1
|
Savinova OS, Savinova TS, Fedorova TV. Oestrogen Detoxification Ability of White Rot Fungus Trametes hirsuta LE-BIN 072: Exoproteome and Transformation Product Profiling. J Fungi (Basel) 2024; 10:795. [PMID: 39590714 PMCID: PMC11595678 DOI: 10.3390/jof10110795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
White rot fungi, especially representatives of the genus Trametes spp. (Polyporaceae), are effective destructors of various xenobiotics, including oestrogens (phenol-like steroids), which are now widespread in the environment and pose a serious threat to the health of humans, animals and aquatic organisms. In this work, the ability of the white rot fungus Trametes hirsuta LE-BIN 072 to transform oestrone (E1) and 17β-oestradiol (E2), the main endocrine disruptors, was shown. More than 90% of the initial E1 and E2 were removed by the fungus during the first 24 h of transformation. The transformation process proceeded predominantly in the direction of the initial substrates' detoxification, with the radical oxidative coupling of E1 and E2 as well as their metabolites and the formation of less toxic dimers in various combinations. A number of minor metabolites, in particular, less toxic estriol (E3), were identified by HPLC-MS. The formation of E1 from E2 and vice versa were shown. The exoproteome of the white rot fungus during the transformation of oestrogens was studied in detail for the first time. The contribution of ligninolytic peroxidases (MnP5, MnP7 and VP2) to the process of the extracellular detoxification of oestrogens and their possible metabolites is highlighted. Thus, the studied strain appears to be a promising mycodetoxicant of phenol-like steroids in aquatic environments.
Collapse
Affiliation(s)
- Olga S. Savinova
- Bach Institute of Biochemistry, Federal Research Center, Fundamentals of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (T.S.S.); (T.V.F.)
| | | | | |
Collapse
|
2
|
Liu Y, Wang S, Liang J, Lu L, Xie Y, Qin C, Liang C, Huang C, Yao S. Optimizing lignin demethylation using a novel proton- based ionic liquid: 1, 2-propanediamine/glycolic acid catalyst. Int J Biol Macromol 2024; 279:135172. [PMID: 39208526 DOI: 10.1016/j.ijbiomac.2024.135172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/29/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Demethylation modification of lignin is an effective strategy to overcome the barrier to its high-value conversion. The purpose of this study focuses on the new proton-based ionic liquid (PIL) 1, 2-propanediamine/glycolic acid (PD/GA) as a catalyst and solvent to achieve the targeted oxidation of lignin. The PD/GA solvents have higher selectivity and efficiency. Optimal phenolic hydroxyl (PH)-increment was achieved, demonstrating enhanced demethylating effect on lignin by modulating the acid-base molar ratio, reaction temperature, and reaction time. Compared to ethanolamine/acetic acid (CE/AC) treatment, the PD/GA treatment at molar ratio 1.25, temperature 60 °C, and 3 h increased the PH-content from 37.74 to 59.91 %. Additionally, the lignin treated with PD/GA exhibited excellent recyclability, featuring a larger Brunauer-Emmett-Teller surface area (1.45 m2.g-1), total pore volume (9.51*10-3 cm3.g-1), and mesoporous size (26.15 nm). The treated lignin yielded maximum ultraviolet resistance and antioxidant activity. These results present new avenues for the development of green and efficient lignin demethylation methods.
Collapse
Affiliation(s)
- Yi Liu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Shaoyan Wang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Jiarui Liang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Lirong Lu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Yi Xie
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Chengrong Qin
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Chen Liang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Shuangquan Yao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China.
| |
Collapse
|
3
|
Towle Z, Cruickshank F, Mackay CL, Clarke DJ, Horsfall LE. Utilising Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) to track the oxidation of lignin by an alkaliphilic laccase. Analyst 2024; 149:2399-2411. [PMID: 38477231 PMCID: PMC11018093 DOI: 10.1039/d4an00124a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/07/2024] [Indexed: 03/14/2024]
Abstract
Lignin is a complex heteroaromatic polymer which is one of the most abundant and diverse biopolymers on the planet. It comprises approximately one third of all woody plant matter, making it an attractive candidate as an alternative, renewable feedstock to petrochemicals to produce fine chemicals. However, the inherent complexity of lignin makes it difficult to analyse and characterise using common analytical techniques, proving a hindrance to the utilisation of lignin as a green chemical feedstock. Herein we outline the tracking of lignin degradation by an alkaliphilic laccase in a semi-quantitative manner using a combined chemical analysis approach using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) to characterise shifts in chemical diversity and relative abundance of ions, and NMR to highlight changes in the structure of lignin. Specifically, an alkaliphilic laccase was used to degrade an industrially relevant lignin, with compounds such as syringaresinol being almost wholly removed (95%) after 24 hours of treatment. Structural analyses reinforced these findings, indicating a >50% loss of NMR signal relating to β-β linkages, of which syringaresinol is representative. Ultimately, this work underlines a combined analytical approach that can be used to gain a broader semi-quantitative understanding of the enzymatic activity of laccases within a complex, non-model mixture.
Collapse
Affiliation(s)
- Zak Towle
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Roger Land Building, King's Buildings, Edinburgh, EH9 3FF, UK.
| | - Faye Cruickshank
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, UK.
| | - C Logan Mackay
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, UK.
| | - David J Clarke
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, UK.
| | - Louise E Horsfall
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Roger Land Building, King's Buildings, Edinburgh, EH9 3FF, UK.
| |
Collapse
|
4
|
Drané M, Zbair M, Hajjar-Garreau S, Josien L, Michelin L, Bennici S, Limousy L. Unveiling the Potential of Corn Cob Biochar: Analysis of Microstructure and Composition with Emphasis on Interaction with NO 2. MATERIALS (BASEL, SWITZERLAND) 2023; 17:159. [PMID: 38204013 PMCID: PMC10780219 DOI: 10.3390/ma17010159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/21/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024]
Abstract
In the context of sustainable solutions, this study examines the pyrolysis process applied to corn cobs, with the aim of producing biochar and assessing its effectiveness in combating air pollution. In particular, it examines the influence of different pyrolysis temperatures on biochar properties. The results reveal a temperature-dependent trend in biochar yield, which peaks at 400 °C, accompanied by changes in elemental composition indicating increased stability and extended shelf life. In addition, high pyrolysis temperatures, above 400 °C, produce biochars with enlarged surfaces and improved pore structures. Notably, the highest pyrolysis temperature explored in this study is 600 °C, which significantly influences the observed properties of biochars. This study also explores the potential of biochar as an NO2 adsorbent, as identified by chemical interactions revealed by X-ray photoelectron spectroscopy (XPS) analysis. This research presents a promising and sustainable approach to tackling air pollution using corn cob biochar, providing insight into optimized production methods and its potential application as an effective NO2 adsorbent to improve air quality.
Collapse
Affiliation(s)
- Méghane Drané
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France; (M.D.); (M.Z.); (S.H.-G.); (L.J.); (L.M.); (S.B.)
- Université de Strasbourg, F-67081 Strasbourg, France
| | - Mohamed Zbair
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France; (M.D.); (M.Z.); (S.H.-G.); (L.J.); (L.M.); (S.B.)
- Université de Strasbourg, F-67081 Strasbourg, France
| | - Samar Hajjar-Garreau
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France; (M.D.); (M.Z.); (S.H.-G.); (L.J.); (L.M.); (S.B.)
- Université de Strasbourg, F-67081 Strasbourg, France
| | - Ludovic Josien
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France; (M.D.); (M.Z.); (S.H.-G.); (L.J.); (L.M.); (S.B.)
- Université de Strasbourg, F-67081 Strasbourg, France
| | - Laure Michelin
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France; (M.D.); (M.Z.); (S.H.-G.); (L.J.); (L.M.); (S.B.)
- Université de Strasbourg, F-67081 Strasbourg, France
| | - Simona Bennici
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France; (M.D.); (M.Z.); (S.H.-G.); (L.J.); (L.M.); (S.B.)
- Université de Strasbourg, F-67081 Strasbourg, France
| | - Lionel Limousy
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France; (M.D.); (M.Z.); (S.H.-G.); (L.J.); (L.M.); (S.B.)
- Université de Strasbourg, F-67081 Strasbourg, France
| |
Collapse
|
5
|
Moiseenko KV, Glazunova OA, Savinova OS, Fedorova TV. Exoproteomic Study and Transcriptional Responses of Laccase and Ligninolytic Peroxidase Genes of White-Rot Fungus Trametes hirsuta LE-BIN 072 Grown in the Presence of Monolignol-Related Phenolic Compounds. Int J Mol Sci 2023; 24:13115. [PMID: 37685920 PMCID: PMC10487439 DOI: 10.3390/ijms241713115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/24/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Being an abundant renewable source of aromatic compounds, lignin is an important component of future bio-based economy. Currently, biotechnological processing of lignin through low molecular weight compounds is one of the conceptually promising ways for its valorization. To obtain lignin fragments suitable for further inclusion into microbial metabolism, it is proposed to use a ligninolytic system of white-rot fungi, which mainly comprises laccases and peroxidases. However, laccase and peroxidase genes are almost always represented by many non-allelic copies that form multigene families within the genome of white-rot fungi, and the contributions of exact family members to the overall process of lignin degradation has not yet been determined. In this article, the response of the Trametes hirsuta LE-BIN 072 ligninolytic system to the presence of various monolignol-related phenolic compounds (veratryl alcohol, p-coumaric acid, vanillic acid, and syringic acid) in culture media was monitored at the level of gene transcription and protein secretion. By showing which isozymes contribute to the overall functioning of the ligninolytic system of the T. hirsuta LE-BIN 072, the data obtained in this study will greatly contribute to the possible application of this fungus and its ligninolytic enzymes in lignin depolymerization processes.
Collapse
Affiliation(s)
| | - Olga A. Glazunova
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Ave. 33/2, Moscow 119071, Russia; (K.V.M.); (O.S.S.); (T.V.F.)
| | | | | |
Collapse
|
6
|
Tu P, Zhang G, Wei G, Li J, Li Y, Deng L, Yuan H. Influence of pyrolysis temperature on the physicochemical properties of biochars obtained from herbaceous and woody plants. BIORESOUR BIOPROCESS 2022; 9:131. [PMID: 38647942 PMCID: PMC10991468 DOI: 10.1186/s40643-022-00618-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
This work aimed to investigate the effect of pyrolysis temperature on the yield and properties of biochars synthesized from herbaceous and woody plants. Four typical materials, including two herbaceous plants (rice straw, corn straw) and two woody plants (camellia oleifera shells, garden waste), were used in the experiments under five operating temperatures (from 300 °C to 700 °C, with an interval of 100 °C). The results showed biochar derived from herbaceous plants had a significantly higher pH (from 7.68 to 11.29 for RS), electrical conductivity (EC, from 6.5 Ms cm-1 to 13.2 mS cm-1 for RS), cation exchange conductivity (CEC, from 27.81 cmol kg-1 to 21.69 cmol kg-1 for RS), and ash content (from 21.79% to 32.71% for RS) than the biochar from woody plants, but the volatile matter (VM, from 42.23% to 11.77% for OT) and specific surface area (BET, from 2.88 m2 g-1 to 301.67 m2 g-1 for OT) in the woody plant-derived biochar were higher. Except for CEC and VM, all the previously referred physicochemical characteristics in the as-prepared biochars increased with the increasing pyrolysis temperature, the H/C and O/C values of herbaceous and woody plant-derived biochar were lower than 0.9 and 0.3, respectively, confirming their potential as the material for carbon sequestration. The results revealed that biochar made from herbaceous plants was more suitable for acidic soil amendments. In contrast, woody plant-derived biochar were recommended to remove heavy metals in environmental remediation and water treatment.
Collapse
Affiliation(s)
- Panfeng Tu
- Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China
| | - Guanlin Zhang
- Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Guoqiang Wei
- Institute of Biomass Engineering, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Juan Li
- Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China
| | - Yongquan Li
- Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China
| | - Lifang Deng
- Institute of Biomass Engineering, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
| | - Haoran Yuan
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China
- Institute of Biomass Engineering, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| |
Collapse
|
7
|
Rehman JU, Joe EN, Yoon HY, Kwon S, Oh MS, Son EJ, Jang KS, Jeon JR. Lignin Metabolism by Selected Fungi and Microbial Consortia for Plant Stimulation: Implications for Biologically Active Humus Genesis. Microbiol Spectr 2022; 10:e0263722. [PMID: 36314978 PMCID: PMC9769858 DOI: 10.1128/spectrum.02637-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022] Open
Abstract
Plant lignin is regarded as an important source for soil humic substances (HSs). Nonetheless, it remains unclear whether microbial metabolism on lignin is related to the genesis of unique HS biological activities (e.g., direct plant stimulation). Here, selected white-rot fungi (i.e., Ganoderma lucidum and Irpex lacteus) and plant litter- or mountain soil-derived microbial consortia were exploited to structurally modify lignin, followed by assessing the plant-stimulatory activity of the lignin-derived products. Parts solubilized by microbial metabolism on lignin were proven to exhibit organic moieties of phenol, carboxylic acid, and aliphatic groups and the enhancement of chromogenic features (i.e., absorbance at 450 nm), total phenolic contents, and radical-scavenging capacities with the cultivation times. In addition, high-resolution mass spectrometry revealed the shift of lignin-like molecules toward those showing either more molar oxygen-to-carbon or more hydrogen-to-carbon ratios. These results support the findings that the microbes involved, solubilize lignin by fragmentation, oxygenation, and/or benzene ring opening. This notion was also substantiated by the detection of related exoenzymes (i.e., peroxidases, copper radical oxidases, and hydrolases) in the selected fungal cultures, while the consortia treated with antibacterial agents showed that the fungal community is a sufficient condition to induce the lignin biotransformation. Major families of fungi (e.g., Nectriaceae, Hypocreaceae, and Saccharomycodaceae) and bacteria (e.g., Burkholderiaceae) were identified in the lignin-enriched cultures. All the microbially solubilized lignin products were likely to stimulate plant root elongation in the order selected white-rot fungi > microbial consortia > antibacterial agent-treated microbial consortia. Overall, this study supports the idea that microbial transformation of lignin can contribute to the formation of biologically active organic matter. IMPORTANCE Structurally stable humic substances (HSs) in soils are tightly associated with soil fertility, and it is thus important to understand how soil HSs are naturally formed. It is believed that microbial metabolism on plant matter contributes to natural humification, but detailed microbial species and their metabolisms inducing humic functionality (e.g., direct plant stimulation) need to be further investigated. Our findings clearly support that microbial metabolites of lignin could contribute to the formation of biologically active humus. This research direction appears to be meaningful not only for figuring out the natural processes, but also for confirming natural microbial resources useful for artificial humification that can be linked to the development of high-quality soil amendments.
Collapse
Affiliation(s)
- Jalil Ur Rehman
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, Jinju, Republic of Korea
| | - Eun-Nam Joe
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, Jinju, Republic of Korea
| | - Ho Young Yoon
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, Jinju, Republic of Korea
| | - Sumin Kwon
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, Jinju, Republic of Korea
| | - Min Seung Oh
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, Jinju, Republic of Korea
| | - Eun Ju Son
- Bio-Chemical Analysis Team, Korea Basic Science Institute, Cheongju, South Korea
| | - Kyoung-Soon Jang
- Bio-Chemical Analysis Team, Korea Basic Science Institute, Cheongju, South Korea
| | - Jong-Rok Jeon
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, Jinju, Republic of Korea
- Department of Agricultural Chemistry and Food Science & Technology, Gyeongsang National University, Jinju, Republic of Korea
- IALS, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
8
|
Savinova OS, Shabaev AV, Glazunova OA, Moiseenko KV, Fedorova TV. Benzyl Butyl Phthalate and Diisobutyl Phthalate Biodegradation by White-rot Fungus Trametes hirsuta. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822100118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
9
|
Shabaev AV, Moiseenko KV, Glazunova OA, Savinova OS, Fedorova TV. Comparative Analysis of Peniophora lycii and Trametes hirsuta Exoproteomes Demonstrates “Shades of Gray” in the Concept of White-Rotting Fungi. Int J Mol Sci 2022; 23:ijms231810322. [PMID: 36142233 PMCID: PMC9499651 DOI: 10.3390/ijms231810322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
White-rot basidiomycete fungi are a unique group of organisms that evolved an unprecedented arsenal of extracellular enzymes for an efficient degradation of all components of wood such as cellulose, hemicelluloses and lignin. The exoproteomes of white-rot fungi represent a natural enzymatic toolbox for white biotechnology. Currently, only exoproteomes of a narrow taxonomic group of white-rot fungi—fungi belonging to the Polyporales order—are extensively studied. In this article, two white-rot fungi, Peniophora lycii LE-BIN 2142 from the Russulales order and Trametes hirsuta LE-BIN 072 from the Polyporales order, were compared and contrasted in terms of their enzymatic machinery used for degradation of different types of wood substrates—alder, birch and pine sawdust. Our findings suggested that the studied fungi use extremely different enzymatic systems for the degradation of carbohydrates and lignin. While T. hirsuta LE-BIN 072 behaved as a typical white-rot fungus, P. lycii LE-BIN 2142 demonstrated substantial peculiarities. Instead of using cellulolytic and hemicellulolytic hydrolytic enzymes, P. lycii LE-BIN 2142 primarily relies on oxidative polysaccharide-degrading enzymes such as LPMO and GMC oxidoreductase. Moreover, exoproteomes of P. lycii LE-BIN 2142 completely lacked ligninolytic peroxidases, a well-known marker of white-rot fungi, but instead contained several laccase isozymes and previously uncharacterized FAD-binding domain-containing proteins.
Collapse
|
10
|
Cui B, Chen Z, Guo D, Liu Y. Investigations on the pyrolysis of microalgal-bacterial granular sludge: Products, kinetics, and potential mechanisms. BIORESOURCE TECHNOLOGY 2022; 349:126328. [PMID: 34780909 DOI: 10.1016/j.biortech.2021.126328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
This study investigated the pyrolysis of microalgal-bacterial granular sludge for producing bio-oil and biochar. Results showed that the bio-oil productivity of pyrolyzed MBGS reached 39.5-45.4 wt%, while 23.8-41.2% for the nitrogen-containing bio-oil at the temperature of 673-1073 K. Meanwhile the biochar with a nitrogen content of 3.7-7.0 wt% could also be produced. Moreover, the Van-Krevelen diagram revealed that produced bio-oil had a H/C ratio higher than that from agroforestry biomass, but its O/C ratio was found to be similar to those of coal and biochar. It further appeared from a mass conservation analysis that the highest bio-oil production yield was achieved at a pyrolysis temperature of 773 K, while the pyrolytic kinetics of MBGS in the temperature range studied was governed by the 3-D diffusion mechanism with the activation energy of 224.96 kJ·mol-1.
Collapse
Affiliation(s)
- Baihui Cui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihua Chen
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Xinxiang 453007, China
| | - Dabin Guo
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| | - Yu Liu
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| |
Collapse
|
11
|
Rodrigues RCLB, Green Rodrigues B, Vieira Canettieri E, Acosta Martinez E, Palladino F, Wisniewski A, Rodrigues D. Comprehensive approach of methods for microstructural analysis and analytical tools in lignocellulosic biomass assessment - A review. BIORESOURCE TECHNOLOGY 2022; 348:126627. [PMID: 34958907 DOI: 10.1016/j.biortech.2021.126627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/19/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
The trend in the modern world is to replace fossil fuels with green energy sources in order to reduce their environmental impact. The biorefinery industry, within this premise, needs to establish quantitative and qualitative analytical methods to better understand lignocellulosic biomass composition and structure. This paper presents chemical techniques (chromatography, thermal analysis, HRMS, FTIR, NIR, and NMR) and physicochemical techniques (XRD, optical and electron microscopy techniques - Confocal fluorescence, Raman, SPM, AFM, SEM, and TEM) for the microstructural characterization of lignocellulosic biomass and its derivatives. Each of these tools provides different and complementary information regarding molecular and microstructural composition of lignocellulosic biomass. Understanding these properties is essential for the design and operation of associated biomass conversion processing facilities. PAT, monitored in real-time, ensures an economical and balanced mass-energy process. This review aimed to help researchers select the most suitable analytical technique with which to investigate biomass feedstocks with recalcitrant natures.
Collapse
Affiliation(s)
- Rita C L B Rodrigues
- Departament of Biotechnology, Lorena Engineering School, University of São Paulo (USP),12600-970, Lorena, SP, Brazil.
| | - Bruna Green Rodrigues
- Departament of Biotechnology, Lorena Engineering School, University of São Paulo (USP),12600-970, Lorena, SP, Brazil
| | - Eliana Vieira Canettieri
- Chemistry and Energy Department, Guaratinguetá Engineering Faculty, São Paulo State University (UNESP), 12516-410, Guaratinguetá, SP, Brazil
| | - Ernesto Acosta Martinez
- Department of Technology, State University of Feira de Santana (UEFS), 44036-900 Feira de Santana, BA, Brazil
| | - Fernanda Palladino
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), 31270-901 Belo Horizonte, MG, Brazil
| | - Alberto Wisniewski
- Department of Chemistry, Federal University of Sergipe (UFS), 49100-000 São Cristovão, SE, Brazil
| | - Durval Rodrigues
- Department of Materials Engineering, Lorena Engineering School, University of São Paulo (USP), Lorena, SP, Brazil
| |
Collapse
|
12
|
Exoproteome Analysis of Antagonistic Interactions between the Probiotic Bacteria Limosilactobacillus reuteri LR1 and Lacticaseibacillus rhamnosus F and Multidrug Resistant Strain of Klebsiella pneumonia. Int J Mol Sci 2021; 22:ijms222010999. [PMID: 34681658 PMCID: PMC8537075 DOI: 10.3390/ijms222010999] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 12/21/2022] Open
Abstract
The expansion of multiple drug resistant (MDR) strains of Klebsiella pneumoniae presents an immense threat for public health. Annually, this microorganism causes thousands of lethal nosocomial infections worldwide. Currently, it has been shown that certain strains of lactic acid bacteria (LAB) can efficiently inhibit growth of K. pneumoniae and the formation of its biofilms; however, the active principle of such action remains unknown. In the current article, the growth inhibition of MDR K. pneumoniae by two LAB—Limosilactobacillus reuteri LR1 and Lacticaseibacillus rhamnosus F—is demonstrated, and the nature of this inhibition studied at the level of exoproteome. This article shows that the exoproteomes of studied LAB contains both classically and non-classically secreted proteins. While for L. reuteri LR1 the substantial portion of classically secreted proteins was presented by cell-wall-degrading enzymes, for L. rhamnosus F only one out of four classically secreted proteins was presented by cell-wall hydrolase. Non-classically secreted proteins of both LAB were primarily metabolic enzymes, for some of which a possible moonlighting functioning was proposed. These results contribute to knowledge regarding antagonistic interaction between LAB and pathogenic and opportunistic microorganisms and set new perspectives for the use of LAB to control the spread of these microorganisms.
Collapse
|
13
|
Ma J, Li Q, Wu Y, Yue H, Zhang Y, Zhang J, Shi M, Wang S, Liu GQ. Elucidation of ligninolysis mechanism of a newly isolated white-rot basidiomycete Trametes hirsuta X-13. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:189. [PMID: 34563244 PMCID: PMC8466896 DOI: 10.1186/s13068-021-02040-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/11/2021] [Indexed: 05/24/2023]
Abstract
BACKGROUND Lignin is a complex aromatic heteropolymer comprising 15-30% dry weight of the lignocellulose. The complex structural characteristic of lignin renders it difficult for value-added utilization. Exploring efficient lignin-degrading microorganisms and investigating their lignin-degradation mechanisms would be beneficial for promoting lignin valorization. In this study, a newly isolated white-rot basidiomycete, Trametes hirsuta X-13, with capacity to utilize alkaline lignin as the sole substrate was investigated. RESULTS The analysis of the fermentation properties of T. hirsuta X-13 using alkaline lignin as the sole substrate, including the mycelial growth, activities of ligninolytic enzymes and the rates of lignin degradation and decolorization confirmed its great ligninolysis capacity. The maximum lignin degradation rate reached 39.8% after 11 days of T. hirsuta X-13 treatment, which was higher than that of reported fungi under the same condition. Fourier transform infrared spectrometry (FTIR), gas chromatography-mass spectrometry (GC-MS) scanning electron micrographs (SEM), two-dimensional heteronuclear single quantum coherence NMR analysis (2D-HSQC NMR) collaborated with pyrolysis gas chromatography-mass spectrometry (py-GC/MS) analyses proved that lignin structure was severely deconstructed along with amounts of monomer aromatics generated. Furthermore, according to those chemical analysis, in addition to canonical Cα-Cβ breakage, the cleavage of lignin interunit linkages of β-β might also occur by T. hirsuta X-13. CONCLUSIONS This study characterized a newly isolated white-rot basidiomycete T. hirsuta X-13 with impressive alkaline lignin degradation ability and provided mechanistic insight into its ligninolysis mechanism, which will be valuable for the development of lignin valorization strategies.
Collapse
Affiliation(s)
- Jiangshan Ma
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry and Technology, Changsha, 410004 Hunan People’s Republic of China
- International Cooperation Base of Science and Technology Innovation On Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, 410004 Hunan People’s Republic of China
| | - Qiang Li
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry and Technology, Changsha, 410004 Hunan People’s Republic of China
- International Cooperation Base of Science and Technology Innovation On Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, 410004 Hunan People’s Republic of China
| | - Yujie Wu
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry and Technology, Changsha, 410004 Hunan People’s Republic of China
- International Cooperation Base of Science and Technology Innovation On Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, 410004 Hunan People’s Republic of China
| | - Huimin Yue
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry and Technology, Changsha, 410004 Hunan People’s Republic of China
- International Cooperation Base of Science and Technology Innovation On Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, 410004 Hunan People’s Republic of China
| | - Yanghong Zhang
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry and Technology, Changsha, 410004 Hunan People’s Republic of China
- International Cooperation Base of Science and Technology Innovation On Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, 410004 Hunan People’s Republic of China
| | - Jiashun Zhang
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry and Technology, Changsha, 410004 Hunan People’s Republic of China
- International Cooperation Base of Science and Technology Innovation On Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, 410004 Hunan People’s Republic of China
| | - Muling Shi
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry and Technology, Changsha, 410004 Hunan People’s Republic of China
- International Cooperation Base of Science and Technology Innovation On Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, 410004 Hunan People’s Republic of China
| | - Sixian Wang
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry and Technology, Changsha, 410004 Hunan People’s Republic of China
- International Cooperation Base of Science and Technology Innovation On Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, 410004 Hunan People’s Republic of China
| | - Gao-Qiang Liu
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry and Technology, Changsha, 410004 Hunan People’s Republic of China
- International Cooperation Base of Science and Technology Innovation On Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, 410004 Hunan People’s Republic of China
| |
Collapse
|
14
|
Yin C, Wang M, Ma Q, Bian H, Ren H, Dai H, Cheng J. Valorization of Rice Straw via Hydrotropic Lignin Extraction and Its Characterization. Molecules 2021; 26:molecules26144123. [PMID: 34299398 PMCID: PMC8305794 DOI: 10.3390/molecules26144123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/19/2021] [Accepted: 06/30/2021] [Indexed: 11/27/2022] Open
Abstract
Rice straw hydrotropic lignin was extracted from p-Toluene sulfonic acid (p-TsOH) fractionation with a different combined delignification factor (CDF). Hydrotropic lignin characterization was systematically investigated, and alkaline lignin was also studied for the contrast. Results showed that the hydrotropic rice straw lignin particle was in nanometer scopes. Compared with alkaline lignin, the hydrotropic lignin had greater molecular weight. NMR analysis showed that β-aryl ether linkage was well preserved at low severities, and the unsaturation in the side chain of hydrotropic lignin was high. H units and G units were preferentially degraded and subsequently condensed at high severity. High severity also resulted in the cleavage of part β-aryl ether linkage. 31P-NMR showed the decrease in aliphatic hydroxyl groups and the increasing carboxyl group content at high severity. The maximum weight loss temperature of the hydrotropic lignin was in the range of 330–350 °C, higher than the alkaline lignin, and the glass conversion temperature (Tg) of the hydrotropic lignin was in the range of 107–125 °C, lower than that of the alkaline lignin. The hydrotropic lignin has high β-aryl ether linkage content, high activity, nanoscale particle size, and low Tg, which is beneficial for its further valorization.
Collapse
Affiliation(s)
- Chongxin Yin
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp & Paper Science & Technology, Nanjing Forestry University, Nanjing 210037, China; (C.Y.); (M.W.); (H.B.); (H.R.); (H.D.)
| | - Min Wang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp & Paper Science & Technology, Nanjing Forestry University, Nanjing 210037, China; (C.Y.); (M.W.); (H.B.); (H.R.); (H.D.)
| | - Qingzhi Ma
- Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, Zhejiang University of Science and Technology, Hangzhou 310023, China;
| | - Huiyang Bian
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp & Paper Science & Technology, Nanjing Forestry University, Nanjing 210037, China; (C.Y.); (M.W.); (H.B.); (H.R.); (H.D.)
| | - Hao Ren
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp & Paper Science & Technology, Nanjing Forestry University, Nanjing 210037, China; (C.Y.); (M.W.); (H.B.); (H.R.); (H.D.)
| | - Hongqi Dai
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp & Paper Science & Technology, Nanjing Forestry University, Nanjing 210037, China; (C.Y.); (M.W.); (H.B.); (H.R.); (H.D.)
| | - Jinlan Cheng
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp & Paper Science & Technology, Nanjing Forestry University, Nanjing 210037, China; (C.Y.); (M.W.); (H.B.); (H.R.); (H.D.)
- Correspondence:
| |
Collapse
|