1
|
Li D, Guo W, Chen B, Zhai Y, Lang Y, Guo T, Cao X, Zhao L. Niche construction in a bioelectrochemical system with 3D-electrodes for efficient and thorough biodechlorination. WATER RESEARCH 2024; 265:122260. [PMID: 39167969 DOI: 10.1016/j.watres.2024.122260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/04/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Abstract
The design of bioelectrochemical system based on the principle of niche construction, offers a prospective pathway for achieving efficient and thorough biodechlorination in groundwater. This study designed a single-chamber microbial electrolysis cell, with porous three-dimensional (3D) electrodes introduced, to accelerate the niche construction process of functional communities. This approach allowed the growth of various bacteria capable of simultaneously degrading 2,4-dichlorophenol (DCP) and its refractory intermediates, 4-chlorophenol (4CP). The 3D-electrodes provided abundant attachment sites for diverse microbes with a high initial Shannon index (3.4), and along the degradation progress, functional bacteria (Hydrogenoanaerobacterium and Rhodococcus erythropolis for DCP-degrading, Sphingobacterium hotanense for 4CP-degrading and Delftia tsuruhatensis for phenol-degrading) constructed their niches. Applying an external voltage (0.6 V) further increased the selective pressure and niche construction pace, as well as provided 'micro-oxidation' site on the electrode surface, thereby achieving the degradation of 4CP and mineralization of phenol. The porous electrodes could also adsorb contaminants and narrow their interaction distance with microbes, which benefited the degradation efficiency. Thus a 10-fold increase in the overall mineralization of DCP was achieved. This study constructed a novel bioelectrochemical system for achieving efficient and thorough biodechlorination, which was suitable for in situ bioremediation of groundwater.
Collapse
Affiliation(s)
- Deping Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenbo Guo
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bo Chen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ying Zhai
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yi Lang
- The Fourth Engineering Co., LTD. of China Railway No 4 Group, Hefei Anhui 230000, China
| | - Tianbao Guo
- Zhou Enlai School of Government Management, Nankai University, Tianjin 300071, China
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ling Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
2
|
Mun H, Wang D, Zheng J, Ahmad S, Ri M, Ri C, Tang J. Complete 2,4,6-trichlorophenol degradation by anaerobic sludge acclimated with 4-chlorophenol: Synergetic effect of nZVI@BMPC and sodium lactate as an external nutrient. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135063. [PMID: 38954853 DOI: 10.1016/j.jhazmat.2024.135063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/10/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024]
Abstract
Ball-milled plastic char supported nano zero-valent iron (nZVI@BMPC) and their application combined with anaerobic sludge for microbial dechlorination of 2,4,6-trichlorophenol (2,4,6-TCP) were investigated. The XRD and FTIR analysis proved composition of zero valent states of iron, and the BET and SEM analysis showed that nZVI was uniformly distributed on the surface of BMPC. Successive addition of 1000 mg/L sodium lactate and nZVI@BMPC enhanced the acclamation of anaerobic sludge and resulted in the degradation of 4-CP within 80 days. The acclimated consortium with nZVI@BMPC completely degraded 2,4,6-TCP into CH4 and CO2, and the key dechlorination route was through 4-CP dechlorinaion and mineralization. The degradation rate of 2,4,6-TCP with nZVI@BMPC was 0.22/d, greater than that without nZVI@BMPC. The dechlorination efficiency was enhanced in the Fe2+/Fe3+ system controlled by nZVI@BMPC and iron-reducing bacteria. Metagenomic analysis result showed that the dominant de-chlorinators were Chloroflexi sp., Desulfovibrio, and Pseudomonas, which could directly degrade 2,4,6-TCP to 4-CP, especially, Chloroflexi bacterium could concurrently be used to mineralize 4-CP. The relative abundance of the functional genes cprA, acoA, acoB, and tfdB increased significantly in the presence of the nZVI@BMPC. This study provides a new strategy can be a good alternative for possible application in groundwater remediation.
Collapse
Affiliation(s)
- Hyokchol Mun
- MOE Key Laboratory of Pollution Process and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Institute of Natural Energy Research, State Academy of Sciences, Pyongyang, North Korea
| | - Dong Wang
- Environmental Protection institute, SINOPEC Beijing Research Institute of Chemical Industry, Beijing 100013, China.
| | - Jin Zheng
- State Key Lab of Petroleum Pollution Control, CNPC Research Institute of Safety & Environmental Technology, Beijing 102206, China
| | - Shakeel Ahmad
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Myongson Ri
- Institute of Natural Energy Research, State Academy of Sciences, Pyongyang, North Korea
| | - Cholnam Ri
- MOE Key Laboratory of Pollution Process and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Institute of Microbiology, State Academy of Sciences, Pyongyang, North Korea
| | - Jingchun Tang
- MOE Key Laboratory of Pollution Process and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
3
|
Alhajeri NS, Tawfik A, Elsamadony M, Al-Fadhli FM, Meng F. Synergistic algal/bacterial interaction in membrane bioreactor for detoxification of 1,2-dichloroethane-rich petroleum wastewater. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134125. [PMID: 38565016 DOI: 10.1016/j.jhazmat.2024.134125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/12/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024]
Abstract
The study addressed the challenge of treating petroleum industry wastewater with high concentrations of 1,2-dichloroethane (1,2-DCA) ranging from 384 to 1654 mg/L, which poses a challenge for bacterial biodegradation and algal photodegradation. To overcome this, a collaborative approach using membrane bioreactors (MBRs) that combine algae and bacteria was employed. This synergistic method effectively mitigated the toxicity of 1,2-DCA and curbed MBR fouling. Two types of MBRs were tested: one (B-MBR) used bacterial cultures and the other (AB-MBR) incorporated a mix of algal and bacterial cultures. The AB-MBR significantly contributed to 1,2-DCA removal, with algae accounting for over 20% and bacteria for approximately 49.5% of the dechlorination process. 1,2-DCA metabolites, including 2-chloroethanol, 2-chloro-acetaldehyde, 2-chloroacetic acid, and acetic acid, were partially consumed as carbon sources by algae. Operational efficiency peaked at a 12-hour hydraulic retention time (HRT) in AB-MBR, enhancing enzyme activities crucial for 1,2-DCA degradation such as dehydrogenase (DH), alcohol dehydrogenase (ADH), and acetaldehyde dehydrogenase (ALDH). The microbial diversity in AB-MBR surpassed that in B-MBR, with a notable increase in Proteobacteria, Bacteroidota, Planctomycetota, and Verrucomicrobiota. Furthermore, AB-MBR showed a significant rise in the dominance of 1,2-DCA-degrading genus such as Pseudomonas and Acinetobacter. Additionally, algal-degrading phyla (e.g., Nematoda, Rotifera, and Streptophyta) were more prevalent in AB-MBR, substantially reducing the issue of membrane fouling.
Collapse
Affiliation(s)
- Nawaf S Alhajeri
- Department of Environmental Sciences, College of Life Sciences, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait.
| | - Ahmed Tawfik
- Department of Environmental Sciences, College of Life Sciences, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait
| | - Mohamed Elsamadony
- Department of Mechanical Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia; Interdisciplinary Research Center for Refining & Advanced Chemicals, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Fahad M Al-Fadhli
- Department of Chemical Engineering, College of Engineering and Petroleum, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, China
| |
Collapse
|
4
|
Peng F, Liu J, Ping J, Dong Y, Xie L, Zhou Y, Liao L, Song H. An effective strategy for biodegradation of high concentration phenol in soil via biochar-immobilized Rhodococcus pyridinivorans B403. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:33752-33762. [PMID: 38687450 DOI: 10.1007/s11356-024-33386-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/15/2024] [Indexed: 05/02/2024]
Abstract
High concentration of phenol residues in soil are harmful to human health and ecological safety. However, limited information is available on the in-situ bioremediation of phenol-contaminated soil using biochar as a carrier for bacteria. In this study, bamboo -derived biochar was screened as a carrier to assemble microorganism-immobilized composite with Rhodococcus pyridinivorans B403. Then, SEM used to observe the micromorphology of composite and its bioactivity was detected in solution and soil. Finally, we investigated the effects of free B403 and biochar-immobilized B403 (BCJ) on phenol biodegradation in two types of soils and different initial phenol concentrations. Findings showed that bacterial cells were intensively distributed in/onto the carriers, showing high survival. Immobilisation increased the phenol degradation rate of strain B403 by 1.45 times (37.7 mg/(L·h)). The phenol removed by BCJ in soil was 81% higher than free B403 on the first day. Moreover, the removal of BCJ remained above 51% even at phenol concentration of 1,500 mg/kg, while it was only 15% for free B403. Compared with the other treatment groups, BCJ showed the best phenol removal effect in both tested soils. Our results indicate that the biochar-B403 composite has great potential in the remediation of high phenol-contaminated soil.
Collapse
Affiliation(s)
- Fang Peng
- Hubei Key Laboratory of Regional Development and Environmental Response, School of Resources and Environmental Science, Hubei University, Wuhan, 430062, China
- Key Laboratory for Quality Control of Characteristic Fruits and Vegetables of Hubei Province, College of Life Science and Technology, Hubei Engineering University, Xiaogan, 432000, China
| | - Jiashu Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062, China
| | - Jiapeng Ping
- Hubei Key Laboratory of Regional Development and Environmental Response, School of Resources and Environmental Science, Hubei University, Wuhan, 430062, China
| | - Yuji Dong
- Hubei Key Laboratory of Regional Development and Environmental Response, School of Resources and Environmental Science, Hubei University, Wuhan, 430062, China
| | - Liuan Xie
- Hubei Key Laboratory of Regional Development and Environmental Response, School of Resources and Environmental Science, Hubei University, Wuhan, 430062, China
| | - Yishan Zhou
- Hubei Key Laboratory of Regional Development and Environmental Response, School of Resources and Environmental Science, Hubei University, Wuhan, 430062, China
| | - Lipei Liao
- Hubei Key Laboratory of Regional Development and Environmental Response, School of Resources and Environmental Science, Hubei University, Wuhan, 430062, China
| | - Huiting Song
- Hubei Key Laboratory of Regional Development and Environmental Response, School of Resources and Environmental Science, Hubei University, Wuhan, 430062, China.
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
5
|
Li D, Guo W, Zhai Y, Xu X, Cao X, Zhao L. The aggregated biofilm dominated by Delftia tsuruhatensis enhances the removal efficiency of 2,4-dichlorophenol in a bioelectrochemical system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122576. [PMID: 37722473 DOI: 10.1016/j.envpol.2023.122576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/03/2023] [Accepted: 09/16/2023] [Indexed: 09/20/2023]
Abstract
Bioelectrochemical system is a prospective strategy in organic-contaminated groundwater treatment, while few studies clearly distinguish the mechanisms of adsorption or biodegradation in this process, especially when dense biofilm is formed. This study employed a single chamber microbial electrolysis cell (MEC) with two three-dimensional electrodes for removing a typical organic contaminant, 2,4-dichlorophenol (DCP) from groundwater, which inoculated with anaerobic bacteria derived from sewage treatment plant. Compared with the single biodegradation system without electrodes, the three-dimensional electrodes with a high surface enabled an increase of alpha diversity of the microbial community (increased by 52.6% in Shannon index), and provided adaptive ecological niche for more bacteria. The application of weak voltage (0.6 V) furtherly optimized the microbial community structure, and promoted the aggregation of microorganisms with the formation of dense biofilm. Desorption experiment proved that the contaminants were removed from the groundwater mainly via adsorption by the biofilm rather than biodegradation, and compared with the reactor without electricity, the bioelectrochemical system increased the adsorption capacity from 50.0% to 74.5%. The aggregated bacteria on the surface of electrodes were mainly dominated by Delftia tsuruhatensis (85.0%), which could secrete extracellular polymers and has a high adsorption capacity (0.30 mg/g electrode material) for the contaminants. We found that a bioelectrochemical system with a three-dimensional electrode could stimulate the formation of dense biofilm and remove the organic contaminants as well as their possible more toxic degradation intermediates via adsorption. This study provides important guidance for applying bioelectrochemical system in groundwater or wastewater treatment.
Collapse
Affiliation(s)
- Deping Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wenbo Guo
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ying Zhai
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoyun Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 201306, China
| | - Ling Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 201306, China.
| |
Collapse
|
6
|
Liu L, Ruan X, Liu H, Fan X, Dong J. Dechlorination of 2,4-dichlorophenol by Fe/Ni nanoparticles: the pathway and the effect of pH and the Ni mass ratio. ENVIRONMENTAL TECHNOLOGY 2023; 44:3676-3684. [PMID: 35442165 DOI: 10.1080/09593330.2022.2068383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
ABSTRACTThe dechlorination of 2,4-dichlorophenol (2,4-DCP) by a nanoscale Fe/Ni material was investigated at room temperature. 2,4-DCP can be removed more quickly by an Fe/Ni material with 2% Ni. Fe/Ni exhibited excellent adsorption and reduction efficiency toward 2,4-DCP in an aqueous solution over a wide range of pH values. The removal rate of 2,4-DCP exceeded 95% in 60 min in the pH range of 3.0-9.0, and more than 75% was dechlorinated to phenol (CA). The degradation pathway of 2,4-DCP was confirmed based on analysis of the intermediate and end products. A portion of 2,4-DCP was first dechlorinated with a chlorine atom to produce 2-chlorophenol and 4-chlorophenol, and then dechlorination was performed sequentially to form CA. The other portion of 2,4-DCP was dechlorinated to remove two chlorine atoms simultaneously to generate CA. The investigations are essential to the application of iron-based remediation technology.
Collapse
Affiliation(s)
- Lujian Liu
- Department of Environmental and Biological Engineering, Wuhan Technology and Business University, Wuhan, People's Republic of China
- Junji Environmental Technology Co., Ltd., Wuhan, People's Republic of China
| | - Xia Ruan
- Department of Environmental and Biological Engineering, Wuhan Technology and Business University, Wuhan, People's Republic of China
- Junji Environmental Technology Co., Ltd., Wuhan, People's Republic of China
| | - Hong Liu
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, People's Republic of China
| | - Xianyuan Fan
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, People's Republic of China
| | - Jun Dong
- Department of Environmental and Biological Engineering, Wuhan Technology and Business University, Wuhan, People's Republic of China
- Junji Environmental Technology Co., Ltd., Wuhan, People's Republic of China
| |
Collapse
|
7
|
Ri C, Li F, Mun H, Liu L, Tang J. Impact of different zero valent iron-based particles on anaerobic microbial dechlorination of 2,4-dichlorophenol: Comparison of dechlorination performance and the underlying mechanism. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131881. [PMID: 37379603 DOI: 10.1016/j.jhazmat.2023.131881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/14/2023] [Accepted: 06/15/2023] [Indexed: 06/30/2023]
Abstract
The integration of iron-based materials and anaerobic microbial consortia has been extensively studied owing to its potential to enhance pollutant degradation. However, few studies have compared how different iron materials enhance the dechlorination of chlorophenols in coupled microbial systems. This study systematically compared the combined performances of microbial community (MC) and iron materials (Fe0/FeS2 +MC, S-nZVI+MC, n-ZVI+MC, and nFe/Ni+MC) for the dechlorination of 2,4-dichlorophenol (DCP) as one representative of chlorophenols. DCP dechlorination rate was significantly higher in Fe0/FeS2 +MC and S-nZVI+MC (1.92 and 1.67 times, with no significant difference between two groups) than in nZVI+MC and nFe/Ni+MC (1.29 and 1.25 times, with no significant difference between two groups). Fe0/FeS2 had better performance for the reductive dechlorination process as compared with other three iron-based materials via the consumption of any trace amount of oxygen in anoxic condition and accelerated electron transfer. On the other hand, nFe/Ni could induce different dechlorinating bacteria as compared to other iron materials. The enhanced microbial dechlorination was mainly due to some putative dechlorinating bacteria (Pseudomonas, Azotobacter, Propionibacterium), and due to improved electron transfer of sulfidated iron particles. Therefore, Fe0/FeS2 as a biocompatible as well as low-cost sulfidated material can be a good alternative for possible engineering applications in groundwater remediation.
Collapse
Affiliation(s)
- Cholnam Ri
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Institute of Microbiology, State Academy of Sciences, Pyongyang, Democratic People's Republic of Korea
| | - Fengxiang Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hyokchol Mun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Institute of national energy, State Academy of Sciences, Pyongyang, Democratic People's Republic of Korea
| | - Linan Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jingchun Tang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
8
|
Li Y, Zhang Y, Yang W, Lin Y. The reaction pathway and mechanism of 2,4-dichlorophenol removal by modified fly ash-loaded nZVI/Ni particles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27770-z. [PMID: 37256401 DOI: 10.1007/s11356-023-27770-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/16/2023] [Indexed: 06/01/2023]
Abstract
Nanoscale zero-valent iron (nZVI) is more valuable in environmental restoration than other materials. Chemical treatment of fly ash (CFA) was employed as a support material to disperse iron nickel bimetal nanoparticles (CFA-nZVI/Ni) to remove 2,4-dichlorophenol (2,4-DCP). Batch experiments showed that 2,4-DCP was completely removed by CFA-nZVI/Ni, and an optimal loading ratio was 8:1. The degradation of 2,4-DCP by CFA-nZVI/Ni was a chemical control reaction with an activation energy of 95.6 kJ mol-1 and followed pseudo-first-order kinetics. The addition of Cl- increased the removal rate of 2,4-DCP by 4%, while the addition of CO32- and SO42- decreased the removal rate of 2,4-DCP by 32% and 72.3%, respectively. The removal process of 2,4-DCP by CFA-nZVI/Ni included adsorption and reduction. The 2-CP (7.1 mg/L) and 4-CP (11.6 mg/L) could be converted to phenol using the CFA-nZVI/Ni system. Cl on the para-position of 2,4-DCP was simpler to remove than on the ortho-position. The following steps were taken in the electrophilic substitution reaction between substituted phenols and hydrogen radicals: 2,4-DCP > 2-CP > 4-CP > phenol. This research provides a novel concept to effectively remove 2,4-DCP and mechanism analysis.
Collapse
Affiliation(s)
- Yajun Li
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, 100 Pingleyuan, Beijing, 100124, China
| | - Yongxiang Zhang
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, 100 Pingleyuan, Beijing, 100124, China.
| | - Wenjing Yang
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, 100 Pingleyuan, Beijing, 100124, China
| | - Yuhui Lin
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, 100 Pingleyuan, Beijing, 100124, China
| |
Collapse
|
9
|
Cui MH, Zhang Q, Justo Ambuchi J, Liu LY, Chen L, Niu SM, Zhang C, Liu HB, Tie C, Bi XJ, Liu H, Wang AJ. Evaluation of the Respective Contribution of Anode and Cathode for Triclosan Degradation in a Bioelectrochemical System. BIORESOURCE TECHNOLOGY 2023; 382:129121. [PMID: 37146695 DOI: 10.1016/j.biortech.2023.129121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/07/2023]
Abstract
In this work, the bioelectrochemical system (BES) is a feasible alternative for successfully degrading typical refractory emerging contaminant triclosan (TCS). A single-chamber BES reactor with an initial TCS concentration of 1 mg/L, an applied voltage of 0.8 V, and a solution buffered with 50 mM PBS degraded 81.4±0.2% of TCS, exhibiting TCS degradation efficiency improvement to 90.6±0.2% with a biocathode formed from a reversed bioanode. Both bioanode and biocathode were able to degrade TCS with comparable efficiencies of 80.8±4.9% and 87.3±0.4%, respectively. Dechlorination and hydrolysis were proposed as the TCS degradation pathway in the cathode chamber, and another hydroxylation pathway was exclusive in the anode chamber. Microbial community structure analysis indicated Propionibacteriaceae was the predominant member in all electrode biofilms, and the exoelectrogen Geobacter was enriched in anode biofilms. This study comprehensively revealed the feasibility of operating BES technology for TCS degradation.
Collapse
Affiliation(s)
- Min-Hua Cui
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Qian Zhang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; Tai'an Water Conservancy Bureau, Tai'an 271299, PR China
| | - John Justo Ambuchi
- Department of Agronomy and Environmental Science, Rongo University, Rongo, Kenya
| | - Lan-Ying Liu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Lei Chen
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Shi-Ming Niu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Chao Zhang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Hong-Bo Liu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Chao Tie
- Jiangsu Zhonglin Environment Engineering Co., Ltd. Wuxi 214000, PR China
| | - Xue-Juan Bi
- Jiangsu Zhonglin Environment Engineering Co., Ltd. Wuxi 214000, PR China
| | - He Liu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| | - Ai-Jie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| |
Collapse
|
10
|
Yan J, Chen C, Sun H, Su X, Zhang S. Mechanism of nitrogen-doped biochar activated peroxymonosulfate for degradation of 2,4-dichlorophenol. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:37475-37486. [PMID: 36574126 DOI: 10.1007/s11356-022-24950-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/20/2022] [Indexed: 06/18/2023]
Abstract
Biochar activated peroxymonosulfate has been widely used to degrade organic pollutants. However, the chemical inertness of the sp2 hybrid conjugated carbon framework and the limited number of active sites on the pristine biochar resulted in the low catalytic activity of the system, restricting its further application. In this study, nitrogen-doped biochar was prepared following a simple one-step synthesis method taking advantage of the similar atomic radius and significant difference in electronegativity of N and C atoms to explore the properties and mechanisms of biochar-mediated peroxymonosulfate activation to degrade 2,4-dichlorophenol. Results from degradation experiments revealed that the catalytic efficiency of the prepared nitrogen-doped biochar was approximately 37.8 times higher than that of the undoped biochar. Quenching experiments combined with Electron paramagnetic resonance (EPR) analysis illustrated that the generated singlet oxygen (1O2) and superoxide anion radical (O2•-) were the main reactive oxidative species that dominated the target organics removal processes. This work will provide a theoretical basis for expanding the practical application of nitrogen-doped biochar to remediate water pollution via peroxymonosulfate activation.
Collapse
Affiliation(s)
- Jincan Yan
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, People's Republic of China
| | - Chen Chen
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, People's Republic of China
| | - Hao Sun
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, People's Republic of China
| | - Xiaosi Su
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, People's Republic of China
- Institute of Water Resources and Environment, Jilin University, No. 2519, Jiefang Road, Changchun, 130026, People's Republic of China
| | - Shengyu Zhang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, People's Republic of China.
- Institute of Water Resources and Environment, Jilin University, No. 2519, Jiefang Road, Changchun, 130026, People's Republic of China.
| |
Collapse
|
11
|
Wang Y, Zhang X, Xiao L, Lin H. The in-depth revelation of the mechanism by which a downflow Leersia hexandra Swartz constructed wetland-microbial fuel cell synchronously removes Cr(VI) and p-chlorophenol and generates electricity. ENVIRONMENTAL RESEARCH 2023; 216:114451. [PMID: 36183789 DOI: 10.1016/j.envres.2022.114451] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/19/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
The composite pollution by Cr(VI) and p-chlorophenol (4-CP) has high toxicity and harms water safety. However, research on the effective removal of Cr(VI) and 4-CP composite-polluted wastewater (C&P) and efficient synchronous electricity generation with reclaimed resources is limited. In this study, a downflow Leersia hexandra constructed wetland-microbial fuel cell (DLCW-MFC) was builded to treat C&P, as well as wastewater singularly polluted by Cr(VI) (SC) and 4-CP (SP), respectively, to reveal the mechanism by which DLCW-MFC treats C&P and synchronously generates electricity. The results demonstrate that the cathode layer had a stronger removal effect on pollutants than the middle layer and anode zone layer. Moreover, SC and SP had stronger pollutant removal effects than C&P. Cr(VI) had more competitive with electrons than 4-CP, and they had a synergistic effect on efficient electricity generation. The L.hexandra in SC and SP had a better growth state and lower Cr enrichment concentration than that in C&P. Cr existed in the DLCW-MFC mainly in the form of Cr(III). Gas chromatography-mass spectrometry was used to investigate the degradation pathway of 4-CP in C&P, and indicated that Phenol, 2,4-bis(1,1-dimethylethyl)- and benzoic acid compounds were the main intermediates formed at the cathode, and further mineralized to form medium-long-chain organic compounds to form CO2. The microbial community distribution results revealed that Simplicispira, Cloacibacterium, and Rhizobium are associated with Cr(VI) removal and 4-CP degradation, and were found to be rich in the cathode of C&P. The anode of C&P was found to have more Acinetobacter (1.34%) and Spirochaeta (4.83%) than SC and SP, and the total relative abundance of electricigens at the anode of C&P (7.46%) was higher than that at the anodes of SC and SP. This study can provide a theoretical foundation for the DLCW-MFC to treat heavy metal and chlorophenol composite-polluted wastewater and synchronously generate electricity.
Collapse
Affiliation(s)
- Yian Wang
- College of Environmental Science and Engineering, Guilin University of Technology, 319 Yanshan Street, Guilin, 541000, China; Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Areas, Guilin University of Technology, 319 Yanshan Street, Guilin, 541000, China.
| | - Xuehong Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, 319 Yanshan Street, Guilin, 541000, China; Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Areas, Guilin University of Technology, 319 Yanshan Street, Guilin, 541000, China.
| | - Ling Xiao
- College of Environmental Science and Engineering, Guilin University of Technology, 319 Yanshan Street, Guilin, 541000, China; Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Areas, Guilin University of Technology, 319 Yanshan Street, Guilin, 541000, China.
| | - Hua Lin
- College of Environmental Science and Engineering, Guilin University of Technology, 319 Yanshan Street, Guilin, 541000, China; Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Areas, Guilin University of Technology, 319 Yanshan Street, Guilin, 541000, China.
| |
Collapse
|
12
|
Wang H, Yun H, Li M, Cui H, Ma X, Zhang Y, Pei X, Zhang L, Shi K, Li Z, Liang B, Wang A, Zhou J. Fate, toxicity and effect of triclocarban on the microbial community in wastewater treatment systems. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129796. [PMID: 36007371 DOI: 10.1016/j.jhazmat.2022.129796] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/04/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Triclocarban (TCC), one of the typical antimicrobial agents, is a contaminant of emerging concern commonly found in high concentration in water environments. However, the fate and toxicity of TCC in wastewater treatment systems remain poorly understood. Here, we investigated how TCC impacts chemical oxygen demand and inorganic nitrogen transformation in a hydrolytic anaerobic-anoxic/oxic process. In the anaerobic section, the transformation of TCC was dominated by reductive dechlorination and supplemented by two amid bonds hydrolysis. In the anoxic and oxic sections, the hydrolysis of amid bonds dominated. The toxicity was reduced after the treatment (IC50 from 0.09 to 0.54). TCC inhibited NH4+-N removal in the anaerobic section and led to the NO3--N accumulation (2.84-4.13 mg/L) after treatment, with the abundance of N-removal bacteria decreased by 6%. Furthermore, the original ecological niche was gradually replaced by TCC-resistant/degradative bacteria, formating new microbial modules to resist the TCC stress. Importantly, fourteen genera including Methanosaeta, Longilinea, Dokdonella and Mycobacterium as potential bioindicators warning TCC and its intermediates were proposed. Overall, this study provides new insights into the fate of TCC in biological wastewater treatment systems and suggests a great importance for TCC control to ensure the health and resilience of ecosystems.
Collapse
Affiliation(s)
- Hao Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hui Yun
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Minghan Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hanlin Cui
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xiaodan Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yanqing Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xuanyuan Pei
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liying Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ke Shi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhiling Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China.
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Jizhong Zhou
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA
| |
Collapse
|
13
|
Huang S, Tang X, Yu L, Hong S, Liu J, Xu B, Liu R, Guo Y, Xu L. Colorimetric assay of phosphate using a multicopper laccase-like nanozyme. Mikrochim Acta 2022; 189:378. [PMID: 36076043 DOI: 10.1007/s00604-022-05476-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/25/2022] [Indexed: 11/26/2022]
Abstract
A new nanozyme (Cu-NADH) is reported composed of Cu-coordinated nicotinamide adenine dinucleotide (NADH) exhibiting laccase-like activity. The Cu-NADH nanozyme had higher heat tolerance and catalytic efficiency than natural laccase, and its catalytic activity can be enhanced by high concentration of Cl ions and it is intensely inhibited by phosphate. Therefore, a colorimetric method based on Cu-NADH and indigo carmine was successfully developed to detect phosphate in water. This method showed an excellent selectivity for phosphate, and it had a linear relationship in the phosphate concentration range 2-50 μM with a detection limit of 0.37 μM. We believe that this example of coordination between metal ions and biomolecules to mimic natural enzymes can inspire more effective and alternative strategies in nanozyme design and expand their use in sensing and determination.
Collapse
Affiliation(s)
- Sijun Huang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Xuyong Tang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Liqiang Yu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Shiyin Hong
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Jihuan Liu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Baofeng Xu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| | - Rui Liu
- Department of VIP Unit, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yi Guo
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.
| | - Li Xu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.
| |
Collapse
|
14
|
Ramos-Ramírez E, Gutiérrez-Ortega N, Tzompantzi-Morales F, Castillo-Rodríguez J, Barrera-Rodríguez A, Del Ángel G, Gutiérrez-Arzaluz M, Pérez-Hernández R, del Pilar Guevara-Hornedo M. Photocatalytic Degradation of 2,4-Dichlorophenol in Water Using MgAl Activated Hydrotalcites as Photocatalyst. Top Catal 2022. [DOI: 10.1007/s11244-022-01688-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
15
|
Li J, Liu Q, Sun S, Zhang X, Zhao X, Yu J, Cui W, Du Y. Degradation characteristics of crude oil by a consortium of bacteria in the existence of chlorophenol. Biodegradation 2022; 33:461-476. [PMID: 35729449 DOI: 10.1007/s10532-022-09992-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 06/06/2022] [Indexed: 11/25/2022]
Abstract
In order to enhance the degradation effect of microorganisms on crude oil in the existence of chlorophenol compounds, oil-degrading bacteria C4 (Alcaligenes faecails), C5 (Bacillus sp.) and 2,4-dichlorophenol (2,4-DCP) degrading bacteria L3 (Bacillus marisflavi), L4 (Bacillus aquimaris) were isolated to construct a highly efficient consortium named (C4C5 + L3L4). When the compound bacteria agent combination by VC4: VC5: VL3: VL4 = 1:2:2:1, the crude oil degradation efficiency of 7 days was stable at 50.63% ~ 55.43% under different conditions. Degradation mechanism was analyzed by FTIR, GC-MS and IC technology and the following conclusions showed that in the system of adding consortium (C4C5 + L3L4), the heavy components were converted into saturated and unsaturated components. The bacterial consortium could first degrade medium and long chain alkanes into short chain hydrocarbons and then further degrade. And the dechlorination efficiency of 2,4-DCP in the degradation system reached 73.83%. The results suggested that the potential applicability and effectiveness of the selected bacteria consortium for the remediation of oil-contaminated water or soil with the existence of chlorophenol compound.
Collapse
Affiliation(s)
- Jing Li
- School of Chemistry and Chemical Engineering, China University of Petroleum (East China), No. 66, Changjiang West Road, Huangdao District, Qingdao, 266580, China.,State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, China
| | - Qiyou Liu
- School of Chemistry and Chemical Engineering, China University of Petroleum (East China), No. 66, Changjiang West Road, Huangdao District, Qingdao, 266580, China. .,State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, China.
| | - Shuo Sun
- School of Chemistry and Chemical Engineering, China University of Petroleum (East China), No. 66, Changjiang West Road, Huangdao District, Qingdao, 266580, China.,State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, China
| | - Xiuxia Zhang
- School of Chemistry and Chemical Engineering, China University of Petroleum (East China), No. 66, Changjiang West Road, Huangdao District, Qingdao, 266580, China.,State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, China
| | - Xiuying Zhao
- School of Chemistry and Chemical Engineering, China University of Petroleum (East China), No. 66, Changjiang West Road, Huangdao District, Qingdao, 266580, China
| | - Junlong Yu
- School of Chemistry and Chemical Engineering, China University of Petroleum (East China), No. 66, Changjiang West Road, Huangdao District, Qingdao, 266580, China
| | - Wu Cui
- School of Chemistry and Chemical Engineering, China University of Petroleum (East China), No. 66, Changjiang West Road, Huangdao District, Qingdao, 266580, China
| | - Yi Du
- School of Chemistry and Chemical Engineering, China University of Petroleum (East China), No. 66, Changjiang West Road, Huangdao District, Qingdao, 266580, China
| |
Collapse
|
16
|
Peng F, Ye M, Liu Y, Liu J, Lan Y, Luo A, Zhang T, Jiang Z, Song H. Comparative genomics reveals response of Rhodococcus pyridinivorans B403 to phenol after evolution. Appl Microbiol Biotechnol 2022; 106:2751-2761. [DOI: 10.1007/s00253-022-11858-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/23/2022] [Accepted: 02/26/2022] [Indexed: 11/24/2022]
|
17
|
Wang Z, Miao R, He L, Guan Q, Shi Y. Green synthesis of MIL-100(Fe) derivatives and revealing their structure-activity relationship for 2,4-dichlorophenol photodegradation. CHEMOSPHERE 2022; 291:132950. [PMID: 34801575 DOI: 10.1016/j.chemosphere.2021.132950] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/16/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
MIL-100(Fe), a kind of iron-based metal-organic framework materials (MOFs), can be synthesized at room temperature or hydrothermal conditions, which are promising precursor materials for preparing photocatalysts to degrade some recalcitrant chlorophenols in industrial wastewater. However, the relationship between the structural characterization of MIL-100(Fe) derivatives and their photodegradation behavior of chlorophenol pollutants is still unclear. Thus, in this work, a porous Z-scheme α-Fe2O3/MIL-100(Fe) composite was successfully fabricated via partial-pyrolysis of MIL-100(Fe) precursor synthesized through green synthesis route, which was further used for degrading high-concentration of 2,4-dichlorophenol under visible-light illumination (λ > 420 nm). The effects of synthesis route and pyrolysis temperature of MIL-100(Fe) on the degradation efficiencies of as-derived materials for 2,4-dichlorophenol were investigated. The structure-activity relationship was illuminated in detail. Otherwise, the influence of several process factors, i.e., initial concentration and pH of the 2,4-dichlorophenol solution, catalyst dosage on the degradation efficiency of 2,4-dichlorophenol has also been performed. The removal efficiency of 2,4-dichlorophenol with the initial concentration of 100 mg L-1 reached up to 87.65% under optimized conditions. Lastly, the possible mechanism was explored based on trapping experiments and some other characterization results. The study in this paper not only exhibited new insight into the modified α-Fe2O3 material with high photocatalytic activity but also provided a promising method for treating wastewater containing 2,4-dichlorophenol or other similar organic pollutants.
Collapse
Affiliation(s)
- Zhijuan Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, 650500, Kunming, China; Faculty of Chemical Engineering and Technology, Xinjiang University, 830046, Urumqi, China; College of Chemistry and Environmental Science, Qujing Normal University, 655011, Qujing, China
| | - Rongrong Miao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, 650500, Kunming, China
| | - Liang He
- Faculty of Chemical Engineering, Kunming University of Science and Technology, 650500, Kunming, China.
| | - Qingqing Guan
- Faculty of Chemical Engineering and Technology, Xinjiang University, 830046, Urumqi, China.
| | - Yuzhen Shi
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, 650500, Kunming, China
| |
Collapse
|