1
|
Palandi ZK, Taghavijeloudar M. Enhancing microalgae-based biofuels production, wastewater treatment and bio-products generation by synergistic effect of iron and zinc addition to real municipal wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122350. [PMID: 39255574 DOI: 10.1016/j.jenvman.2024.122350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/30/2024] [Accepted: 08/30/2024] [Indexed: 09/12/2024]
Abstract
The feasibility of microalgae-based biofuel production is still unclear due to the high cost and energy consumption. In order to be competitive with traditional fuels, the price per unit biofuel produced should be reduced by improving microalgal cells quality for higher biofuels productivity as well as enhancing microalgae other advantages such as wastewater treatment (WWT) and CO2 bio-fixation. In this research, the synergistic effect of iron (Fe) and zinc (Zn) addition to municipal wastewater (MWW) on Chlorella sorokiniana Pa.91 performance was investigated in terms of biomass productivity, WWT, bio-products generation and biofuel quality. According to the result, maximum biomass concentration of 1.1, 1.49, 1.36 and 1.9 mg/L were achieved after 10 days C. sorokiniana cultivation in MWW before and after addition of Fe (9 mg/L), Zn (1 mg/L) and combined Zn/Fe (6/0.5 mg/L), respectively. It was observed that the nutrients uptake ability of microalgal cells improved by pre-treatment with Fe/Zn, as the mass balance of COD, NH4 and PO43- increased from 104.5, 13.6 and 2.9 to 111.6, 16.6 and 3.78 mg per 1 g C. sorokiniana, respectively. By adding Fe/Zn, the lipid content increased from 25 to 33 % CDW, while, no significant changes were observed in the protein and carbohydrate content. The results revealed that the fatty acid composition (i.e. SFA and MUFA content) and biofuel quality of C. sorokiniana remarkability enhanced after Fe/Zn supplementation. Overall, our finding suggested that MWW enrichment with combined Fe and Zn at an appropriate dosage is a promising approach for improving microalgae performance in particular increasing biofuel production quantity and quality.
Collapse
Affiliation(s)
- Zahra Khodabakhshi Palandi
- Department of Environmental Engineering, Faculty of Civil Engineering, Babol Noshirvani University of Technology, 47148-7313, Babol, Iran
| | - Mohsen Taghavijeloudar
- Department of Civil and Environmental Engineering, Seoul National University, 151-744, Seoul, South Korea.
| |
Collapse
|
2
|
Maia C, Pôjo V, Tavares T, Pires JCM, Malcata FX. Surfactant-Mediated Microalgal Flocculation: Process Efficiency and Kinetic Modelling. Bioengineering (Basel) 2024; 11:722. [PMID: 39061804 PMCID: PMC11274027 DOI: 10.3390/bioengineering11070722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/09/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024] Open
Abstract
Microalgae are a valuable source of lipids, proteins, and pigments, but there are challenges in large-scale production, especially in harvesting. Existing methods lack proven efficacy and cost-effectiveness. However, flocculation, an energy-efficient technique, is emerging as a promising solution. Integrating surfactants enhances microalgal harvesting and disruption simultaneously, reducing processing costs. This study investigated cetyltrimethylammonium bromide (CTAB), dodecyltrimethylammonium bromide (DTAB), and sodium dodecyl sulphate (SDS) for harvesting Tetraselmis sp. strains (75LG and 46NLG). CTAB exhibits superior results, with 88% harvesting efficiency at 1500 and 2000 mg L-1 for 75LG and 46NLG, respectively, for 60 min of sedimentation-thus being able to reduce the operating time. Beyond evaluating harvesting efficiency, our study explored the kinetics of the process; the modified Gompertz model led to the best fit. Furthermore, the largest kinetic constants were observed with CTAB, thus highlighting its efficacy in optimising the microalgal harvesting process. With the incorporation of the suggested enhancements, which should be addressed in future work, CTAB could hold the potential to optimise microalgal harvesting for cost-effective and sustainable large-scale production, eventually unlocking the commercial potential of microalgae for biodiesel production.
Collapse
Affiliation(s)
- Carolina Maia
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (C.M.); (V.P.); (T.T.); (F.X.M.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| | - Vânia Pôjo
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (C.M.); (V.P.); (T.T.); (F.X.M.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| | - Tânia Tavares
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (C.M.); (V.P.); (T.T.); (F.X.M.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| | - José C. M. Pires
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (C.M.); (V.P.); (T.T.); (F.X.M.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| | - Francisco Xavier Malcata
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (C.M.); (V.P.); (T.T.); (F.X.M.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
3
|
Wang J, Yin L, Liu W, Shi K, Zhang Y, He H, Yang S, Ni L, Li S. Effect of surfactant's charge properties on behavior, physiology, and biochemistry and the release of microcystins of Microcystis aeruginosa. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121232. [PMID: 38801804 DOI: 10.1016/j.jenvman.2024.121232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Surfactant pollution is escalatitheng in eutrophic waters, but the effect of surfactant charge properties on the physiological and biochemical properties of toxin-producing microalgae remains inadequately explored. To address this gap, this study explores the effects and mechanisms of three common surfactants-cetyltrimethylammonium bromide (CTAB, cationic), sodium dodecyl sulfate (SDS, anionic), and Triton X-100 (nonionic)-found in surface waters, on the agglomeration behavior, physiological indicators, and Microcystin-LR (MC-LR) release of Microcystis aeruginosa (M. aeruginosa) by using UV-visible spectroscope, Malvern Zetasizer, fluorescence spectrometer, etc. Results suggest that charge properties significantly affect cyanobacterial aggregation and cellular metabolism. The CTAB-treated group demonstrates a ∼5.74 and ∼9.74 times higher aggregation effect compared to Triton X-100 and SDS (300 mg/L for 180 min) due to strong electrostatic attraction. Triton X-100 outperforms CTAB and SDS in polysaccharide extraction, attributed to its higher water solubility and lower critical micelle concentration. CTAB stimulates cyanobacteria to secrete proteins, xanthohumic acid, and humic acids to maintain normal physiological cells. Additionally, the results of SEM and ion content showed that CTAB damages the cell membrane, resulting in a ∼90% increase in the release of intracellular MC-LR without cell disintegration. Ionic analyses confirm that all three surfactants alter cell membrane permeability and disrupt ionic metabolic pathways in microalgae. This study highlights the relationship between the surface charge properties of typical surfactants and the dispersion/agglomeration behavior of cyanobacteria. It provides insights into the impact mechanism of exogenous surfactants on toxic algae production in eutrophic water bodies, offering theoretical references for managing surfactant pollution and treating algae blooms.
Collapse
Affiliation(s)
- Juan Wang
- School of Environment, Nanjing Normal University, Nanjing, 210023, China.
| | - Li Yin
- School of Environment, Nanjing Normal University, Nanjing, 210023, China.
| | - Wenjie Liu
- Zhongshan Ecological Technology Jiangsu Co., Ltd., Nanjing, 210019, China.
| | - Kaipian Shi
- School of Environment, Nanjing Normal University, Nanjing, 210023, China.
| | - Yong Zhang
- Department of Geological Sciences, University of Alabama, Tuscaloosa, AL, 35487, USA.
| | - Huan He
- School of Environment, Nanjing Normal University, Nanjing, 210023, China.
| | - Shaogui Yang
- School of Environment, Nanjing Normal University, Nanjing, 210023, China.
| | - Lixiao Ni
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, MOE, School of Environment, Hohai University, Nanjing, 210098, China.
| | - Shiyin Li
- School of Environment, Nanjing Normal University, Nanjing, 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, 210023, China.
| |
Collapse
|
4
|
Rizzo A, Ajò A, Kang H, De Cola L, Jesus B. Development of a new kappa-carrageenan hydrogel system to study benthic diatom vertical movements. PLoS One 2024; 19:e0297962. [PMID: 38603710 PMCID: PMC11008860 DOI: 10.1371/journal.pone.0297962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/15/2024] [Indexed: 04/13/2024] Open
Abstract
Benthic diatom vertical movement has been investigated mainly through indirect measurements based on chlorophyll a fluorescence and spectral reflectance signals. The presence of sediment hinders direct imaging and grazers activity renders the work under controlled conditions very difficult. This study provides a tool to study diatoms movement in a 3D hydrogel matrix. Synthetic and natural hydrogels were tested to find the best 3D transparent scaffold where diatoms could grow and freely move in all directions. Polyamidoamines (PAAm) hydrogels were no-cytocompatible and hyaluronic acid (HA) only allowed diatoms to survive for 2-days. Natural hydrogels made of gelatin/Na-alginate, Na-alginate and kappa-carrageenan (KC) were cytocompatible, with KC showing the best properties for diatom growth and movement on a long term (up to 2 months). Comparing Nitzschia spathulata, Gyrosigma limosum and Navicula phyllepta growth in liquid media vs in KC gels, we found that diatoms reached a significantly higher final biomass in the hydrogel condition. Hydrogels were also useful to isolate large size diatom species e.g., Nitzschia elongata, that did not survive in suspension. Finally, we showed three ways to study diatom species-specific movement in KC hydrogels: 1) controlled species mix; 2) natural diatom assemblages with grazers; and 3) natural diatom assemblages without grazers. With our system, single diatoms could be imaged, identified, and counted. In addition, different stimuli, e.g., light intensity and light composition can be applied and their effects on movement and physiology studied without being masked by sediment or impaired by meiofauna.
Collapse
Affiliation(s)
- Arianna Rizzo
- Institut des Substances et Organismes de la Mer–ISOMer UR 2160, Faculté des Sciences et des Techniques, Nantes University, Nantes, France
| | - Alessandro Ajò
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri, IRCCS, Milano, Italy
- Pharmaceutical Science Department, University of Milan, Milan, Italy
| | - Huixuan Kang
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri, IRCCS, Milano, Italy
- Pharmaceutical Science Department, University of Milan, Milan, Italy
| | - Luisa De Cola
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri, IRCCS, Milano, Italy
- Pharmaceutical Science Department, University of Milan, Milan, Italy
| | - Bruno Jesus
- Institut des Substances et Organismes de la Mer–ISOMer UR 2160, Faculté des Sciences et des Techniques, Nantes University, Nantes, France
| |
Collapse
|
5
|
Zou X, Zhao S, Xu K, Fang C, Shen Z, Yan C, Dong L, Qin Z, Zhao X, Zhao J, Liang X. Eco-friendly microalgae harvesting using lipid-cored particles with a comparative life-cycle assessment. BIORESOURCE TECHNOLOGY 2024; 392:130023. [PMID: 37972903 DOI: 10.1016/j.biortech.2023.130023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
This study proposed an innovative approach using lipid-cored particles (LCPs) aimed at addressing the efficiency, cost, and environmental impact challenges in microalgae harvesting. Cetyltrimethylammonium bromide (CTAB) and chitosan (CS) were used to modify LCPs and to optimize efficiency and investigate the mechanisms of harvesting with Chlorella vulgaris. Results showed that a maximum harvesting efficiency of 97.14 % was achieved using CS-LCPs. Zeta potential and microscopic images revealed the presence of embedded CS-LCPs within microalgal flocs. Fractal dimension data suggested looser aggregates of CS-LCPs and Chlorella vulgaris, corroborated by Excitation-emission matrices (EEM) analysis further confirmation the presence of bridging networks. Moreover, life cycle assessment of five harvesting methods pointed freshwater ecotoxicity potential (FEP) and terrestrial ecotoxicity potential (TEP) as major environmental impacts, mainly from flocculant use, carrier production, and electricity consumption. Notably, LCPs showed the lowest global warming potential (GWP) at 1.54 kg CO2 eq, offering a viable, low-carbon, cost-effective harvesting alternative.
Collapse
Affiliation(s)
- Xiaotong Zou
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an, 710048, China; School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an, 710048, China.
| | - Shaohua Zhao
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an, 710048, China
| | - Kaiwei Xu
- College of Computer Science and Technology, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Changqing Fang
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an, 710048, China; School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an, 710048, China.
| | - Zhou Shen
- School of Life and Environmental Sciences, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, China
| | - Chang Yan
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an, 710048, China
| | - Liming Dong
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an, 710048, China
| | - Zhaoyue Qin
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an, 710048, China
| | - Xinyue Zhao
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an, 710048, China
| | - Jiajia Zhao
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an, 710048, China
| | - Xiongbo Liang
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an, 710048, China
| |
Collapse
|
6
|
Huang KX, Vadiveloo A, Zhong H, Li C, Gao F. High-efficiency harvesting of microalgae enabled by chitosan-coated magnetic biochar. BIORESOURCE TECHNOLOGY 2023; 390:129860. [PMID: 37838019 DOI: 10.1016/j.biortech.2023.129860] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023]
Abstract
Magnetic flocculation which uses magnetic particles is an emerging technology for harvesting microalgae. However, the potential modification and use of cost-effective and sustainable biochar-based composites is still in its infancy. As such, this study aimed to compare the harvesting efficiency of peanut shell biochar (BC), biochar modified with FeCl3 (FeBC), and biochar dual-modified with chitosan and FeCl3 (CTS@FeBC) on microalgae. The results showed CTS@FeBC exhibited significantly higher microalgae harvesting efficiency compared to BC and FeBC. Both acidic and alkaline conditions were favorable for harvesting microalgae by CTS@FeBC. At pH 2 and pH 12, the harvesting efficiency reached 96.9% and 98.8% within 2 min, respectively. The primary adsorption mechanism of CTS@FeBC on microalgae mainly involved electrostatic attraction and sweeping flocculation. Furthermore, CTS@FeBC also showed good biocompatibility and reusability. This study clearly demonstrated a promising technique for microalgae harvesting using biochar-based materials, offering valuable insights and potential applications in sustainable bioresource management.
Collapse
Affiliation(s)
- Kai-Xuan Huang
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Eastern Institute of Technology, Ningbo 315200, China
| | - Ashiwin Vadiveloo
- Centre for Water, Energy and Waste, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Hua Zhong
- Eastern Institute of Technology, Ningbo 315200, China
| | - Chen Li
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China
| | - Feng Gao
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China.
| |
Collapse
|
7
|
Liu Z, Hao N, Hou Y, Wang Q, Liu Q, Yan S, Chen F, Zhao L. Technologies for harvesting the microalgae for industrial applications: Current trends and perspectives. BIORESOURCE TECHNOLOGY 2023; 387:129631. [PMID: 37544545 DOI: 10.1016/j.biortech.2023.129631] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Microalgae are emerging as a promising source for augmenting the supply of essential products to meet global demands in an environmentally sustainable manner. Despite the potential benefits of microalgae in industry, the high energy consumption for harvesting remains a significant obstacle. This review offers a comprehensive overview of microalgae harvesting technologies and their industrial applications, with particular emphasis on the latest advances in flocculation techniques. These cutting-edge methods have been applied to biodiesel production, food and nutraceutical processing, and wastewater treatment. Large-scale harvesting is still severely impeded by the high cost despite progress has been made in laboratory studies. In the future, cost-effective microalgal harvesting will rely on efficient resource utilization, including the use of waste materials and the reuse of media and flocculants. Additionally, precise regulation of biological metabolism will be necessary to overcome algal species-related limitations through the development of extracellular polymeric substance-induced flocculation technology.
Collapse
Affiliation(s)
- Zhiyong Liu
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Nahui Hao
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yuyong Hou
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Qing Wang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Qingling Liu
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Suihao Yan
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Fangjian Chen
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Lei Zhao
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, China.
| |
Collapse
|
8
|
Vickram S, Manikandan S, Deena SR, Mundike J, Subbaiya R, Karmegam N, Jones S, Kumar Yadav K, Chang SW, Ravindran B, Kumar Awasthi M. Advanced biofuel production, policy and technological implementation of nano-additives for sustainable environmental management - A critical review. BIORESOURCE TECHNOLOGY 2023; 387:129660. [PMID: 37573978 DOI: 10.1016/j.biortech.2023.129660] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023]
Abstract
This review article critically evaluates the significance of adopting advanced biofuel production techniques that employ lignocellulosic materials, waste biomass, and cutting-edge technology, to achieve sustainable environmental stewardship. Through the analysis of conducted research and development initiatives, the study highlights the potential of these techniques in addressing the challenges of feedstock supply and environmental impact and implementation policies that have historically plagued the conventional biofuel industry. The integration of state-of-the-art technologies, such as nanotechnology, pre-treatments and enzymatic processes, has shown considerable promise in enhancing the productivity, quality, and environmental performance of biofuel production. These developments have improved conversion methods, feedstock efficiency, and reduced environmental impacts. They aid in creating a greener and sustainable future by encouraging the adoption of sustainable feedstocks, mitigating greenhouse gas emissions, and accelerating the shift to cleaner energy sources. To realize the full potential of these techniques, continued collaboration between academia, industry representatives, and policymakers remains essential.
Collapse
Affiliation(s)
- Sundaram Vickram
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai 602 105. Tamil Nadu, India
| | - S Manikandan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai 602 105. Tamil Nadu, India
| | - S R Deena
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai 602 105. Tamil Nadu, India
| | - Jhonnah Mundike
- Department of Environmental Engineering, School of Mines & Mineral Sciences, The Copperbelt University, Riverside Jambo Drive, PO Box 21692, Kitwe, Zambia
| | - R Subbaiya
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P O Box 21692, Kitwe, Zambia
| | - N Karmegam
- PG and Research Department of Botany, Government Arts College (Autonomous), Salem 636007, Tamil Nadu, India
| | - Sumathi Jones
- Department of Pharmacology and Therapeutics, Sree Balaji Dental College and Hospital, BIHER, Chennai, India
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal 462044, India; Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah, 64001, Iraq
| | - Soon Woong Chang
- Department of Environmental Energy and Engineering, Kyonggi University Yeongtong-Gu, Suwon, Gyeonggi-Do 16227, Republic of Korea
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University Yeongtong-Gu, Suwon, Gyeonggi-Do 16227, Republic of Korea; Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602 105, Tamil Nadu, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| |
Collapse
|
9
|
Ahangar AK, Yaqoubnejad P, Divsalar K, Mousavi S, Taghavijeloudar M. Design a novel internally illuminated mirror photobioreactor to improve microalgae production through homogeneous light distribution. BIORESOURCE TECHNOLOGY 2023; 387:129577. [PMID: 37517708 DOI: 10.1016/j.biortech.2023.129577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
In this study, a novel internally illuminated mirror photobioreactor (IIM-PBR) was designed to improve microalgae biomass production through providing a homogenous light distribution in cultivation medium. The performance of the IIM-PBR was compared with internally illuminated control photobioreactor (IIC-PBR) and externally illuminated control photobioreactor (EIC-PBR) in terms of cell growth, wastewater treatment and bioproducts generation. Compared with the IIC-PBR and EIC-PBR, the IIM-PBR increased microalgae growth rate up to 60 % and 30%, respectively. Municipal wastewater treatment revealed that the IIM-PBR could significantly improve nutrients removal as the final removal efficiencies of 90%, 95% and 90% were obtained for nitrate, phosphate and COD, respectively. Moreover, the IIM-PBR increased the total bioproducts production by 89% and 46% compared to in the IIC-PBR and EIC-PBR, respectively. Based on the energy consumption calculation, the mirror's light-reflective properties of the IIM-PBR resulted in a significant reduction of total energy consumption (∼10 times).
Collapse
Affiliation(s)
- Alireza Khaleghzadeh Ahangar
- Department of Environmental Engineering, Faculty of Civil Engineering, Babol Noshirvani University of Technology, 47148-71167 Babol, Iran
| | - Poone Yaqoubnejad
- Department of Environmental Engineering, Faculty of Civil Engineering, Babol Noshirvani University of Technology, 47148-71167 Babol, Iran
| | - Keyhan Divsalar
- Faculty of Chemical Engineering, Babol Noshirvani University of Technology, 47148-71167 Babol, Iran
| | - Shokouh Mousavi
- Faculty of Chemical Engineering, Babol Noshirvani University of Technology, 47148-71167 Babol, Iran
| | - Mohsen Taghavijeloudar
- Department of Civil and Environmental Engineering, Seoul National University, 151-744 Seoul, South Korea.
| |
Collapse
|
10
|
Zhang H, Gao J, Zhao M, Wang Z, Li D, Wu Z, Zhang Y, Liu Y. The spread of different resistance genes fractions in nitrification system under chronic exposure to varying alkyl chain length benzalkyl dimethylammonium compounds. BIORESOURCE TECHNOLOGY 2023; 371:128588. [PMID: 36623575 DOI: 10.1016/j.biortech.2023.128588] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Benzalkyl dimethylammonium compounds (BACs) are generally applied as surfactants and disinfectants. In this study, the nitrification systems were exposed to different alkyl chain lengths (C12-C16) and different levels of BACs (0-5 mg/L), respectively, totally 120 days and to explore the chronic effect of BACs on resistance genes (RGs). RGs were classified into four fractions based on activated sludge properties. Ammonia oxidation performance were not significantly affected by BACs, whereas BACs increased the absolute abundance of most intracellular RGs in sludge (si-RGs). Under the exposure of BACs, extracellular RGs in water (we-RGs) showed a decrease trend and si-RGs tended to be converted to we-RGs. Tightly bound-Tyrosine side chain was significantly correlated with most we-RGs, and we-intI1 might contribute to the propagation of RGs. Therefore, the risk of transmission of different fractions of RGs in the nitrification system under the stress of BACs should be taken seriously.
Collapse
Affiliation(s)
- Haoran Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Jingfeng Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| | - Mingyan Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Zhiqi Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Dingchang Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Zejie Wu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Yi Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Ying Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
11
|
Zheng L, Ren M, Liu T, Ding A, Xie E. Base type determines the effects of nucleoside monophosphates on microalgae-bacteria symbiotic systems. CHEMOSPHERE 2023; 317:137943. [PMID: 36702408 DOI: 10.1016/j.chemosphere.2023.137943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 12/09/2022] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Microalgae are promising sources of clean energy. Bioflocculation by cocultured bacteria is an effective way to harvest microalgae. As a key foundation for microorganisms, phosphorus is theoretically effective in shaping microalgae production and flocculation. In this study, the impacts of 23 nucleoside monophosphates on Auxenochlorella pyrenoidosa growth, lipid synthesis, and self-settlement and on the symbiotic bacterial system were investigated. Adenosine monophosphate was the most effective in enhancing microalgae development (2.14-3.16 × 108 cells/mL) and lipid production (average 10.48%) and resulted in a low settling velocity. Samples were divided into two groups, purine and pyrimidine feeding, according to a random forest analysis (OOB = 0%, p < 0.001). Purine feeding resulted in the highest soluble extracellular protein and polysaccharide secretion (p < 0.01). KEGG ortholog count prediction of functional genes related to biofilm formation was conducted using PICRUSt2, and significant upregulation (FC ≥ 1.77, p < 0.05) of the extracellular polymeric substance formation functional group was observed in the adenosine and guanosine treatments. The symbiotic bacterial community structure differed substantially between purine- and pyrimidine-feeding systems. In summary, these results indicated that the effect of nucleoside monophosphates on the microalgae-bacteria system is determined by the base type (purine or pyrimidine) rather than the molecular structure (cyclic or noncyclic).
Collapse
Affiliation(s)
- Lei Zheng
- College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Mengli Ren
- Middle Reach Hydrology and Water Resource Bureau of YRCC, Shanxi, 030600, PR China
| | - Tingting Liu
- College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Aizhong Ding
- College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - En Xie
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, 100083, PR China; Engineering Research Center of Agricultural Water-Saving and Water Resources, Ministry of Education, China Agricultural University, Beijing, 100083, PR China.
| |
Collapse
|
12
|
Taghavijeloudar M, Yaqoubnejad P, Ahangar AK, Rezania S. A rapid, efficient and eco-friendly approach for simultaneous biomass harvesting and bioproducts extraction from microalgae: Dual flocculation between cationic surfactants and bio-polymer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158717. [PMID: 36108873 DOI: 10.1016/j.scitotenv.2022.158717] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Microalgal biomass harvesting and cell disruption are the main bottlenecks for downstream processing of microalgae such as high-value bioproducts extraction and biofuels production. In this study, we evaluated the performance of dual flocculation between cationic surfactants and bio-polymer of chitosan for simultaneous biomass harvesting and bioproducts extraction from Chlorella sorokiniana microalgae. First, the effects of individual natural flocculants of chitosan and two cationic surfactants: cetyltrimethylammonium bromide (CTAB) and dodecyltrimethylammonium bromide (DTAB) on biomass harvesting were studied. Next, the synergistic effect of dual flocculation between the cationic surfactants and chitosan on harvesting efficiency, time and flocculant dosage was investigated. Finally, we evaluated the potential of high value bioproducts extraction from microalgae after the individual and dual flocculation processes. Zeta potential analysis and microscopic images were employed to achieve mechanistic understanding. Maximum biomass harvesting efficiencies of 85 %, 88 % and 78 % were achieved using individual flocculants of chitosan, CTAB and DTAB, under their optimum dosages of 100, 400 and 4000 mg/L, respectively. A significant synergistic effect of dual flocculation between chitosan (C) and cationic surfactants on biomass harvesting efficiency (CTAB-C: 99 % and DTAB-C: 97 %), settling time (CTAB-C: 2 min and DTAB-C: 5 min) and optimum dosage of surfactants (CTAB-C: 100 mg/L and DTAB-C: 1000 mg/L) was observed. The synergistic effect was associated with multiple flocculation mechanisms of charge neutralization and bridging induced by cationic surfactants and chitosan, respectively. Furthermore, bioproducts recovery efficiencies of 12 %, 25 % and 15 % of cell dry weight were achieved for protein, carbohydrate and lipid, respectively by using dual flocculation of CTAB surfactant and chitosan at much lower dosage of 100 mg/L.
Collapse
Affiliation(s)
- Mohsen Taghavijeloudar
- Department of Civil and Environmental Engineering, Seoul National University, 151-744 Seoul, South Korea.
| | - Poone Yaqoubnejad
- Department of Environmental Engineering, Faculty of Civil Engineering, Babol Noshirvani University of Technology, 47148-7313 Babol, Iran.
| | - Alireza Khaleghzadeh Ahangar
- Department of Environmental Engineering, Faculty of Civil Engineering, Babol Noshirvani University of Technology, 47148-7313 Babol, Iran
| | - Shahabaldin Rezania
- Department of Environment and Energy, Sejong University, Seoul 05006, South Korea
| |
Collapse
|
13
|
Manimegalai S, Vickram S, Deena SR, Rohini K, Thanigaivel S, Manikandan S, Subbaiya R, Karmegam N, Kim W, Govarthanan M. Carbon-based nanomaterial intervention and efficient removal of various contaminants from effluents - A review. CHEMOSPHERE 2023; 312:137319. [PMID: 36410505 DOI: 10.1016/j.chemosphere.2022.137319] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/27/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Water treatment is a worldwide issue. This review aims to present current problems and future challenges in water treatments with the existing methodologies. Carbon nanotube production, characterization, and prospective uses have been the subject of considerable and rigorous research around the world. They have a large number of technical uses because of their distinct physical characteristics. Various catalyst materials are used to make carbon nanotubes. This review's primary focus is on integrated and single-treatment technologies for all kinds of drinking water resources, including ground and surface water. Inorganic non-metallic matter, heavy metals, natural organic matter, endocrine-disrupting chemicals, disinfection by-products and microbiological pollutants are among the contaminants that these treatment systems can remediate in polluted drinking water resources. Significant advances in the antibacterial and adsorption capabilities of carbon-based nanomaterials have opened up new options for excluding organic/inorganic and biological contaminants from drinking water in recent years. The advancements in multifunctional nanocomposites synthesis pave the possibility for their use in enhanced wastewater purification system design. The adsorptive and antibacterial characteristics of six main kinds of carbon nanomaterials are single-walled carbon nanotubes, multi-walled carbon nanotubes, graphene, graphene oxide, fullerene and single-walled carbon nanohorns. This review potentially addressed the essential metallic and polymeric nanocomposites, are described and compared. Barriers to use these nanoparticles in long-term water treatment are also discussed.
Collapse
Affiliation(s)
- Sengani Manimegalai
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Rampuram, Chennai, 600087, India
| | - Sundaram Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamil Nadu, India
| | - Santhana Raj Deena
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamil Nadu, India
| | - Karunakaran Rohini
- Unit of Biochemistry, Faculty of Medicine, AIMST University, Malaysia; Department of Bioinformatics, Saveetha School of Engineering, (Saveetha Institute of Medical and Technical Sciences) SIMATS, Chennai, 602 105, Tamil Nadu, India
| | - Sundaram Thanigaivel
- Department of Biotechnology, Faculty of Science & Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - S Manikandan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamil Nadu, India
| | - R Subbaiya
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P O Box 21692, Kitwe, Zambia
| | - N Karmegam
- PG and Research Department of Botany, Government Arts College (Autonomous), Salem, 636 007, Tamil Nadu, India.
| | - Woong Kim
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - M Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India.
| |
Collapse
|
14
|
A novel approach for microalgal cell disruption and bioproducts extraction using non-thermal atmospheric plasma (NTAP) technology and chitosan flocculation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Li J, Hao X, Gan W, van Loosdrecht MCM, Wu Y. Enhancing extraction of alginate like extracellular polymers (ALE) from flocculent sludge by surfactants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155673. [PMID: 35508248 DOI: 10.1016/j.scitotenv.2022.155673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 06/14/2023]
Abstract
Alginate like extracellular polymers (ALE) recovered from flocculent sludge has been identified as a kind of highly valuable biomaterials. However, the extraction protocols limit the production of biopolymers as ALE extracted from flocculent sludge is at a lower level, around 90-190 mg/g VSS. Under this circumstance, the eco-friendly and effective optimizations for the ALE extraction protocols are expected, and thus surfactants have gained an attention to enhancing the ALE extraction. With this study, different surfactants with different structures and chemical characteristics, such as sodium dodecyl sulfate (SDS), cetyltrimethylammonium bromide (CTAB) and octyl phenyl polyoxyethylene ether (Triton X-100), were experimented to improve the ALE extraction, and in turn the optimal conditions and the associated mechanisms were evaluated and figured out. The experimental results indicated that surfactants could enhance the ALE extraction but also improve the alginate purification of ALE. With the optimal dosage of surfactants, the ALE extraction increased from 124.1 mg/g VSS to about 222.8-281.9 mg/g VSS, and the alginate purify was at around 54%-70%, in which the efficiency of the ALE extraction was improved by 79.5%-127.2%. Among others, Triton X-100 had the best performance on improving the ALE extraction, followed by CTAB and SDS. The mechanisms of surfactants on enhancing the ALE extraction and improving the alginate purify can be attributed to: i) surfactants micelles, which can solubilize flocs and extracellular biopolymers; ii) similar structures of surfactants and ALE, which follows the rule of "like dissolves like"; iii) functional groups adsorption, which facilitates the ALE release from matrixes. In a word, the optimized extraction protocol by using surfactants can be effectively applied to extract ALE from flocculent sludge.
Collapse
Affiliation(s)
- Ji Li
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Beijing Advanced Innovation Centre of Future Urban Design, Beijing University of Civil Engineering & Architecture, Beijing 100044, PR China
| | - Xiaodi Hao
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Beijing Advanced Innovation Centre of Future Urban Design, Beijing University of Civil Engineering & Architecture, Beijing 100044, PR China.
| | - Wei Gan
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Beijing Advanced Innovation Centre of Future Urban Design, Beijing University of Civil Engineering & Architecture, Beijing 100044, PR China
| | - Mark C M van Loosdrecht
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Beijing Advanced Innovation Centre of Future Urban Design, Beijing University of Civil Engineering & Architecture, Beijing 100044, PR China; Dept. of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Yuanyuan Wu
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Beijing Advanced Innovation Centre of Future Urban Design, Beijing University of Civil Engineering & Architecture, Beijing 100044, PR China
| |
Collapse
|
16
|
Zhang S, Zhang L, Xu G, Li F, Li X. A review on biodiesel production from microalgae: Influencing parameters and recent advanced technologies. Front Microbiol 2022; 13:970028. [PMID: 35966657 PMCID: PMC9372408 DOI: 10.3389/fmicb.2022.970028] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/12/2022] [Indexed: 12/17/2022] Open
Abstract
Microalgae are the important part of carbon cycle in the nature, and they could utilize the carbon resource in water and soil efficiently. The abilities of microalgae to mitigate CO2 emission and produce oil with a high productivity have been proven. Hence, this third-generation biodiesel should be popularized. This review firstly introduce the basic characteristics and application fields of microalgae. Then, the influencing parameters and recent advanced technologies for the microalgae biodiesel production have been discussed. In influencing parameters for biodiesel production section, the factors of microalgae cultivation, lipid accumulation, microalgae harvesting, and lipid extraction have been summarized. In recent advanced technologies for biodiesel production section, the microalgae cultivation systems, lipid induction technologies, microalgae harvesting technologies, and lipid extraction technologies have been reviewed. This review aims to provide useful information to help future development of efficient and commercially viable technology for microalgae-based biodiesel production.
Collapse
Affiliation(s)
- Shiqiu Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, China
- School of Geography and Environment, Shandong Normal University, Jinan, China
| | - Lijie Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
- *Correspondence: Lijie Zhang,
| | - Geng Xu
- School of Geography and Environment, Shandong Normal University, Jinan, China
| | - Fei Li
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, China
| | - Xiaokang Li
- School of Environmental and Material Engineering, Yantai University, Yantai, China
- Xiaokang Li,
| |
Collapse
|
17
|
Pei H, Zhang L, Betenbaugh MJ, Jiang L, Lin X, Ma C, Yang Z, Wang X, Chen S, Lin WF. Highly efficient harvesting and lipid extraction of limnetic Chlorella sorokiniana SDEC-18 grown in seawater for microalgal biofuel production. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
18
|
Yaqoubnejad P, Rad HA, Taghavijeloudar M. Development a novel hexagonal airlift flat plate photobioreactor for the improvement of microalgae growth that simultaneously enhance CO 2 bio-fixation and wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 298:113482. [PMID: 34385116 DOI: 10.1016/j.jenvman.2021.113482] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
A novel hexagonal airlift flat plate (HAFP) photobioreactor was designed to improve microalgae growth rate and compared with traditional flat plate (TFP) photobioreactor. The computational fluid dynamics (CFD) simulation was used to determine hydrodynamic parameters and optimal aeration rate in the photobioreactors. Additionally, the capability of the HAFP photobioreactor to enhance microalgae based CO2 bio-fixation and wastewater treatment were investigated. The results of CFD simulation indicated that the HAFP photobioreactor could improve hydrodynamic parameters of turbulence kinetic energy (TKE), average fluid velocity, dead zone (DZ), and water shear stress (WSS) up to 78 %, 41 %, 44 % and 40 %, respectively, under optimal aeration rate of 0.6 vvm. The proposed HAFP photobioreactor showed a drastic improvement in microalgae growth (up to 61 %). The maximum CO2 removal of 53.8 % and bio-fixation of 0.85 g L-1 d-1 were achieved in the HAFP photobioreactor which were approximately 70 % more than that in the TFP photobioreactor. The results suggested that the HAFP photobioreactor could accelerate nutrients removal and achieve remarkably higher efficiencies of 91 %, 99 %, 97 % and 93 % of ammonia (NH3), nitrate (NO3-), phosphate (PO43-) and chemical oxygen demand (COD) within seven days of cultivation.
Collapse
Affiliation(s)
- Poone Yaqoubnejad
- Department of Environmental Engineering, Faculty of Civil Engineering, Babol Noshirvani University of Technology, 47148-7313, Babol, Iran
| | - Hassan Amini Rad
- Department of Environmental Engineering, Faculty of Civil Engineering, Babol Noshirvani University of Technology, 47148-7313, Babol, Iran.
| | - Mohsen Taghavijeloudar
- Department of Environmental Engineering, Faculty of Civil Engineering, Babol Noshirvani University of Technology, 47148-7313, Babol, Iran; Department of Civil and Environmental Engineering, Seoul National University, 151-744, Seoul, South Korea.
| |
Collapse
|
19
|
Liao X, Wang Y, Liao Y, You X, Yao L, Razaqpur AG. Effects of different surfactant properties on anti-wetting behaviours of an omniphobic membrane in membrane distillation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119433] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
Iasimone F, Seira J, Panico A, De Felice V, Pirozzi F, Steyer JP. Insights into bioflocculation of filamentous cyanobacteria, microalgae and their mixture for a low-cost biomass harvesting system. ENVIRONMENTAL RESEARCH 2021; 199:111359. [PMID: 34022232 DOI: 10.1016/j.envres.2021.111359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/22/2021] [Accepted: 05/16/2021] [Indexed: 06/12/2023]
Abstract
Cyanobacteria and microalgae are considered as interesting feedstocks for either the production of high value bio-based compounds and biofuels or wastewater treatment. Nevertheless, the high costs of production, mainly due to the harvesting process, hamper a wide commercialization of industrial cyanobacteria and microalgae based products. Recent studies have found in autoflocculation and bioflocculation promising spontaneous processes for a low-cost and environmentally sustainable cyanobacteria and microalgae biomass harvesting process. In the present work, bioflocculation process has been studied for three different inocula: filamentous cyanobacteria, microalgae and their mixture. Their cultivation has been conducted in batch mode using two different cultivation media: synthetic aqueous solution and urban wastewater. The removal of nutrients and flocculation process performance were monitored during the entire cultivation time. Results have proved that bioflocculation and sedimentation processes occur efficiently for filamentous cyanobacteria cultivated in synthetic aqueous solution, whereas such processes are less efficient in urban wastewater due to the specific characteristics of this medium that prevent bioflocculation to occur. Besides different efficiencies associated to cultivation media, this work highlighted that bioflocculation of sole microalgae is not as effective as when they are cultivated together with filamentous cyanobacteria.
Collapse
Affiliation(s)
- Floriana Iasimone
- Bioscience and Territory Department, University of Molise, C. da Fonte Lappone, 86090, Pesche, (IS), Italy
| | - Jordan Seira
- INRAE, Univ. Montpellier, LBE, 102 Avenue des Etangs, 11100, Narbonne, France
| | - Antonio Panico
- Department of Engineering, University of Campania L. Vanvitelli, Via Roma 29, Aversa, Italy.
| | - Vincenzo De Felice
- Bioscience and Territory Department, University of Molise, C. da Fonte Lappone, 86090, Pesche, (IS), Italy
| | - Francesco Pirozzi
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, 80125, Naples, Italy
| | | |
Collapse
|
21
|
Yan Y, Yang J, Zhu Z, Jin B, Zhu R, Li S. Enhancing performance evaluation and microbial community analysis of the biofilter for toluene removal by adding polyethylene glycol-600 into the nutrient solution. BIORESOURCE TECHNOLOGY 2021; 330:124954. [PMID: 33740583 DOI: 10.1016/j.biortech.2021.124954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
Polyethylene glycol-600 (PEG-600), as a carrier for slow release of organic substances, can improve the biocompatibility of packing fillers and the construction of biofilms. The gradient experiments were established to evaluate the feasibility of adding different content of PEG-600 to the biofilter for enhancing toluene removal. In particular, the evolution trend of microbial community embedded in packing fillers was measured by 16S rRNA-based gene sequencing. Results showed that the toluene removal efficiency of biofilter with 7.5% adding content of the PEG-600 was greatly improved, and the maximum elimination capacity of 152 g/(m3·h) was obtained. The introduction of PEG-600 enhanced the tolerance ability to withstand the transient impact loading and intensified the production of extracellular polymeric substances and bonding strength of biofilms. It should be noted that the abundance of Pseudomonas and Steroidobacter at genus level increased significantly. The microbial community evolved into a co-degradation system of toluene and PEG-600.
Collapse
Affiliation(s)
- Yuxi Yan
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Jiao Yang
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhongyang Zhu
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Boqiang Jin
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Rencheng Zhu
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Shunyi Li
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|