang C, Li R, Liu T. Characterization and evaluation of substratum material selection for microalgal biofilm cultivation. Appl Microbiol Biotechnol 2023; 107:2707-2721. [PMID: 36922440 DOI: 10.1007/s00253-023-12475-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023]
Abstract
Biofilm cultivation is considered a promising method to achieve higher microalgae biomass productivity with less water consumption and easier harvest compared to conventional suspended cultivation. However, studies focusing on the selection of substratum material and optimization of the growth of certain microalgae species on specific substratum are limited. This study investigated the selection of membranous and fabric fiber substrata for the attachment of unicellular microalgae Scenedesmus dimorphus and filamentous microalgae Tribonema minus in biofilm cultivation. The results indicated that both algal species preferred hydrophilic membranous substrata and nitrate cellulose/cellulose acetate membrane (CN-CA) was selected as a suitable candidate on which the obtained biomass yields were up to 10.24 and 7.81 g m-2 day-1 for S. dimorphus and T. minus, respectively. Furthermore, high-thread cotton fiber (HCF) and low-thread polyester fiber (LPEF) were verified as the potential fabric fiber substrata for S. dimorphus (5.42 g m-2 day-1) and T. minus (5.49 g m-2 day-1) attachment, respectively. The regrowth of microalgae biofilm cultivation strategy was applied to optimize the algae growth on the fabric fiber substrata, with higher biomass density and shear resistibility achieved for both algal species. The present data highlight the importance to establish the standards for selection the suitable substratum materials in ensuring the high efficiency and sustainability of the attached microalgal biomass production. KEY POINTS: • CN-CA was suitable membranous substratum candidate for algal biofilm cultivation. • HCF and LPEF were potential fabric fiber substrata for S. dimorphus and T. minus. • Regrowth biofilm cultivation was effective in improving algal biomass and attachment.
Collapse
Affiliation(s)
- Chunli Ji
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Hui Wang
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, Shandong, China
| | - Hongli Cui
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Chunhui Zhang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Runzhi Li
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| | - Tianzhong Liu
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, Shandong, China.
| |
Collapse
|
14
|
Dong H, Liu W, Zhang H, Wang Z, Feng F, Zhou L, Duan H, Xu T, Li X, Ma J. Enhanced biomass production and wastewater treatment in attached co-culture of Chlorella pyrenoidosa with nitrogen-fixing bacteria Azotobacter beijerinckii. Bioprocess Biosyst Eng 2023; 46:707-716. [PMID: 36829077 DOI: 10.1007/s00449-023-02855-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/13/2023] [Indexed: 02/26/2023]
Abstract
Algae-bacteria symbiosis can promote the growth of microalgae and improve the efficiency of wastewater treatment. Attached culture is an efficient culture technique for microalgae, with benefits of high yield, low water consumption and easy harvesting. However, the promoting effects of bacteria on microalgae in attached culture are still unclear. In this study, different forms of a nitrogen-fixing bacteria, Azotobacter beijerinckii (including bacteria supernatant, live bacteria, and broken bacteria), were co-cultured with Chlorella pyrenoidosa in an attached culture system using wastewater as the culture medium. The results showed that the broken A. beijerinckii form had the best growth promotion effect on C. pyrenoidosa. Compared with the pure algae culture, the biomass of C. pyrenoidosa increased by 71.8% and the protein increased by 28.2%. The live bacteria form had the best effect on improving the efficiency of wastewater treatment by C. pyrenoidosa, with the COD, PO43- and NH4+-N removal rates increased by 20.8%, 18.5% and 8.9%, respectively, in comparison with the pure algae culture. The attached co-culture mode promoted the growth of C. pyrenodisa better than the suspended co-culture mode. This research offers a new way for improving microalgae biomass and wastewater treatment by attached algae-bacteria symbiont.
Collapse
Affiliation(s)
- Haiwen Dong
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan, 250014, Shandong, China.,Faculty of Environmental Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China
| | - Wei Liu
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan, 250014, Shandong, China. .,Faculty of Environmental Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China.
| | - Hao Zhang
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan, 250014, Shandong, China
| | - Zhenhua Wang
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan, 250014, Shandong, China.,Faculty of Environmental Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China
| | - Fei Feng
- Shandong Tiantai Environmental Technology Co. LTD, Jinan, 250101, Shandong, China
| | - Lixiu Zhou
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan, 250014, Shandong, China.,Faculty of Environmental Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China
| | - Huijie Duan
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan, 250014, Shandong, China.,Faculty of Environmental Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China
| | - Tongtong Xu
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan, 250014, Shandong, China.,Faculty of Environmental Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China
| | - Xiaomeng Li
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan, 250014, Shandong, China.,Faculty of Environmental Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China
| | - Junjian Ma
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan, 250014, Shandong, China
| |
Collapse
|
15
|
Wang Y, Zhang X, Guan L, Jiang Z, Gao X, Hao S, Zhang X. A novel method to harvest microalgae biofilms by interfacial interaction. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
16
|
Yu Z, Hou Q, Liu M, Xie Z, Ma M, Chen H, Pei H. From lab to application: Cultivating limnetic microalgae in seawater coupled with wastewater for biodiesel production on a pilot scale. WATER RESEARCH 2023; 229:119471. [PMID: 36535089 DOI: 10.1016/j.watres.2022.119471] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
The technology of cultivating salt-tolerant limnetic microalgae in seawater reduces the freshwater demand and costs of biodiesel production. However, all current trials still occur on the bench scale, and efforts for pilot-scale operation are urgently needed. This study firstly optimised the diameter of the photobioreactors (PBRs) to 0.2 m, as the single module to produce lipid-rich Golenkinia sp. SDEC-16 because of the better algal growth and light attenuation in the PBRs, and then established a 1000 L algal cultivation system. In a medium of seawater supplemented with monosodium glutamate wastewater at a ratio of 1:1000 (S-MSGW), the biomass productivity was 0.26 g/L/d, which was approaching the 0.30 g/L/d obtained in BG11, and the lipid productivity (98.99 mg/L/d) was doubled in comparison to growth in BG11. C16-C18 accounted for more than 98% of the total fatty acid in S-MSGW, and the biodiesel properties also met the biodiesel standards. The input cost of the biodiesel in this pilot-scale system was estimated to be 2.2 $/kg. When considering the carbon reduction and diversified application of the biomass, Golenkinia sp. would annually capture 186.77 kg/m3 PBR of CO2, and yield an output-to-input ratio (OIR) of 3.4 in S-MSGW, higher than the 2.8 in BG11.
Collapse
Affiliation(s)
- Ze Yu
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan 250061, China
| | - Qingjie Hou
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan 250061, China
| | - Mingyan Liu
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan 250061, China
| | - Zhen Xie
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan 250061, China
| | - Meng Ma
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan 250061, China
| | - Huiying Chen
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan 250061, China
| | - Haiyan Pei
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan 250061, China; Institute of Eco-Chongming (IEC), Shanghai 202162, China.
| |
Collapse
|
17
|
Yang Y, Ge S, Pan Y, Qian W, Wang S, Zhang J, Zhuang LL. Screening of microalgae species and evaluation of algal-lipid stimulation strategies for biodiesel production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159281. [PMID: 36216060 DOI: 10.1016/j.scitotenv.2022.159281] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/20/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Microalgae is considered an alternative source for biodiesel production producing renewable, sustainable and carbon-neutral energy. Microalgae property changes among species, which determines the efficiency of biodiesel production. Besides the lipid content evaluation, multi-principles (including high lipid productivity, high biomass yield, pollution resistance and desired fatty acid, etc.) for superior oil-producing species screening was proposed in this review and three microalgae species (Chlorella vulgaris, Scenedesmus obliquus and Mychonastes afer) with high bio-lipid producing prospect were screened out based on big data digging and analysis. The multilateral strategies for algal-lipid stimulating were also compared, among which, nutrient restriction, temperature control, heterotrophy and chemicals addition showed high potential in enhancing lipid accumulation; while electromagnetic field showed little effect. Interestingly, it was found that the lipid accumulation was more sensitive to nitrogen (N)-limitation other than phosphorus (P). Nutrient restriction, salinity stress etc. enhanced lipid accumulation by creating a stressed environment. Hence, optimum conditions (e.g. N:15-35 mg/L and P:4-16 mg/L) should be set to balance the lipid accumulation and biomass growth, and further guarantee the algal-lipid productivity. Otherwise, two-step cultivation could be applied during all the stressed stimulation. Different from lab study, effectiveness, operability and economy should be all considered for stimulation strategy selection. Nutrient restriction, temperature control and heterotrophy were highly feasible after the multidimensional evaluation.
Collapse
Affiliation(s)
- Yanan Yang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse and Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Shuhan Ge
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse and Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Yitong Pan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse and Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Weiyi Qian
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse and Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Shengnan Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse and Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Jian Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; Shandong Key Laboratory of Water Pollution Control and Resource Reuse and Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Lin-Lan Zhuang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse and Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
18
|
Li C, Wang JH, Yu C, Zhang JT, Chi ZY, Zhang Q. Growth-promoting effects of phytohormones on capillary-driven attached Chlorella sp. biofilm. BIORESOURCE TECHNOLOGY 2022; 364:128117. [PMID: 36244605 DOI: 10.1016/j.biortech.2022.128117] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Using low strength wastewater for microalgae cultivation is challenged by slow growth and biomass harvesting issue in suspended systems, and growth-promoting effects of phytohormones at currently recommended dosages could neither obtain high enough biomass concentrations nor economic feasibility. This study aims to solve the issues of slow growth, biomass harvest, and phytohormone costs altogether by supplementing low dosage phytohormones in an improved capillary-driven attached cultivation device. The device displayed nutrients-condensing properties, and dosages of indole acetic acid (IAA), 6-benzylaminopurine (6-BA), and salicylic acid (SA) for highest microalgal growth were respectively 10-6 M, 10-6 M, and 10-7 M, being at least one order of magnitude lower than in suspended cultures. SA was most effective in growth-promoting (up to 7.0 g/m2 biomass density) and nutrients uptake (up to 98.6 % from the bulk environment), while IAA was most effective in antioxidative defenses. These results provided new insights in cost-effective and harvesting-convenient microalgae production.
Collapse
Affiliation(s)
- Chi Li
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Jing-Han Wang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China; Key Laboratory of Environment Controlled Aquaculture, Dalian Ocean University, Dalian 116023, PR China.
| | - Chong Yu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Jing-Tian Zhang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Zhan-You Chi
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Qian Zhang
- Key Laboratory of Environment Controlled Aquaculture, Dalian Ocean University, Dalian 116023, PR China
| |
Collapse
|
19
|
Wicker RJ, Autio H, Daneshvar E, Sarkar B, Bolan N, Kumar V, Bhatnagar A. The effects of light regime on carbon cycling, nutrient removal, biomass yield, and polyhydroxybutyrate (PHB) production by a constructed photosynthetic consortium. BIORESOURCE TECHNOLOGY 2022; 363:127912. [PMID: 36087654 DOI: 10.1016/j.biortech.2022.127912] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
Microalgae can add value to biological wastewater treatment processes by capturing carbon and nutrients and producing valuable biomass. Harvesting small cells from liquid media is a challenge easily addressed with biofilm cultivation. Three experimental photobioreactors were constructed from inexpensive materials (e.g. plexiglass, silicone) for hybrid liquid/biofilm cultivation of a microalgal-bacterial consortia in aquaculture effluent. Three light regimes (full-spectrum, blue-white, and red) were implemented to test light spectra as a process control. High-intensity full-spectrum light caused photoinhibition and low biomass yield, but produced the most polyhydroxybutyrate (PHB) (0.14 mg g-1); a renewable bioplastic polymer. Medium-intensity blue-white light was less effective for carbon capture, but removed up to 82 % of phosphorus. Low-intensity red light was the only net carbon-negative regime, but increased phosphorus (+4.98 mg/L) in the culture medium. Light spectra and intensity have potential as easily-implemented process controls for targeted wastewater treatment, biomass production, and PHB synthesis using photosynthetic consortia.
Collapse
Affiliation(s)
- Rebecca J Wicker
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, 50130 Mikkeli, Finland.
| | - Heidi Autio
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1E, 70211 Kuopio, Finland
| | - Ehsan Daneshvar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, 50130 Mikkeli, Finland
| | - Binoy Sarkar
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Nanthi Bolan
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, United Kingdom
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, 50130 Mikkeli, Finland
| |
Collapse
|
20
|
Zhao G, Wang X, Hong Y, Liu X, Wang Q, Zhai Q, Zhang H. Attached cultivation of microalgae on rational carriers for swine wastewater treatment and biomass harvesting. BIORESOURCE TECHNOLOGY 2022; 351:127014. [PMID: 35307525 DOI: 10.1016/j.biortech.2022.127014] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
Attachment effects of six carrier materials on the cultivation of high-value microalga Scenedesmus sp. LX1 in diluted swine wastewater were investigated. The results showed that when the initial algal densities were 5×105 cells/mL and 1×106 cells/mL in sterilized wastewater with 20-fold dilution, the biomass of microalgae attaching to geotextile was the highest. The contact angle and surface structure of the material affected the attachment of microalgae. Further, among the four dilutions, the highest attached biomass on geotextile was 414.47 mg/L in the sterilized wastewater at 20-fold, but the pollutants removal rate and attached biomass were higher in the non-sterile wastewater in the other three dilutions (original wastewater, 5-fold, 10-fold). Next, the microalgae were able to remove pollutants with the highest removal rates of COD, TN, NH4+-N and TP reaching to 86.92%, 60.75%, 71.81% and 96.13%. Moreover, the microalga was found to accumulate high-value products especially protein as high as 44.57%.
Collapse
Affiliation(s)
- Guangpu Zhao
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Xiaoyan Wang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yu Hong
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Xiaoya Liu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Qiao Wang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Qingyu Zhai
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Hongkai Zhang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
21
|
Singh V, Mishra V. Exploring the effects of different combinations of predictor variables for the treatment of wastewater by microalgae and biomass production. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108129] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Magalhães IB, Ferreira J, de Siqueira Castro J, Assis LRD, Calijuri ML. Technologies for improving microalgae biomass production coupled to effluent treatment: A life cycle approach. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102346] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
23
|
Huang J, Chu R, Chang T, Cheng P, Jiang J, Yao T, Zhou C, Liu T, Ruan R. Modeling and improving arrayed microalgal biofilm attached culture system. BIORESOURCE TECHNOLOGY 2021; 331:124931. [PMID: 33812139 DOI: 10.1016/j.biortech.2021.124931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 06/12/2023]
Abstract
A microalgal biofilm-attached-system is an alternative cultivation method, that offers potential advantages of improved biomass productivity, efficient harvesting, and water saving. These biofilm systems have been widely tested and utilized for microalgal biomass production and wastewater treatment. This research a microalgal growth model for the biofilm attached culture system has been developed and experimentally validated, both, in single and arrayed biofilm systems. It has been shown that the model has the capability to accurately describe microalgae growth. Moreover, via the model simulation, it was observed that system structural parameters, light dilution rate, and light intensity significantly affected the culture performance. The limitations, and improvement aspects of the model, are also discussed in this study. To our knowledge, this is the first time that a mathematical model for an arrayed-biofilm-attached-system has been developed and validated. This model will certainly be helpful in the design, improvement, optimization, and evaluation of the biofilm-attached-systems.
Collapse
Affiliation(s)
- Jianke Huang
- Institute of Marine Biotechnology and Bioresource Utilization, College of Oceanography, Hohai University, Nanjing, Jiangsu 213022, China
| | - Ruirui Chu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Ting Chang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Pengfei Cheng
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Jingshun Jiang
- Institute of Marine Biotechnology and Bioresource Utilization, College of Oceanography, Hohai University, Nanjing, Jiangsu 213022, China
| | - Ting Yao
- Institute of Marine Biotechnology and Bioresource Utilization, College of Oceanography, Hohai University, Nanjing, Jiangsu 213022, China
| | - Chengxu Zhou
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Tianzhong Liu
- Key Laboratory of Biofuels, Key Laboratory of Shandong Energy Biological Genetic Resources, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Roger Ruan
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota-Twin Cities, Saint Paul, MN 55108, USA.
| |
Collapse
|
24
|
Astaxanthin as a microalgal metabolite for aquaculture: A review on the synthetic mechanisms, production techniques, and practical application. ALGAL RES 2021. [DOI: 10.1016/j.algal.2020.102178] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
25
|
Substrate properties as controlling parameters in attached algal cultivation. Appl Microbiol Biotechnol 2021; 105:1823-1835. [PMID: 33564919 DOI: 10.1007/s00253-021-11127-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/06/2021] [Accepted: 01/19/2021] [Indexed: 10/22/2022]
Abstract
There is growing interest in attached algae cultivation systems because they could provide a more cost- and energy-efficient alternative to planktonic (suspended algae) cultivation systems for many applications. However, attached growth systems have been far less studied than planktonic systems and have largely emphasized algae strains of most interest for biofuels. New algal biorefinery pathways have assessed the commercial potentials of algal biomass beyond biofuel production and placed more emphasis on value-added products from that biomass. Therefore, algal strain selection criteria and biomass cultivation methods need to be updated to include additional strains for improved efficiency. One possible way of improving attached cultivation systems is through engineering substrate surface characteristics to boost algal adhesion and enable strain selective algal colonization and growth. This review explores the effect of substrate chemical and topographical characteristics on the cultivation of attached algae. It also highlights the importance of considering algal community structure and attachment mechanisms in investigating attached algae systems using the example of filamentous algae found in algal turf scrubber (ATS™) systems. KEY POINTS : • Attached algal cultivation is a promising alternative to planktonic cultivation. • Performance increase results from tuning surface qualities of attachment substrates. • Attachment adaptation of periphytic algae has innate potential for cultivation.
Collapse
|
26
|
Mohsenpour SF, Hennige S, Willoughby N, Adeloye A, Gutierrez T. Integrating micro-algae into wastewater treatment: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 752:142168. [PMID: 33207512 DOI: 10.1016/j.scitotenv.2020.142168] [Citation(s) in RCA: 208] [Impact Index Per Article: 69.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 05/05/2023]
Abstract
Improving the ecological status of water sources is a growing focus for many developed and developing nations, in particular with reducing nitrogen and phosphorus in wastewater effluent. In recent years, mixotrophic micro-algae have received increased interest in implementing them as part of wastewater treatment. This is based on their ability to utilise organic and inorganic carbon, as well as inorganic nitrogen (N) and phosphorous (P) in wastewater for their growth, with the desired results of a reduction in the concentration of these substances in the water. The aim of this review is to provide a critical account of micro-algae as an important step in wastewater treatment for enhancing the reduction of N, P and the chemical oxygen demand (COD) in wastewater, whilst utilising a fraction of the energy demand of conventional biological treatment systems. Here, we begin with an overview of the various steps in the treatment process, followed by a review of the cellular and metabolic mechanisms that micro-algae use to reduce N, P and COD of wastewater with identification of when the process may potentially be most effective. We also describe the various abiotic and biotic factors influencing micro-algae wastewater treatment, together with a review of bioreactor configuration and design. Furthermore, a detailed overview is provided of the current state-of-the-art in the use of micro-algae in wastewater treatment.
Collapse
Affiliation(s)
- Seyedeh Fatemeh Mohsenpour
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Sebastian Hennige
- School of Geosciences, The King's Buildings, University of Edinburgh, Edinburgh EH9 3FE, UK
| | - Nicholas Willoughby
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Adebayo Adeloye
- Institute for Infrastructure and Environment, School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Tony Gutierrez
- Institute of Mechanical, Process and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| |
Collapse
|