1
|
Abid M, Wu J, Yuanyuan Y, Ajmal Z, Mehmood T, Husnain SN, Zhou X. Enhanced anaerobic digestion of freezing and thawing pretreated cow manure with increasing solid content: kinetics and microbial community dynamics. Sci Rep 2024; 14:25579. [PMID: 39461997 PMCID: PMC11512992 DOI: 10.1038/s41598-024-76392-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
High solid anaerobic digestion has proved the mainstream technology for the treatment of organic wastes. However, the high molecular weight and complex lignocellulosic structure of cow manure (CM) make it indigestible and inefficient, leading to limit the hydrolysis step of anaerobic digestion at high solid content. To mitigate this bottleneck, an improved cost-effective freezing and thawing pretreatment technique was proposed in this study. The freezing and thawing pretreatment of raw CM without any dilution was done for 20 days. The maximum cumulative methane yield (487 mL CH4 g- 1VS) was achieved at a total solid (TS) of 5% followed by TS of 10% and 15%, which was 13%, 20% and 21% higher than obtained from untreated CM, respectively. The kinetic results revealed that the biodegradable materials could be utilized at increasing TS with decreasing hydrolysis rate. The pretreatment significantly enhanced the methylotrophic methanogenic pathway during high solid anaerobic digestion, which was contrary to the general concept that the process is usually dominated by acetoclastic and hydrogenotrophic methanogens. This study is very important to understand the effect of solid content but also important to understand the effect of freezing and thawing pretreatment on process parameters and microbial community dynamics in high solid anaerobic digestion.
Collapse
Affiliation(s)
- Muhammad Abid
- International Faculty of Applied Technology, Yibin University, Yibin, 644000, Sichuan, China.
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Jing Wu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yan Yuanyuan
- Beijing Zhongchi Green Energy Environmental Technology Co., Ltd, Beijing, China
| | - Zeeshan Ajmal
- School of Chemistry and Material Science, Zhejiang Normal University, Jinhua, China
| | - Tariq Mehmood
- Department Sensors and Modeling, Potsdam de Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, 14469, Potsdam, Germany
| | - Syed Nabeel Husnain
- Department of Energy Systems Engineering, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Xu Zhou
- International Faculty of Applied Technology, Yibin University, Yibin, 644000, Sichuan, China
| |
Collapse
|
2
|
Samadamaeng N, Sawatdeenarunat C, Charnnok B. Enhancing biogas production from cattle manure: A circular economy approach with solar thermal pretreatment and soil conditioning. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122086. [PMID: 39116806 DOI: 10.1016/j.jenvman.2024.122086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
Biogas production from cattle manure, pivotal for sustainable waste and energy management, encounters challenges from its low digestibility linked to lignocellulosic structures. This study investigates biogas efficiency enhancement through anaerobic digestion coupled with solar thermal (ST) pretreatment and digestate application in Napier grass cultivation (STAD-G). ST pretreatment at 40-60 °C for 20 h markedly increases methane yield, validated by pilot-scale trials that exhibited a 3.9-fold surge in methane production, attributed to improved acidification. Untreated manure's structure, however, impedes acidification, slowing methanogenesis as shown by lower volatile fatty acid concentration in effluents. In addition, utilizing digestate as soil conditioner notably improves grass yield (19.3 ± 0.8 ton dry/ha/year) and protein content, akin to urea fertilizer. Furthermore, the STAD-G system incurs higher upfront costs, it yields superior biogas efficiency and enhanced long-term financial returns. This integrated approach, by boosting economic and environmental sustainability, advocates for ST pretreatment as a key strategy in advancing sustainable agriculture and energy solutions.
Collapse
Affiliation(s)
- Nureesan Samadamaeng
- Faculty of Environmental Management, Prince of Songkla University, Hat Yai District, Songkhla Province, 90110, Thailand
| | - Chayanon Sawatdeenarunat
- Asian Development College for Community Economy and Technology, Chiang Mai Rajabhat University, Chiang Mai, 50300, Thailand
| | - Boonya Charnnok
- Energy Technology Program, Department of Interdisciplinary Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai District, Songkhla Province, 90110, Thailand.
| |
Collapse
|
3
|
Huang S, Chen M, Lu H, Eitssayeam S, Min Y, Shi P. Effect of pyrolysis temperature on the binding characteristics of DOM derived from livestock manure biochar with Cu(II). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:24250-24262. [PMID: 38436847 DOI: 10.1007/s11356-024-32646-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/21/2024] [Indexed: 03/05/2024]
Abstract
Biochar-derived dissolved organic matter (BDOM) has the potential to influence the environmental application of biochar and the behavior of heavy metals. In this study, the binding properties of BDOM derived from livestock manure biochar at different pyrolysis temperatures with Cu(II) were investigated based on a multi-analytical approach. The results showed that the DOC concentration, aromatics, and humification degree of BDOM were higher in the process of low pyrolysis of biochar. The pyrolysis temperature changed the composition of BDOM functional groups, which affected the binding mechanism of BDOM-Cu(II). Briefly, humic-like and protein-like substances dominated BDOM-Cu(II) binding at low and high pyrolysis temperatures, respectively. The higher binding capacity for Cu(II) was exhibited by BDOM derived from the lower pyrolysis temperature, due to the carboxyl as the main binding site in humic acid had high content and binding ability at low-temperature. The amide in proteins only participated in the BDOM-Cu(II) binding at high pyrolysis temperature, and polysaccharides also played an important role in the binding process. Moreover, the biochar underwent the secondary reaction at certain high temperatures, which led to condensation reaction of the aromatic structure and the conversion of large molecules into small molecules, affecting the BDOM-Cu(II) binding sites.
Collapse
Affiliation(s)
- Shujun Huang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai, 200090, People's Republic of China
| | - Muxin Chen
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai, 200090, People's Republic of China
| | - Hongxiu Lu
- Department of Biomedicine and Health, Shanghai Vocational College of Agriculture and Forestry, Shanghai, 201699, People's Republic of China
| | - Sukum Eitssayeam
- Physics and Materials Science Department, Faculty of Science, Chiang Mai University, 239 Huay Kaew Road, Muang District, Chiang Mai, 50200, Thailand
| | - Yulin Min
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai, 200090, People's Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200090, People's Republic of China
| | - Penghui Shi
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai, 200090, People's Republic of China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200090, People's Republic of China.
| |
Collapse
|
4
|
Hassa J, Tubbesing TJ, Maus I, Heyer R, Benndorf D, Effenberger M, Henke C, Osterholz B, Beckstette M, Pühler A, Sczyrba A, Schlüter A. Uncovering Microbiome Adaptations in a Full-Scale Biogas Plant: Insights from MAG-Centric Metagenomics and Metaproteomics. Microorganisms 2023; 11:2412. [PMID: 37894070 PMCID: PMC10608942 DOI: 10.3390/microorganisms11102412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/29/2023] Open
Abstract
The current focus on renewable energy in global policy highlights the importance of methane production from biomass through anaerobic digestion (AD). To improve biomass digestion while ensuring overall process stability, microbiome-based management strategies become more important. In this study, metagenomes and metaproteomes were used for metagenomically assembled genome (MAG)-centric analyses to investigate a full-scale biogas plant consisting of three differentially operated digesters. Microbial communities were analyzed regarding their taxonomic composition, functional potential, as well as functions expressed on the proteome level. Different abundances of genes and enzymes related to the biogas process could be mostly attributed to different process parameters. Individual MAGs exhibiting different abundances in the digesters were studied in detail, and their roles in the hydrolysis, acidogenesis and acetogenesis steps of anaerobic digestion could be assigned. Methanoculleus thermohydrogenotrophicum was an active hydrogenotrophic methanogen in all three digesters, whereas Methanothermobacter wolfeii was more prevalent at higher process temperatures. Further analysis focused on MAGs, which were abundant in all digesters, indicating their potential to ensure biogas process stability. The most prevalent MAG belonged to the class Limnochordia; this MAG was ubiquitous in all three digesters and exhibited activity in numerous pathways related to different steps of AD.
Collapse
Affiliation(s)
- Julia Hassa
- Genome Research of Industrial Microorganisms, Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstrasse 27, 33615 Bielefeld, Germany; (J.H.)
| | - Tom Jonas Tubbesing
- Computational Metagenomics Group, Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany; (T.J.T.)
| | - Irena Maus
- Genome Research of Industrial Microorganisms, Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstrasse 27, 33615 Bielefeld, Germany; (J.H.)
| | - Robert Heyer
- Multidimensional Omics Data Analyses Group, Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Bunsen-Kirchhoff-Straße 11, Dortmund 44139, Germany
- Multidimensional Omics Data Analyses Group, Faculty of Technology, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Dirk Benndorf
- Biosciences and Process Engineering, Anhalt University of Applied Sciences, Bernburger Straße 55, Postfach 1458, 06366 Köthen, Germany
- Bioprocess Engineering, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany
| | - Mathias Effenberger
- Bavarian State Research Center for Agriculture, Institute for Agricultural Engineering and Animal Husbandry, Vöttinger Straße 36, 85354 Freising, Germany
| | - Christian Henke
- Computational Metagenomics Group, Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany; (T.J.T.)
| | - Benedikt Osterholz
- Computational Metagenomics Group, Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany; (T.J.T.)
| | - Michael Beckstette
- Computational Metagenomics Group, Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany; (T.J.T.)
| | - Alfred Pühler
- Genome Research of Industrial Microorganisms, Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstrasse 27, 33615 Bielefeld, Germany; (J.H.)
| | - Alexander Sczyrba
- Computational Metagenomics Group, Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany; (T.J.T.)
| | - Andreas Schlüter
- Genome Research of Industrial Microorganisms, Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstrasse 27, 33615 Bielefeld, Germany; (J.H.)
| |
Collapse
|
5
|
Li P, Wang J, Peng H, Li Q, Wang M, Yan W, Boboua SYB, Li W, Sun Y, Zheng G, Zhang H. The effect of heat pre-treatment on the anaerobic digestion of high-solid pig manure under high organic loading level. Front Bioeng Biotechnol 2022; 10:972361. [DOI: 10.3389/fbioe.2022.972361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
Since more and more large-scale farms appear in China and changes in fecal sewage source disposal, the production of high-concentration solid manure waste is also increasing, and its conversion and utilization are gaining attention. This study investigated the effect of heat pre-treatment (HPT) on the thermophilic anaerobic digestion (AD) of high-solid manure (HSM). Pig manure (PM) feed with a total solids of 13% was used for the HPT and subsequent anaerobic digestion (AD) test. The HPT was carried out at 60°C, 80°C, and 100°C, respectively, for 15 min after the heating reached the set temperature. The results show that HPT led to PM feed COD solubilization, observing a maximum increase of 24.57% after pretreated at 100°C, and the treated PM feed under this condition received the maximum methane production potential of 264.64 mL·g−1 VS in batch AD test, which was 28.76% higher than that of the untreated group. Another semi-continuous AD test explored the maximum volume biogas production rate (VBPR). It involves two organic loading rates (OLR) of 13.4 and 17.8 g VSadded·L−1·d−1. The continuous test exhibited that all the HPT groups could produce biogas normally when the OLR increased to the high level, while the digester fed with untreated PM showed failure. The maximum VBPR of 4.71 L L−1·d−1 was observed from PM feed after pre-treated at 100°C and running at the high OLR. This reveals that thermal treatment can weaken the impact of a larger volume of feed on the AD system. Energy balance analysis demonstrates that it is necessary to use a heat exchanger to reuse energy in the HPT process to reduce the amount of energy input. In this case, the energy input to energy output (Ei/Eo) ranged from 0.34 to 0.55, which was much less than one, suggesting that biogas increment due to heat treatment can reasonably cover the energy consumption of the pre-treatment itself. Thus combining HPT and high-load anaerobic digestion of PM was suitable.
Collapse
|
6
|
Pilot-Scale Anaerobic Digestion of Pig Manure with Thermal Pretreatment: Stability Monitoring to Improve the Potential for Obtaining Methane. Processes (Basel) 2022. [DOI: 10.3390/pr10081602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Monitoring and controlling stability in anaerobic digestion (AD) systems are essential, since it allows to obtain information that helps to take corrective actions in case of deviations in the system and to guarantee a stable performance in the biogas production. In this work, a pilot-scale CSRT reactor (1 m3) was monitored during the anaerobic digestion of pig manure with thermal pretreatment (80 °C) operated at thermophilic temperature (45 °C). The ratio of the volatile organic acids (FOS) to the total inorganic carbonate (TAC) and the pH were the indicators used during the monitoring process to identify deviations in the AD system. Additionally, alkaline solution NaOH (98%) was applied to counteract pH deviations and maintain stability. Chemical oxygen demand (COD) and biogas composition were measured during the AD process. It was found that during the AD process, the FOS/TAC was between the range of 0.5 and 1. The results revealed that, in the anaerobic digestion of pig manure with thermal pretreatment, the pH was kept stable in the range of 6.7–7.4 since no medium acidification occurred. Additionally, the tendency of the chemical oxygen demand decreased from the 10th day of operation, product of the favorable enzymatic activity of the microorganisms, reflected in the stable production of biogas (69% CH4). Finally, it is concluded that thermophilic AD of pig manure with thermal pretreatment is a good option when it is carried out efficiently by employing an adequate energetic integration.
Collapse
|
7
|
Kegl T. Consideration of biological and inorganic additives in upgraded anaerobic digestion BioModel. BIORESOURCE TECHNOLOGY 2022; 355:127252. [PMID: 35513240 DOI: 10.1016/j.biortech.2022.127252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 06/14/2023]
Abstract
This paper deals with the numerical simulation of biogas production in the anaerobic digestion process of organic waste. Special attention is focused on the modeling of the activities of biological and inorganic additives, which are used to enhance the process and reduce H2S content in the biogas. For this purpose, an existing BioModel is upgraded with the modified Michaelis-Menten kinetics in order to model the enzymatic hydrolysis and with adequate modeling of physicochemical processes. The upgraded BioModel was calibrated with experimental data obtained from a full-scale biogas plant, used in combination with an active set optimization procedure; the relative agreement indices were 0.9376, 0.9419, 0.7957, and 0.7663 for biogas, CH4, H2, and H2S flow rates, respectively. Statistical efficiency criteria differ up to 5% in model calibration and validation. The obtained results confirm the importance of additives modeling and the usefulness of the proposed model for industrial biogas plants' performance improvement.
Collapse
Affiliation(s)
- Tina Kegl
- University of Maribor, Faculty of Chemistry and Chemical Engineering, Maribor, Slovenia.
| |
Collapse
|
8
|
Saba M, Khan A, Ali H, Bibi A, Gul Z, Khan A, Rehman MMU, Badshah M, Hasan F, Shah AA, Khan S. Microbial Pretreatment of Chicken Feather and Its Co-digestion With Rice Husk and Green Grocery Waste for Enhanced Biogas Production. Front Microbiol 2022; 13:792426. [PMID: 35464983 PMCID: PMC9022067 DOI: 10.3389/fmicb.2022.792426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 02/07/2022] [Indexed: 11/30/2022] Open
Abstract
To utilize wastes and residues sustainably and excellently, there is a need to fend for efficient methods and resources for biogas production. Use of poultry waste for biogas production represents one of the most important routes toward reaching global renewable energy targets. The current study involves microbial pretreatment of chicken feather waste, followed by its co-digestion with rice husk and green grocery waste in batch and continuous reactors, respectively. Microbial pretreatment of chicken feathers by keratinase secreting Pseudomonas aeruginosa was an effective and eco-friendly approach to make its recalcitrant structure available as a raw substrate for biogas production. The current study also addressed the enhancement and stability of anaerobic digestion by co-digestion. Results demonstrated that biogas production was increased by microbial pretreatment of chicken feathers and that the percentage increase in biogas yield was 1.1% in microbialy pretreated feathers compared to mono-digestion (non-pretreated feathers) in batch fermentation. The highest yield of biogas was obtained in a batch reactor having co-digestion of pretreated rice husk and microbial pretreated chicken feathers. The co-digestion of chicken feathers hydrolysate with green grocery waste in continuous fermentation mode has also enhanced the biogas yield as compared to average of mono-digestion (chicken feather hydrolysate and green grocery waste) and, therefore, improve the efficiency of the overall process.
Collapse
Affiliation(s)
- Marium Saba
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Anum Khan
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Huma Ali
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Amna Bibi
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Zeeshan Gul
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Alam Khan
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Maqsood Ur Rehman
- State Key Laboratory, Grassland Argo-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Malik Badshah
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Fariha Hasan
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Aamer Ali Shah
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Samiullah Khan
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- *Correspondence: Samiullah Khan,
| |
Collapse
|
9
|
Fernández-Domínguez D, Patureau D, Houot S, Sertillanges N, Zennaro B, Jimenez J. Prediction of organic matter accessibility and complexity in anaerobic digestates. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 136:132-142. [PMID: 34666295 DOI: 10.1016/j.wasman.2021.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
Further characterization to properly assess the fate of organic matter quality during anaerobic digestion and organic carbon mineralization in soils is required. Organic matter quality based on its accessibility and complexity was employed to successfully classify 28 substrate/digestate pairs through principal components and hierarchical clustering analysis. The two first components explained 58.02% of the variability and four main groups were separated according to the feedstock type. A decrease in the accessibility (16-66%) and an increase in the complexity (34-98%) of the most accessible fractions was noticed. Besides, an increase of non-biodegradable compounds (17-66%) was globally observed after anaerobic digestion. The observed trends in the conversion of organic matter during anaerobic digestion have allowed to fill the gap in the modeling of the anaerobic digestion process chain. Indeed, partial least squares regressions have accurately predicted the organic matter quality of digestates from their inputs (R2 = 0.831, Q2 = 0.593) although the digester operational conditions (temperature and hydraulic retention time) were non-explicative enough. As a novel approach, the predicted digestate quality was used to feed a partial least squares regression model previously developed to predict organic carbon mineralization in soil. The combined models have predicted experimental organic carbon mineralization in soil (R2 = 0.697) with a model quality similar to the model for organic carbon mineralization in soil (R2 = 0.894). This is the first study that has successfully conceived an additional step in the prediction of organic matter fate from raw substrate before anaerobic digestion to soil carbon mineralization.
Collapse
Affiliation(s)
| | - Dominique Patureau
- INRAE, Univ. Montpellier, LBE, 102 Avenue des étangs, 11100 Narbonne, France
| | - Sabine Houot
- UMR ECOSYS, AgroParisTech, INRAE, Université Paris-Saclay, 78850 Thiverval-Grignon, France
| | | | - Bastien Zennaro
- INRAE, Univ. Montpellier, LBE, 102 Avenue des étangs, 11100 Narbonne, France
| | - Julie Jimenez
- INRAE, Univ. Montpellier, LBE, 102 Avenue des étangs, 11100 Narbonne, France
| |
Collapse
|
10
|
Anaerobic Biodegradation of Wheat Straw Lignin: The Influence of Wet Explosion Pretreatment. ENERGIES 2021. [DOI: 10.3390/en14185940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Large amounts of lignin residue is expected in the future when biorefineries for producing biofuels and bio-products will increase in numbers. It is, therefore, valuable to find solutions for using this resource for the sustained production of useful bioenergy or bio-products. Anaerobic digestion could potentially be an option for converting the biorefinery lignin into a valuable energy product. However, lignin is recalcitrant to biodegradation under anaerobic conditions unless the structure is modified. Wet oxidation followed by steam explosion (wet explosion) was previously found to make significant changes to the lignin structure allowing for biodegradation under anaerobic conditions. In this study, we examine the effect of wet explosion pretreatment for anaerobic digestion of wheat straw lignin under mesophilic (37 °C) conditions. Besides the biorefinery lignin produced from wheat straw, untreated lignin was further tested as feed material for anaerobic digestion. Our results showed that wet exploded lignin pretreated with 2% NaOH showed the highest lignin degradation (41.8%) as well as the highest methane potential of 157.3 ± 9.9 mL/g VS. The untreated lignin with no pretreatment showed the lowest methane yield of 65.8 ± 4.8 and only 3.5% of the lignin was degraded. Overall, increased severity of the pretreatment was found to enhance anaerobic degradation of lignin.
Collapse
|
11
|
Digestate Post-Treatment Strategies for Additional Biogas Recovery: A Review. SUSTAINABILITY 2021. [DOI: 10.3390/su13169295] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Anaerobic digestion (AD) is a process in which microorganisms, under oxygen-free conditions, convert organic matter into biogas and digestate. Normally, only 40–70% of biomass is converted into biogas; therefore, digestate still contains significant amounts of degradable organic matter and biogas potential. The recovery of this residual biogas potential could optimize substrate utilization and lower methane emissions during digestate storage and handling. Post-treatment methods have been studied with the aim of enhancing the recovery of biogas from digestate. This review summarizes the studies in which these methods have been applied to agricultural and wastewater digestate and gives a detailed overview of the existing scientific knowledge in the field. The current studies have shown large variation in outcomes, which reflects differences in treatment conditions and digestate compositions. While studies involving biological post-treatment of digestate are still limited, mechanical methods have been relatively more explored. In some cases, they could increase methane yields of digestate; however, the extra gain in methane has often not covered treatment energy inputs. Thermal and chemical methods have been studied the most and have yielded some promising results. Despite all the research conducted in the area, several knowledge gaps still should be addressed. For a more thorough insight of the pros and cons within post-treatment, more research where the effects of the treatments are tested in continuous AD systems, along with detailed economic analysis, should be performed.
Collapse
|
12
|
Lee JTE, Khan MU, Dai Y, Tong YW, Ahring BK. Influence of wet oxidation pretreatment with hydrogen peroxide and addition of clarified manure on anaerobic digestion of oil palm empty fruit bunches. BIORESOURCE TECHNOLOGY 2021; 332:125033. [PMID: 33826979 DOI: 10.1016/j.biortech.2021.125033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/14/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Food and energy requirements are increasing globally, and the challenge is to meet these demands in a sustainable manner. Oil palm has a relatively high productivity, but produces the lignocellulosic residue of empty fruit bunches (OPEFB). In this study, wet oxidation pretreatment is utilized to overcome the recalcitrance of OPEFB during semi-continuous anaerobic digestion (AD) with between 19.7 and 52.7% improvement over the control, and near total cellulose and hemicellulose content could be degraded. Clarified manure, the water phase of cattle and dairy manure after filtration, is further tested for its effect on methane production by providing necessary micronutrients and vitamins. An increase of 49% was found after addition of clarified manure to OPEFB compared to without this addition.
Collapse
Affiliation(s)
- Jonathan T E Lee
- Environmental Research Institute, National University of Singapore, Singapore; Bioproducts, Sciences and Engineering Laboratory, Washington State University Tricities, Biological Systems Engineering, Washington State University, United States; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore
| | - Muhammad Usman Khan
- Bioproducts, Sciences and Engineering Laboratory, Washington State University Tricities, Biological Systems Engineering, Washington State University, United States; Department of Energy System Engineering, University of Agriculture, Faisalabad, Pakistan.
| | - Yanjun Dai
- Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore; School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yen Wah Tong
- Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore; Department of Chemical & Biomolecular Engineering, NUS, Singapore.
| | - Birgitte K Ahring
- Bioproducts, Sciences and Engineering Laboratory, Washington State University Tricities, Biological Systems Engineering, Washington State University, United States
| |
Collapse
|
13
|
Abstract
Pakistan is facing a severe energy crisis due to its heavy dependency on the import of costly fossil fuels, which ultimately leads to expansive electricity generation, a low power supply, and interruptive load shedding. In this regard, the utilization of available renewable energy resources within the country for production of electricity can lessen this energy crisis. Livestock waste/manure is considered the most renewable and abundant material for biogas generation. Pakistan is primarily an agricultural country, and livestock is widely kept by the farming community, in order to meet their needs. According to the 2016–2018 data on the livestock population, poultry held the largest share at 45.8%, followed by buffaloes (20.6%), cattle (12.7%), goats (10.8%), sheep (8.4%), asses (1.3%), camels (0.25%), horses (0.1%), and mules (0.05%). Different animals produce different amounts of manure, based upon their size, weight, age, feed, and type. The most manure is produced by cattle (10–20 kg/day), while poultry produce the least (0.08–0.1 kg/day). Large quantities of livestock manure are produced from each province of Pakistan; Punjab province was the highest contributor (51%) of livestock manure in 2018. The potential livestock manure production in Pakistan was 417.3 million tons (Mt) in 2018, from which 26,871.35 million m3 of biogas could be generated—with a production potential of 492.6 petajoules (PJ) of heat energy and 5521.5 MW of electricity. Due to its favorable conditions for biodigester technologies, and through the appropriate development of anaerobic digestion, the currently prevailing energy crises in Pakistan could be eliminated.
Collapse
|
14
|
Riau V, Burgos L, Camps F, Domingo F, Torrellas M, Antón A, Bonmatí A. Closing nutrient loops in a maize rotation. Catch crops to reduce nutrient leaching and increase biogas production by anaerobic co-digestion with dairy manure. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 126:719-727. [PMID: 33878676 DOI: 10.1016/j.wasman.2021.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
Three catch crop species, ryegrass, forage rape and black oat, were grown between successive rotations of maize to reduce nitrogen leaching due to maize fertilization with digested dairy manure. Catch crops showed a high nutrient uptake, but with a wide range, depending on the year and the specie. Ensiling was shown to be a feasible storing method increasing catch crop methane production per hectare between 14-36% compared with fresh catch crop. In semi-continuous co-digestion experiments, methane production was increased between 35-48%, in comparison with anaerobic digestion of dairy manure alone. Catch crops were shown to be a good co-substrate, being a sustainable option to prevent leaching of nutrients to the environment, thus closing the loops from production to utilization by optimal recycling measures.
Collapse
Affiliation(s)
- V Riau
- GIRO, Institute of Agrifood Research and Technology (IRTA), Torre Marimon, 08140 - Caldes de Montbui, Barcelona, Catalonia, Spain
| | - L Burgos
- GIRO, Institute of Agrifood Research and Technology (IRTA), Torre Marimon, 08140 - Caldes de Montbui, Barcelona, Catalonia, Spain
| | - F Camps
- Mas Badia, Sustainable Field Crops, Institute of Agrifood Research and Technology (IRTA), 17134 - La Tallada d'Empordà, Girona, Spain
| | - F Domingo
- Mas Badia, Sustainable Field Crops, Institute of Agrifood Research and Technology (IRTA), 17134 - La Tallada d'Empordà, Girona, Spain
| | - M Torrellas
- GIRO, Institute of Agrifood Research and Technology (IRTA), Torre Marimon, 08140 - Caldes de Montbui, Barcelona, Catalonia, Spain
| | - A Antón
- GIRO, Institute of Agrifood Research and Technology (IRTA), Torre Marimon, 08140 - Caldes de Montbui, Barcelona, Catalonia, Spain
| | - A Bonmatí
- GIRO, Institute of Agrifood Research and Technology (IRTA), Torre Marimon, 08140 - Caldes de Montbui, Barcelona, Catalonia, Spain.
| |
Collapse
|