1
|
Guan S, Wu H, Lin W, Chen Y, Wang Z. Facile synthesis of amino-modified magnetic covalent organic framework for the efficient extraction and determination of anionic azo dyes in carbonated beverages. ANAL SCI 2024; 40:1301-1310. [PMID: 38573455 DOI: 10.1007/s44211-024-00561-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 03/12/2024] [Indexed: 04/05/2024]
Abstract
In this work, a novel magnetic covalent organic framework (COF (TpPa-NH2) @ Fe3O4) was prepared via two step by simple solvent method for the extraction of anionic azo dye residues in food. The as-prepared COF (TpPa-NH2) @ Fe3O4 nanocomposite was characterised by scanning electron microscope, transmission electron microscope, Fourier transform-infrared spectroscopy, X-ray diffraction and vibrating sample magnetometer. Before high-performance liquid chromatography with ultraviolet detection (HPLC-UV) determination, it was used as magnetic adsorbent for magnetic solid-phase extraction (MSPE) to extract and pre-concentrate three anionic azo dyes in carbonated beverage samples. The several key extraction and desorption parameters affecting the extraction recovery rate were investigated, including extraction time, pH of the solution, amount of material, adsorption time, elution solvent, pH of elution solvent, type of elution solvent, elution volume and elution time. Under optimised conditions, this method has good linearity between 5 and 500 μg L-1 (correlation coefficient > 0.9986). The limit of detection was 2.3-3.4 μg L-1. The recoveries of the samples were between 87.5 and 96.9%, and the relative standard deviation lower than 4.6%. The developed method has broad application prospects for the analysis of anionic azo dyes in carbonated beverages.
Collapse
Affiliation(s)
- Shuping Guan
- College of New Energy and Materials Engineering, Shanxi Electronic Science and Technology University, Linfen, China
| | - Hao Wu
- School of Chemistry and Materials Science of Shanxi Normal University, Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, Shanxi Normal University, Taiyuan, China
| | - Wanming Lin
- College of New Energy and Materials Engineering, Shanxi Electronic Science and Technology University, Linfen, China
| | - Yaxin Chen
- Shanxi Yitiantai Testing Technology Co., Ltd, Linfen, China
| | - Zhuliang Wang
- College of Intelligent Manufacturing, Shanxi Electronic Science and Technology University, Linfen, China.
| |
Collapse
|
2
|
Jalilian M, Bissessur R, Ahmed M, Hsiao A, He QS, Hu Y. A review: Hydrochar as potential adsorbents for wastewater treatment and CO 2 adsorption. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169823. [PMID: 38199358 DOI: 10.1016/j.scitotenv.2023.169823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/15/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024]
Abstract
To valorize the biomass and organic waste, hydrothermal carbonization (HTC) stands out as a highly efficient and promising pathway given its intrinsic advantages over other thermochemical processes. Hydrochar, as the main product obtained from HTC, is widely applied as a fuel source and soil conditioner. Aside from these applications, hydrochar can be either directly used or modified as bio-adsorbents for environmental remediation. This potential arises from its tunable surface chemistry and its suitability to act as a precursor for activated or engineered carbon. In view of the importance of this topic, this review offers a thorough examination of the research progress for using hydrochar and its modified forms to remove organic dyes (cationic and anionic dyes), heavy metals, herbicides/pesticides, pharmaceuticals, and CO2. The review also sheds light on the fundamental chemistry involved in HTC of biomass and the major analytical techniques applied for understanding surface chemistry of hydrochar and modified hydrochar. The knowledge gaps and potential hurdles are identified to highlight the challenges and prospects of this research field with a summary of the key findings from this review. Overall, this article provides valuable insights and directives and pinpoints the areas meriting further investigation in the application potential of hydrochar in wastewater management and CO2 capture.
Collapse
Affiliation(s)
- Milad Jalilian
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Rabin Bissessur
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Marya Ahmed
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada; Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Amy Hsiao
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Quan Sophia He
- Department of Engineering, Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada.
| | - Yulin Hu
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| |
Collapse
|
3
|
Sozcu S, Venkataraman M, Wiener J, Tomkova B, Militky J, Mahmood A. Incorporation of Cellulose-Based Aerogels into Textile Structures. MATERIALS (BASEL, SWITZERLAND) 2023; 17:27. [PMID: 38203881 PMCID: PMC10779952 DOI: 10.3390/ma17010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024]
Abstract
Given their exceptional attributes, aerogels are viewed as a material with immense potential. Being a natural polymer, cellulose offers the advantage of being both replenishable and capable of breaking down naturally. Cellulose-derived aerogels encompass the replenish ability, biocompatible nature, and ability to degrade naturally inherent in cellulose, along with additional benefits like minimal weight, extensive porosity, and expansive specific surface area. Even with increasing appreciation and acceptance, the undiscovered possibilities of aerogels within the textiles sphere continue to be predominantly uninvestigated. In this context, we outline the latest advancements in the study of cellulose aerogels' formulation and their diverse impacts on textile formations. Drawing from the latest studies, we reviewed the materials used for the creation of various kinds of cellulose-focused aerogels and their properties, analytical techniques, and multiple functionalities in relation to textiles. This comprehensive analysis extensively covers the diverse strategies employed to enhance the multifunctionality of cellulose-based aerogels in the textiles industry. Additionally, we focused on the global market size of bio-derivative aerogels, companies in the industry producing goods, and prospects moving forward.
Collapse
Affiliation(s)
- Sebnem Sozcu
- Department of Material Engineering, Faculty of Textile Engineering, Technical University of Liberec, 46117 Liberec, Czech Republic; (J.W.); (B.T.); (J.M.); (A.M.)
| | - Mohanapriya Venkataraman
- Department of Material Engineering, Faculty of Textile Engineering, Technical University of Liberec, 46117 Liberec, Czech Republic; (J.W.); (B.T.); (J.M.); (A.M.)
| | | | | | | | | |
Collapse
|
4
|
Xue T, Shao F, Miao H, Li X. Porous polymer magnetic adsorbents for dye wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:97147-97159. [PMID: 37584804 DOI: 10.1007/s11356-023-29102-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/27/2023] [Indexed: 08/17/2023]
Abstract
Dye wastewater discharged from industries has caused serious environmental problems. The recent decade has witnessed adsorption technology emerging as an advanced dye wastewater treatment method with great potential Therefore, we fabricated two kinds of magnetic porous adsorbents (HSF and HSVF) with different specific surface areas and activity sites. Both of which exhibit excellent performance with remarkable dye adsorption capacities, especially HSVF. We further investigated their adsorption kinetic and isotherm in detail. Therein, HSVF showed a nice desorption capacity, and it could be recycled rapidly by magnetism, which exhibited the advantages of effective, easy operation, and low cost. In addition, their adsorption kinetic and isotherm were further studied and compared in detail. The results revealed that introducing strong active sites could improve both the adsorption capacity and rate effectively even though sacrificing part of specific surface areas, indicating that active sites might play a dominant role during the dye adsorption process.
Collapse
Affiliation(s)
- Tao Xue
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education), School of Materials Science and Engineering, East China University of Science and Technology, 130, Meilong Road, Shanghai, 200237, People's Republic of China
| | - Feifei Shao
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education), School of Materials Science and Engineering, East China University of Science and Technology, 130, Meilong Road, Shanghai, 200237, People's Republic of China
| | - Han Miao
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education), School of Materials Science and Engineering, East China University of Science and Technology, 130, Meilong Road, Shanghai, 200237, People's Republic of China
| | - Xinxin Li
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education), School of Materials Science and Engineering, East China University of Science and Technology, 130, Meilong Road, Shanghai, 200237, People's Republic of China.
| |
Collapse
|
5
|
Wang H, Wu Y, Wen Y, Chen D, Pu J, Ding Y, Kong S, Wang S, Xu R. Simultaneously Cationic and Anionic Dyes Elimination via Magnetic Hydrochar Prepared from Copper Slag and Pinewood Sawdust. TOXICS 2023; 11:484. [PMID: 37368584 DOI: 10.3390/toxics11060484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023]
Abstract
In practical wastewater, cationic and anionic dyes usually coexist, while synergistic removal of these pollutants is difficult due to their relatively opposite properties. In this work, copper slag (CS) modified hydrochar (CSHC) was designed as functional material by the one-pot method. Based on characterizations, the Fe species in CS can be converted to zero-valent iron and loaded onto a hydrochar substrate. The CSHC exhibited efficient removal rates for both cationic dyes (methylene blue, MB) and anionic dyes (methyl orange, MO), with a maximum capacity of 278.21 and 357.02 mg·g-1, respectively, which was significantly higher than that of unmodified ones. The surface interactions of MB and MO between CSHC were mimicked by the Langmuir model and the pseudo-second-order model. In addition, the magnetic properties of CSHC were also observed, and the good magnetic properties enabled the adsorbent to be quickly separated from the solution with the help of magnets. The adsorption mechanisms include pore filling, complexation, precipitation, and electrostatic attraction. Moreover, the recycling experiments demonstrated the potential regenerative performance of CSHC. All these results shed light on the co-removal of cationic and anionic contaminates via these industrial by-products derived from environmental remediation materials.
Collapse
Affiliation(s)
- Huabin Wang
- School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, China
| | - Yi Wu
- School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, China
| | - Yi Wen
- School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, China
| | - Dingxiang Chen
- School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, China
| | - Jiang Pu
- Shiping Center for Rural Energy and Environment, Honghe 661400, China
| | - Yu Ding
- Baoshan City Longyang Rural Energy Workstation, Baoshan 678000, China
| | - Sailian Kong
- Development Center for Rural Affairs of Jiangchuan District, Yuxi 651100, China
| | - Shuaibing Wang
- College of Chemistry Biology and Environment, Yuxi Normal University, Yuxi 653100, China
| | - Rui Xu
- School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, China
| |
Collapse
|
6
|
Kim H, Lee SY, Choi JW, Jung KW. Synergistic effect in simultaneous removal of cationic and anionic heavy metals by nitrogen heteroatom doped hydrochar from aqueous solutions. CHEMOSPHERE 2023; 323:138269. [PMID: 36858118 DOI: 10.1016/j.chemosphere.2023.138269] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/14/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Industrial wastewater typically contains both cationic and anionic heavy metals; therefore, their simultaneous removal must be considered to ensure environmental sustainability. Herein, nitrogen heteroatom (N) doped hydrochar derived from corncob was prepared via facile NH4Cl-aided hydrothermal carbonization and used for the simultaneous adsorption of divalent copper (Cu(II)) and hexavalent chromium (Cr(VI)) in aqueous solutions. During hydrothermal carbonization, NH4Cl played a vital role as the porogen and N dopant, which contributed to the efficient adsorption affinity toward coexisting Cu(II) and Cr(VI). The theoretical maximum adsorption capacities of the N-doped hydrochar were determined to be 1.223 mmol/g for Cu(II) and 1.995 mmol/g for Cr(VI), which were much better than those of the pristine hydrochar. Furthermore, in the binary-component system, the synergistic effect between Cu(II) and Cr(VI) significantly promoted the adsorption affinity of N-doped hydrochar, resulting in adsorption capacities for Cu(II) and Cr(VI) 9.48 and 1.92 times higher than those of the single-component system, respectively. A series of adsorption experiments and spectroscopic analyses demonstrated that multiple mechanisms, including electrostatic shielding, cation bridging, and redox reactions, mutually contributed to the synergistic effect in the adsorption of coexisting Cu(II) and Cr(VI). Overall, the N-doped hydrochar proved to be effective in simultaneously removing both cationic and anionic heavy metal pollutants.
Collapse
Affiliation(s)
- Heegon Kim
- Center for Water Cycle Research, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Seon Yong Lee
- Department of Earth and Environmental Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jae-Woo Choi
- Center for Water Cycle Research, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea; Division of Energy and Environmental Engineering, KIST School, Korea University of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea.
| | - Kyung-Won Jung
- Center for Water Cycle Research, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea.
| |
Collapse
|
7
|
Sun XN, Yu K, He JH, Chen Y, Guo JZ, Li B. Multiple roles of ferric chloride in preparing efficient magnetic hydrochar for sorption of methylene blue from water solutions. BIORESOURCE TECHNOLOGY 2023; 373:128715. [PMID: 36754236 DOI: 10.1016/j.biortech.2023.128715] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Highly efficient and cheap magnetic materials have application prospects in wastewater treatment. Herein, Fe3O4-loaded hydrochar (HC-Fe3O4) was obtained from hydrothermal carbonization (HTC) of bamboo with FeCl3 and then added with FeCl3 to form a magnetic sorbent via simple precipitation. The HC-Fe3O4 was characterized with various instruments. The characterizations show FeCl3 plays at least two roles as a catalyst and an oxidant in HTC. The specific surface area of hydrochar enlarged from 39.9731 to 60.9887 m2·g-1 after the addition of FeCl3 during HTC, which showed FeCl3 acted as a catalyst in HTC. XRD indicated Fe3O4 was formed by the structure of HC-Fe3O4, which indicated Fe(III) was reduced to Fe(II) during HTC. Sorption of methylene blue (MB) onto HC-Fe3O4 was better fitted by the Langmuir isotherm and pseudo-second-order kinetic models. Sorption is a spontaneous thermodynamic endothermic process and HC-Fe3O4 is easily separated by an applied magnetic field and reused.
Collapse
Affiliation(s)
- Xiao-Na Sun
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Kun Yu
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Jiong-Hua He
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Yan Chen
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Jian-Zhong Guo
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Bing Li
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China.
| |
Collapse
|
8
|
Khan MA, Alqadami AA, Wabaidur SM, Jeon BH. Co-Carbonized Waste Polythene/Sugarcane Bagasse Nanocomposite for Aqueous Environmental Remediation Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13071193. [PMID: 37049288 PMCID: PMC10097173 DOI: 10.3390/nano13071193] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 05/31/2023]
Abstract
The conversion of worthless municipal solid wastes to valuables is a major step towards environmental conservation and sustainability. This work successfully proposed a technique to utilize the two most commonly available municipal solid wastes viz polythene (PE) and sugarcane bagasse (SB) for water decolorization application. An SBPE composite material was developed and co-pyrolyzed under an inert atmosphere to develop the activated SBPEAC composite. Both SBPE and SBPEAC composites were characterized to analyze their morphological characteristics, specific surface area, chemical functional groups, and elemental composition. The adsorption efficacies of the composites were comparatively tested in the removal of malachite green (MG) from water. The SBPEAC composite had a specific surface area of 284.5 m2/g and a pore size of ~1.33 nm. Batch-scale experiments revealed that the SBPEAC composite performed better toward MG adsorption compared to the SBPE composite. The maximum MG uptakes at 318 K on SBPEAC and SBPE were 926.6 and 375.6 mg/g, respectively. The adsorption of MG on both composites was endothermic. The isotherm and kinetic modeling data for MG adsorption on SBPEAC was fitted to pseudo-second-order kinetic and Langmuir isotherm models, while Elovich kinetic and D-R isotherm models were better fitted for MG adsorption on SBPE. Mechanistically, the MG adsorption on both SBPE and SBPEAC composites involved electrostatic interaction, H-bonding, and π-π/n-π interactions.
Collapse
Affiliation(s)
- Moonis Ali Khan
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | | | | | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
9
|
Preparation of CTAB intercalated bentonite for ultrafast adsorption of anionic dyes and mechanism study. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
10
|
Cavali M, Libardi Junior N, de Sena JD, Woiciechowski AL, Soccol CR, Belli Filho P, Bayard R, Benbelkacem H, de Castilhos Junior AB. A review on hydrothermal carbonization of potential biomass wastes, characterization and environmental applications of hydrochar, and biorefinery perspectives of the process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159627. [PMID: 36280070 DOI: 10.1016/j.scitotenv.2022.159627] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
It is imperative to search for appropriate processes to convert wastes into energy, chemicals, and materials to establish a circular bio-economy toward sustainable development. Concerning waste biomass valorization, hydrothermal carbonization (HTC) is a promising route given its advantages over other thermochemical processes. From that perspective, this article reviewed the HTC of potential biomass wastes, the characterization and environmental utilization of hydrochar, and the biorefinery potential of this process. Crop and forestry residues and sewage sludge are two categories of biomass wastes (lignocellulosic and non-lignocellulosic, respectively) readily available for HTC or even co-hydrothermal carbonization (Co-HTC). The temperature, reaction time, and solid-to-liquid ratio utilized in HTC/Co-HTC of those biomass wastes were reported to range from 140 to 370 °C, 0.05 to 48 h, and 1/47 to 1/1, respectively, providing hydrochar yields of up to 94 % according to the process conditions. Hydrochar characterization by different techniques to determine its physicochemical properties is crucial to defining the best applications for this material. In the environmental field, hydrochar might be suitable for removing pollutants from aqueous systems, ameliorating soils, adsorbing atmospheric pollutants, working as an energy carrier, and performing carbon sequestration. But this material could also be employed in other areas (e.g., catalysis). Regarding the effluent from HTC/Co-HTC, this byproduct has the potential for serving as feedstock in other processes, such as anaerobic digestion and microalgae cultivation. These opportunities have aroused the industry interest in HTC since 2010, and the number of industrial-scale HTC plants and patent document applications has increased. The hydrochar patents are concentrated in China (77.6 %), the United States (10.6 %), the Republic of Korea (3.5 %), and Germany (3.5 %). Therefore, considering the possibilities of converting their product (hydrochar) and byproduct (effluent) into energy, chemicals, and materials, HTC or Co-HTC could work as the first step of a biorefinery. And this approach would completely agree with circular bioeconomy principles.
Collapse
Affiliation(s)
- Matheus Cavali
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, 88040-970 Florianópolis, Santa Catarina, Brazil.
| | - Nelson Libardi Junior
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, 88040-970 Florianópolis, Santa Catarina, Brazil
| | - Julia Dutra de Sena
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, 88040-970 Florianópolis, Santa Catarina, Brazil
| | - Adenise Lorenci Woiciechowski
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, 81531-908 Curitiba, Paraná, Brazil
| | - Carlos Ricardo Soccol
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, 81531-908 Curitiba, Paraná, Brazil
| | - Paulo Belli Filho
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, 88040-970 Florianópolis, Santa Catarina, Brazil
| | - Rémy Bayard
- DEEP (Déchets Eaux Environnement Pollutions) Laboratory, National Institute of Applied Sciences of Lyon, 69100 Villeurbanne, France
| | - Hassen Benbelkacem
- DEEP (Déchets Eaux Environnement Pollutions) Laboratory, National Institute of Applied Sciences of Lyon, 69100 Villeurbanne, France
| | - Armando Borges de Castilhos Junior
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, 88040-970 Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
11
|
Recyclable 3D Konjac glucomannan/graphene oxide aerogel loaded with ZIF-67 for comprehensive adsorption of methylene blue and methyl orange. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Zubair M, Aziz HA, Ihsanullah I, Ahmad MA, Al-Harthi MA. Enhanced removal of Eriochrome Black T from water using biochar/layered double hydroxide/chitosan hybrid composite: Performance evaluation and optimization using BBD-RSM approach. ENVIRONMENTAL RESEARCH 2022; 209:112861. [PMID: 35143802 DOI: 10.1016/j.envres.2022.112861] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
In this research work, a novel hybrid composite consisting of biochar (B), layered double hydroxide (CuFe) and chitosan (CS) (B-CuFe-CS) was produced using an ultrasonication-assisted co-precipitation method. The resultant composite was employed for adsorptive removal of Eriochrome black T (EBT) from water. Physicochemical characterization indicated that the B-CuFe-CS containing 10 wt % CS exhibited a heterogeneous structure with better crystallographic and textural characteristics. The B-CuFe-CS with abundant surface functionalities (-CO, -C-O, -OH, -NO3, and MMO), facilitates faster and enhanced removal of the EBT. The kinetic results showed better fitting to the pseudo-second order model, and equilibrium was achieved within 30 min. Equilibrium data was well explained by Langmuir and Redlich Peterson isotherm models (R2 > 0.98), indicating the EBT removal onto B-CuFe-CS followed monolayer adsorption. The maximum adsorption capacity was 806.4 mg/g, which was higher than pristine B-CuFe (476.19 mg/g) and many other adsorbents. The spectroscopic analysis (FTIR and XPS) and experimental results suggested that EBT adsorption is mainly governed by electrostatic, chemical and anion-exchange interactions. It is evident from these results that coupling B-CuFe composite with bio-filler (chitosan) resulted in an efficient bio-adsorbent to effectively purify dye-contaminated water streams.
Collapse
Affiliation(s)
- Mukarram Zubair
- Department of Environmental Engineering, Imam Abdulrahman bin Faisal University, Dammam, 31982, Saudi Arabia.
| | - Hamidi Abdul Aziz
- School of Civil Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Pulau Pinang, Malaysia; Solid Waste Management Cluster, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Pulau Pinang, Malaysia.
| | - Ihsanullah Ihsanullah
- Center for Environment & Water, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
| | - Mohd Azmier Ahmad
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Pulau Pinang, Malaysia
| | - Mamdouh A Al-Harthi
- Department of Chemical Engineering, King Fahd University of Petroleum & Minerals, 31261, Dhahran, Saudi Arabia; Center of Research Excellences in Nanotechnology, King Fahd University of Petroleum & Minerals, 31261, Dhahran, Saudi Arabia
| |
Collapse
|
13
|
Chen Z, Zeng J, Zhang ZB, Zhang ZJ, Ma S, Tang CM, Xu JQ. Preparation and application of polyethyleneimine-modified corncob magnetic gel for removal of Pb(ii) and Cu(ii) ions from aqueous solution. RSC Adv 2022; 12:1950-1960. [PMID: 35425277 PMCID: PMC8979099 DOI: 10.1039/d1ra08699e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/30/2021] [Indexed: 12/19/2022] Open
Abstract
As a biomass resource, corncob is a kind of agricultural by-product with wide sources and low cost. Because its composition contains a large number of functional polymers such as cellulose, chitosan, and semi chitosan, corncob can be chemically modified to prepare a variety of adsorption materials. In this study, a magnetic gel material (PEI-CC@Fe3O4) consisting of corncob modified by glutaraldehyde-crosslinked polyethyleneimine (PEI) was successfully prepared and applied to the adsorption of heavy metal ions in aqueous solutions. The structure, thermal stability, and adsorption of heavy metal ions of the magnetic gel material (PEI-CC@Fe3O4) were characterized by Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction phase analysis (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and X-ray photoelectron spectroscopy (XPS). The results showed that PEI was crosslinked to the corncob through Aldol reaction and Schiff-base reaction. The heavy metal ion adsorption experiment showed that the PEI-CC@Fe3O4 had better adsorption toward divalent copper ions and divalent lead ions at 303 K, and the maximum adsorption capacities reached 459.4 mg g-1 and 290.8 mg g-1, respectively. Moreover, the study of isothermal adsorption and adsorption kinetics shows that the adsorption process is pseudo-second-order kinetics model adsorption, which belongs to Langmuir isothermal adsorption. Such excellent adsorption performance will contribute to the application of corncob biomass materials in industrial polluted wastewater.
Collapse
Affiliation(s)
- Zhi Chen
- College of Chemistry and Chemical Engineering, Chongqing University of Technology Chongqing 400054 P. R. China
| | - Jun Zeng
- College of Chemistry and Chemical Engineering, Chongqing University of Technology Chongqing 400054 P. R. China
| | - Zhi-Bo Zhang
- College of Chemistry and Chemical Engineering, Chongqing University of Technology Chongqing 400054 P. R. China
| | - Zhi-Jie Zhang
- College of Chemistry and Chemical Engineering, Chongqing University of Technology Chongqing 400054 P. R. China
| | - Shan Ma
- College of Chemistry and Chemical Engineering, Chongqing University of Technology Chongqing 400054 P. R. China
| | - Cong-Ming Tang
- College of Chemistry and Chemical Engineering, Chongqing University of Technology Chongqing 400054 P. R. China
| | - Jun-Qiang Xu
- College of Chemistry and Chemical Engineering, Chongqing University of Technology Chongqing 400054 P. R. China
| |
Collapse
|
14
|
Lv BW, Xu H, Guo JZ, Bai LQ, Li B. Efficient adsorption of methylene blue on carboxylate-rich hydrochar prepared by one-step hydrothermal carbonization of bamboo and acrylic acid with ammonium persulphate. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126741. [PMID: 34352526 DOI: 10.1016/j.jhazmat.2021.126741] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Hydrochar (AAHC) with rich carboxylate groups was prepared by one-step hydrothermal carbonization (HTC) of bamboo and acrylic acid with the presence of ammonium persulphate, and then activated by a sodium hydroxide solution. AAHC was featured by elemental analysis, SEM, XPS, FTIR, Zeta potential analysis and N2 adsorption-desorption isotherms, and applied to test adsorptive ability of methylene blue (MB) by batch sorption experiments. Despite a small Brunauer-Emmett-Teller (BET) surface area of 5.03 m2·g-1, AAHC has excellent MB adsorbing capacity owing to the richness of carboxylate groups. Compared with hydrochar produced without adding ammonium persulphate, AAHC exhibits larger BET surface, pore volume and carboxylate groups, indicating a small amount of ammonium persulfate plays an important role in HTC in addition to the free radical initiator. This work provides a facile and cheap method combining HTC and polymerization for preparation of carboxylate-rich hydrochar.
Collapse
Affiliation(s)
- Bo-Wen Lv
- College of Chemistry and Materials Engineering, Zhejiang A & F University, Hangzhou, Zhejiang 311300, PR China
| | - Huan Xu
- College of Chemistry and Materials Engineering, Zhejiang A & F University, Hangzhou, Zhejiang 311300, PR China
| | - Jian-Zhong Guo
- College of Chemistry and Materials Engineering, Zhejiang A & F University, Hangzhou, Zhejiang 311300, PR China
| | - Li-Qun Bai
- College of Chemistry and Materials Engineering, Zhejiang A & F University, Hangzhou, Zhejiang 311300, PR China
| | - Bing Li
- College of Chemistry and Materials Engineering, Zhejiang A & F University, Hangzhou, Zhejiang 311300, PR China.
| |
Collapse
|
15
|
Magnetic Fe3O4 nanoparticles loaded papaya (Carica papaya L.) seed powder as an effective and recyclable adsorbent material for the separation of anionic azo dye (Congo Red) from liquid phase: Evaluation of adsorption properties. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118255] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Characterization of Bio-Adsorbents Produced by Hydrothermal Carbonization of Corn Stover: Application on the Adsorption of Acetic Acid from Aqueous Solutions. ENERGIES 2021. [DOI: 10.3390/en14238154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this work, the influence of temperature on textural, morphological, and crystalline characterization of bio-adsorbents produced by hydrothermal carbonization (HTC) of corn stover was systematically investigated. HTC was conducted at 175, 200, 225, and 250 °C, 240 min, heating rate of 2.0 °C/min, and biomass-to-H2O proportion of 1:10, using a reactor of 18.927 L. The textural, morphological, crystalline, and elemental characterization of hydro-chars was analyzed by TG/DTG/DTA, SEM, EDX, XRD, BET, and elemental analysis. With increasing process temperature, the carbon content increased and that of oxygen and hydrogen diminished, as indicated by elemental analysis (C, N, H, and S). TG/DTG analysis showed that higher temperatures favor the thermal stability of hydro-chars. The hydro-char obtained at 250 °C presented the highest thermal stability. SEM images of hydro-chars obtained at 175 and 200 °C indicated a rigid and well-organized fiber structure, demonstrating that temperature had almost no effect on the biomass structure. On the other hand, SEM images of hydro-chars obtained at 225 and 250 °C indicated that hydro-char structure consists of agglomerated micro-spheres and heterogeneous structures with nonuniform geometry (fragmentation), indicating that cellulose and hemi-cellulose were decomposed. EDX analysis showed that carbon content of hydro-chars increases and that of oxygen diminish, as process temperature increases. The diffractograms (XRD) identified the occurrence of peaks of higher intensity of graphite (C) as the temperature increased, as well as a decrease of peaks intensity for crystalline cellulose, demonstrating that higher temperatures favor the formation of crystalline-phase graphite (C). The BET analysis showed 4.35 m2/g surface area, pore volume of 0.0186 cm3/g, and average pore width of 17.08 μm. The solid phase product (bio-adsorbent) obtained by hydrothermal processing of corn stover at 250 °C, 240 min, and biomass/H2O proportion of 1:10, was activated chemically with 2.0 M NaOH and 2.0 M HCl solutions to investigate the adsorption of CH3COOH. The influence of initial acetic acid concentrations (1.0, 2.0, 3.0, and 4.0 mg/mL) was investigated. The kinetics of adsorption were investigated at different times (30, 60, 120, 240, 480, and 960 s). The adsorption isotherms showed that chemically activated hydro-chars were able to recover acetic acid from aqueous solutions. In addition, activation of hydro-char with NaOH was more effective than that with HCl.
Collapse
|
17
|
Li SY, Teng HJ, Guo JZ, Wang YX, Li B. Enhanced removal of Cr(VI) by nitrogen-doped hydrochar prepared from bamboo and ammonium chloride. BIORESOURCE TECHNOLOGY 2021; 342:126028. [PMID: 34582986 DOI: 10.1016/j.biortech.2021.126028] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
N-doped biochar can effectively eliminate toxic Cr(VI). Here, N-doped hydrochar (NHC) was successfully synthesized by one-pot hydrothermal carbonization (HTC) of NH4Cl and bamboo, and employed to adsorb Cr(VI). The specific surface area, pore volume, and carbon and nitrogen contents of NHC all increase compared with the undoped hydrochar (HC). NH4Cl acts as a cheap nitrogen source to enhance the nitrogen content of hydrochar and as an acid catalyst to accelerate hydrochar carbonization. Adsorption experiments show NHC has higher adsorption capacity than HC for Cr(VI). XPS and FTIR imply the dominant mechanisms of adsorbing Cr(VI) onto two hydrochars are electrostatic attraction, reduction and complexation, but the contributions of surface functional groups in two hydrochars for elimination of Cr(VI) differ. The doped nitrogen in NHC is pivotal in adsorbing and reducing Cr(VI). Hence, NHC prepared from bamboo and NH4Cl by one-step HTC is a cheap and efficient adsorbent to eliminate aqueous Cr(VI).
Collapse
Affiliation(s)
- Si-Yuan Li
- Department of Chemistry, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Hua-Jing Teng
- Department of Chemistry, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Jian-Zhong Guo
- Department of Chemistry, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Yu-Xuan Wang
- Department of Chemistry, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Bing Li
- Department of Chemistry, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China.
| |
Collapse
|
18
|
Cao N, Zhao X, Gao M, Li Z, Ding X, Li C, Liu K, Du X, Li W, Feng J, Ren Y, Wei T. Superior selective adsorption of MgO with abundant oxygen vacancies to removal and recycle reactive dyes. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119236] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
19
|
Li HZ, Zhang YN, Guo JZ, Lv JQ, Huan WW, Li B. Preparation of hydrochar with high adsorption performance for methylene blue by co-hydrothermal carbonization of polyvinyl chloride and bamboo. BIORESOURCE TECHNOLOGY 2021; 337:125442. [PMID: 34175769 DOI: 10.1016/j.biortech.2021.125442] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
Polyvinyl chloride (PVC) was blended into bamboo powder during co-hydrothermal carbonization (Co-HTC) to understand the effects on the physicochemical properties and adsorbing ability of hydrochar. The properties of hydrochar were characterized by Zeta potential, elemental analyses, BET, FTIR, XPS, Boehm titration and SEM. The addition of PVC into bamboo in Co-HTC decreased the BET area, and pore volume and radius of hydrochar, but increased the contents of surface hydroxyl and carboxyl groups. The adsorption ability of hydrochar produced by addition of PVC at 473 K over methylene blue (MB) increased significantly. The main adsorption mechanism was electrostatic attraction by -N(CH3)2+ of MB and carboxylate of hydrochar, and hydrogen-bonding interaction through N atom of phenothiazine in MB and C-OH of hydrochar. Thus, Co-HTC offers a facile, green and economical alternative for conversion of waste into high-value adsorbents.
Collapse
Affiliation(s)
- Hao-Zhe Li
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Yu-Nan Zhang
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Jian-Zhong Guo
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Jian-Quan Lv
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Wei-Wei Huan
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Bing Li
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China.
| |
Collapse
|
20
|
Alshareef SA, Otero M, Alanazi HS, Siddiqui MR, Khan MA, Alothman ZA. Upcycling olive oil cake through wet torrefaction to produce hydrochar for water decontamination. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.03.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
21
|
Shen Y, Guo JZ, Bai LQ, Chen XQ, Li B. High effective adsorption of Pb(II) from solution by biochar derived from torrefaction of ammonium persulphate pretreated bamboo. BIORESOURCE TECHNOLOGY 2021; 323:124616. [PMID: 33387711 DOI: 10.1016/j.biortech.2020.124616] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 05/21/2023]
Abstract
Biochar was prepared by torrefaction of ammonium persulphate pretreated bamboo (labeled as APBC) and applied into elimination of Pb(II) from water solutions. APBC was characterized by N2 adsorption-desorption isotherms, elemental and Zeta potential analyses, SEM-EDS, XPS, and FTIR. Abundant N- and O-containing groups appeared atop APBC. Batch sorption assays revealed that APBC had high affinity and strong sorption ability towards Pb(II). The high Pb(II) adsorbing ability was attributed to the high contents of N- and O-containing functional groups of APBC. The adsorption mechanism mainly occurred by inner-sphere surface complexation. Hence, torrefaction of ammonium persulphate pretreated bamboo is a promising strategy for producing efficient biochar that is applicable for industrial wastewater treatment.
Collapse
Affiliation(s)
- Yan Shen
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Jian-Zhong Guo
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Li-Qun Bai
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Xiao-Qin Chen
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Bing Li
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China.
| |
Collapse
|
22
|
Shen Y, Ni WX, Li B. Porous Organic Polymer Synthesized by Green Diazo-Coupling Reaction for Adsorptive Removal of Methylene Blue. ACS OMEGA 2021; 6:3202-3208. [PMID: 33553936 PMCID: PMC7860510 DOI: 10.1021/acsomega.0c05634] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/11/2021] [Indexed: 05/05/2023]
Abstract
A porous organic polymer (marked as DT-POP), which contains abundant free phenolic hydroxyl groups, is synthesized by the well-known green azo-coupling reaction in water, characterized, and utilized as an effective adsorbent for the elimination of methylene blue (MB) from water solutions. The presence of permanent mesopores, abundant active functional groups, and π-electron enrichment ascribed to phenyl rings make DT-POP an efficient adsorbent for MB due to strong hydrogen bonding, π-π, and electrostatic interactions with the cationic dye MB. DT-POP with high stability and high adsorption capacity can be reused many times and thus shows high applicability in pollutant disposal.
Collapse
Affiliation(s)
- Yang Shen
- Zhejiang Provincial Key Laboratory
of Chemical Utilization of Forestry Biomass, Zhejiang A&F University, Hangzhou, Zhejiang 311300, P. R. China
| | - Wen-Xin Ni
- Zhejiang Provincial Key Laboratory
of Chemical Utilization of Forestry Biomass, Zhejiang A&F University, Hangzhou, Zhejiang 311300, P. R. China
| | - Bing Li
- Zhejiang Provincial Key Laboratory
of Chemical Utilization of Forestry Biomass, Zhejiang A&F University, Hangzhou, Zhejiang 311300, P. R. China
| |
Collapse
|