1
|
Li W, Chen X, Yang T, Zhu H, He Z, Zhao R, Chen Y. Sponge iron enriches autotrophic/aerobic denitrifying bacteria to enhance denitrification in sequencing batch reactor. BIORESOURCE TECHNOLOGY 2024; 407:131097. [PMID: 38986882 DOI: 10.1016/j.biortech.2024.131097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 06/30/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Sponge iron (SFe) coupled with a sludge system has great potential for improving biological denitrification; however, the underlying mechanism is not yet fully understood. In this study, the denitrification performance and microbial characteristics of ordinary sludge and SFe-sludge systems were investigated. Overall, the SFe-sludge reactor had faster ammonium degradation rate (94.0 %) and less nitrate accumulation (1.5-53.3 times lower) than ordinary reactor during the complete operation cycle of sequencing batch reactors. The addition of SFe increased the activities of nitrate and nitrite reductases. The total relative abundance of autotrophic denitrifying bacteria (Acidovorax, Arenimonas, etc.) in the SFe-sludge system after 38 days of operation was found to be 10.6 % higher than that in the ordinary sludge reactor. The aerobic denitrifying bacteria (Dokdonella, Phaeodactylibacter, etc.) was 5.3 % higher than ordinary sludge. The SFe-sludge system improved denitrification by enriching autotrophic/aerobic denitrifying bacteria in low carbon-to-nitrogen ratio wastewater treatment.
Collapse
Affiliation(s)
- Wenxuan Li
- State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xinjuan Chen
- Department of Architecture and Materials Technology, Xinjiang Industry Technical College, Urumqi 830021, China
| | - Tianxue Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Hongjuan Zhu
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Zihan He
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Ruifeng Zhao
- Jiuquan Iron & Steel (Group) Co., Ltd, Jiayuguan 735100, China
| | - Yongfan Chen
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100083, China
| |
Collapse
|
2
|
Yao D, Qin C, Li Y, Dai N, Xie H, Zhuang L, Hu Z, Liang S, Zhang J. Weakening of sulfate removal by aquatic plants in iron-based constructed wetlands: The rhizosphere is a sink or source of sulfur? BIORESOURCE TECHNOLOGY 2024; 406:131010. [PMID: 38901750 DOI: 10.1016/j.biortech.2024.131010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/05/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
The fate of sulfur (S) was controlled by a complex interaction of abiotic and microbial reactions in constructed wetlands (CWs). Although zero-valent iron (ZVI) was generally considered to promote nitrogen (N) and S cycle by providing electrons, but its binding effect on sulfate (SO42--S) removal with the rhizosphere oscillating redox conditions had not been determined. This study found that the presence of plants increased SO42-_S removal in Con-CW, while decreased it by 3.93 % in ZVI-CW accompanied by the decrease of S content in the rhizosphere substrates. The enrichment of S oxidation genes (soxA/Y and yedZ), organic S decomposition genes (aslA) and plants radial oxygen loss (ROL) accelerated the transformation of solid-phase S to SO42--S, resulting in ZVI-CW turn from S sink to S source. Overall, the source-sink transformation provided a theoretical guidance for comprehending S cycling in CWs.
Collapse
Affiliation(s)
- Dongdong Yao
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Congli Qin
- Binzhou Ecological Environment Service Center, Binzhou 256600, China
| | - Yunkai Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Na Dai
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Huijun Xie
- Environment Research Institute, Shandong University, Qingdao 266237, China.
| | - Linlan Zhuang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Zhen Hu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Shuang Liang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China; College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 88 Wenhua East Road, Shandong, 250014, China
| |
Collapse
|
3
|
Xu F, Peng Y, Gu X, Sun S, Li A, He S. Revealing sulfur-iron coupling mechanism for enhanced autotrophic denitrification in ecological floating beds. BIORESOURCE TECHNOLOGY 2024; 402:130800. [PMID: 38734259 DOI: 10.1016/j.biortech.2024.130800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
A sulfur-iron coupled ecological floating bed (EFB-SFe) was developed to enhance the denitrification capability of sulfur-based ecological floating beds (EFB-S). The denitrification performance, kinetic process and microbial community composition were explored. Results showed that sulfur-iron coupling effectively enhanced the denitrification performance of EFB, surpassing the sum of their individual effects. The average total nitrogen removal rate ranged from 1.56 to 4.56 g·m-2·d-1, with a removal efficiency of 22-84 %. The k value for the S + Fe group increased from 0.04 to 0.18 d-1 to 0.40-0.46 d-1 relative to the S group. The sulfur-iron coupling promoted the enrichment of denitrifying bacteria (Thiobacillus and Ferritrophicum). The denitrification genes in EFB-SFe were upregulated, being 12-22 times more abundant than in EFB-S. Sulfur and iron autotrophic denitrification were identified as the main nitrogen removal processes in EFB-SFe. Overall, sulfur-iron coupling showed the potential to enhance the denitrification capacity of EFB-S for treating low-pollution water.
Collapse
Affiliation(s)
- Feng Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yuanyuan Peng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xushun Gu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shanshan Sun
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Anqi Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China; Shanghai Engineering Research Center of Landscape Water Environment, Shanghai 200031, PR China.
| |
Collapse
|
4
|
Fan Y, Sun S, Gu X, Zhang M, Peng Y, Yan P, He S. Boosting the denitrification efficiency of iron-based constructed wetlands in-situ via plant biomass-derived biochar: Intensified iron redox cycle and microbial responses. WATER RESEARCH 2024; 253:121285. [PMID: 38354664 DOI: 10.1016/j.watres.2024.121285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/22/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Considering the unsatisfied denitrification performance of carbon-limited wastewater in iron-based constructed wetlands (ICWs) caused by low electron transfer efficiency of iron substrates, utilization of plant-based conductive materials in-situ for improving the long-term reactivity of iron substrates was proposed to boost the Fe (III)/Fe (II) redox cycle thus enhance the nitrogen elimination. Here, we investigated the effects of withered Iris Pseudacorus biomass and its derived biochar on nitrogen removal for 165 days in ICWs. Results revealed that accumulate TN removal capacity in biochar-added ICW (BC-ICW) increased by 14.7 % compared to biomass-added ICW (BM-ICW), which was mainly attributed to the synergistic strengthening of iron scraps and biochar. The denitrification efficiency of BM-ICW improved by 11.6 % compared to ICWs, while its removal capacity declined with biomass consumption. Autotrophic and heterotrophic denitrifiers were enriched in BM-ICW and BC-ICW, especially biochar increased the abundance of electroactive species (Geobacter and Shewanella, etc.). An active iron cycle exhibited in BC-ICW, which can be confirmed by the presence of more liable iron minerals on iron scraps surface, the lowest Fe (III)/Fe (II) ratio (0.51), and the improved proportions of iron cycling genes (feoABC, korB, fhuF, TC.FEV.OM, etc.). The nitrate removal efficiency was positively correlated with the nitrogen, iron metabolism functional genes and the electron transfer capacity (ETC) of carbon materials (P < 0.05), indicating that redox-active carbon materials addition improved the iron scraps bioavailability by promoting electron transfer, thus enhancing the autotrophic nitrogen removal. Our findings provided a green perspective to better understand the redox properties of plant-based carbon materials in ICWs for deep bioremediation in-situ.
Collapse
Affiliation(s)
- Yuanyuan Fan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shanshan Sun
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xushun Gu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Manping Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yuanyuan Peng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Pan Yan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
5
|
Zhang Y, He Y, Jia L, Xu L, Wang Z, He Y, Xiong L, Lin X, Chen H, Xue G. Uncovering interactions among ternary electron donors of organic carbon source, thiosulfate and Fe 0 in mixotrophic advanced denitrification: Proof of concept from simulated to authentic secondary effluent. WATER RESEARCH 2024; 249:120924. [PMID: 38029486 DOI: 10.1016/j.watres.2023.120924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/19/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
To offset the imperfections of higher cost and emission of CO2 greenhouse gas in heterotrophic denitrification (HDN) as well as longer start-up time in autotrophic denitrification (ADN), we synergized the potential ternary electron donors of organic carbon source, thiosulfate and zero-valent iron (Fe0) to achieve efficient mixotrophic denitrification (MDN) of oligotrophic secondary effluent. When the influent chemical oxygen demand to nitrogen (COD/N) ratio ascended gradually in the batch operation with sufficient sulfur to nitrogen (S/N) ratio, the MDN with thiosulfate and Fe0 added achieved the highest TN removal for treating simulated and authentic secondary effluents. The external carbon is imperative for initiating MDN, while thiosulfate is indispensable for promoting TN removal efficiency. Although Fe0 hardly donated electrons for denitrification, the suitable circumneutral environment for denitrification was implemented by OH- released from Fe0 corrosion, which neutralized H+generated during thiosulfate-driven ADN. Meanwhile, Fe0 corrosion consumed the dissolved oxygen (DO) and created the low DO environment suitable for anoxic denitrification. This process was further confirmed by the continuous flow operation for treating authentic secondary effluent. The TN removal efficiency achieved its maximum under the combination condition of influent COD/N ratio of 3.1-3.5 and S/N ratio of 2.0-2.1. Whether in batch or continuous flow operation, the coordination of thiosulfate and Fe0 maintained the dominance of Thiobacillus for ADN, with the dominant heterotrophic denitrifiers (e.g., Plasticicumulans, Terrimonas, Rhodanobacter and KD4-96) coexisting in MDN system. The interaction insights of ternary electron donors in MDN established a pathway for realizing high-efficiency nitrogen removal of secondary effluent.
Collapse
Affiliation(s)
- Yu Zhang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yongtao He
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Linchun Jia
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Lei Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Zheng Wang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yueling He
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Ling Xiong
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xumeng Lin
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hong Chen
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Gang Xue
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200000, China.
| |
Collapse
|
6
|
Xia J, Li Y, Jiang X, Chen D, Shen J. The humic substance analogue antraquinone-2, 6-disulfonate (AQDS) enhanced zero-valent iron based autotrophic denitrification: Performances and mechanisms. ENVIRONMENTAL RESEARCH 2023; 238:117241. [PMID: 37778602 DOI: 10.1016/j.envres.2023.117241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023]
Abstract
Zero-valent iron based autotrophic denitrification (ZVI-AD) has attracted increasing attentions in nitrate removal due to saving organic carbon budget in wastewater treatment, but limited by the low reaction speed, poor electron transfer efficiency as well as the compaction/blocking by iron hydrolysis products. Humic substances (HS) were promising to regulate iron cycle and accelerate electron transfer by serving as electron mediators. In this study, HS analogue, antraquinone-2, 6-disulfonate (AQDS), was added to enhance ZVI-AD process. Results showed that the dosage of AQDS led to a NO3--N removal efficiency of 83.37 ± 3.98% within 96 h, which was 32.28 ± 1.25% higher than that in ZVI-AD system. The corrosion of ZVI and microbially nitrate reduction were both improved at the presence of AQDS. The addition of AQDS enriched the functional species, including autotrophic denitrobacteria namely Thauera and Hydrogenophaga, iron redox-related species namely Ferruginibacter and HS respiration related species namely Flavobacterium. The genes napA and napB related to electron transfer, nirK and nosZ related to the accumulation of intermediate products were also enriched by the addition of AQDS. AQDS addition boosted the electrons flowing to both abiotic and biotic nitrate reduction. Nitrate removal mechanism involved in ZVI-AQDS coupled system was proposed. This study provided an alternative strategy for improving ZVI-AD by HS.
Collapse
Affiliation(s)
- Jiaohui Xia
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yan Li
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Xinbai Jiang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Dan Chen
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jinyou Shen
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|
7
|
Gu X, Peng Y, Yan P, Fan Y, Zhang M, Sun S, He S. Microbial response to nitrogen removal driven by combined iron and biomass in subsurface flow constructed wetlands with plants of different ages. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162692. [PMID: 36894080 DOI: 10.1016/j.scitotenv.2023.162692] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
This study investigated the nitrogen removal enhanced by combined iron scraps and plant biomass, and its microbial response in the wetland with different plant ages and temperatures. The results showed that older plants benefitted the efficiency and stability of nitrogen removal, which could reach 1.97 ± 0.25 g m-2 d-1 in summer and 0.42 ± 0.12 g m-2 d-1 in winter. Plant age and temperature were the main factors determining the microbial community structure. Compared with temperature, plant ages affected more significantly on relative abundance of microorganisms such as Chloroflexi, Nitrospirae, Bacteroidetes and Cyanobacteria, and functional genera for nitrification (e.g., Nitrospira) and iron reduction (e.g., Geothrix). The absolute abundance of total bacterial 16S rRNA ranged from 5.22 × 108 to 2.63 × 109 copies g-1 and presented extremely significant negative correlation to plant age, which would lead to a decline in microbial function on information storage and processing. The quantitative relationship further revealed that the ammonia removal was related to 16S rRNA and AOB amoA, while nitrate removal was controlled by 16S rRNA, narG, norB and AOA amoA jointly. These findings suggested that a mature wetland for nitrogen removal enhancement should focus on aging microbes caused by old plants and possible endogenous pollution.
Collapse
Affiliation(s)
- Xushun Gu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yuanyuan Peng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Pan Yan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yuanyuan Fan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Manping Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shanshan Sun
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
8
|
Peng Y, Gu X, Yan P, Sun S, Zhang M, Tang L, He S. Mixotrophic denitrification improvement in ecological floating bed: Interaction between iron scraps and plant biomass. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160718. [PMID: 36481157 DOI: 10.1016/j.scitotenv.2022.160718] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/22/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
In this study, an iron scrap (IS)-based ecological floating bed was constructed to couple with plant biomass (FeB-EFB) for treating low-polluted water, and the nitrogen removal performance and mechanism were explored. The results showed that the nitrogen could be effectively removed in FeB-EFB, and the nitrate removal efficiency was 29.14 ± 8.06% even at a low temperature (13.9 ± 2.2 °C). After the temperature rose to 20.0 ± 0.9 °C, the denitrification rate was increased by 0.63 ± 0.16-0.81 ± 0.27 g/(m2 d) due to the synergistic effect of ISs and plant biomass. Plant biomass could promote the ISs release efficiency, while ISs could facilitate plant biomass availability by promoting cellulose decomposition. High-throughput sequencing analysis revealed that the iron-oxidizing bacteria Pseudomonas were the dominant genus in FeB-EFB. Meanwhile, the existence of plant biomass could increase the abundance of iron-related bacteria and enrich heterotrophic and facultative denitrifying bacteria (e.g., Hydrogenophaga, Comamonas) as well, improving iron-mediated denitrification and heterotrophic denitrification simultaneously. Therefore, mixotrophic denitrification improvement played a major role in promoting nitrogen removal of FeB-EFB. These results indicated that coupling iron scraps with plant biomass may be an effective way to improve the nitrogen removal performance of EFB.
Collapse
Affiliation(s)
- Yuanyuan Peng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xushun Gu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Pan Yan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shanshan Sun
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Manping Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Li Tang
- Shanghai Gardens (Group) Co., Ltd., Shanghai 200335, PR China
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
9
|
Lee YJ, Lin BL, Lei Z. Nitrous oxide emission mitigation from biological wastewater treatment - A review. BIORESOURCE TECHNOLOGY 2022; 362:127747. [PMID: 35964917 DOI: 10.1016/j.biortech.2022.127747] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Nitrous oxide (N2O) emitted from wastewater treatment processes has emerged as a focal point for academic and practical research amidst pressing environmental issues. This review presents an updated view on the biological pathways for N2O production and consumption in addition to the critical process factors affecting N2O emission. The current research trends including the strain and reactor aspects were then outlined with discussions. Last but not least, the research needs were proposed. The holistic life cycle assessment needs to be performed to evaluate the technical and economic feasibility of the proposed mitigation strategies or recovery options. This review also provides the background information for the proposed future research prospects on N2O mitigation and recovery technologies. As pointed out, dilution effects of the produced N2O gas product would hinder its use as renewable energy; instead, its use as an effective oxidizing agent is proposed as a promising recovery option.
Collapse
Affiliation(s)
- Yu-Jen Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 10649, Taiwan
| | - Bin-le Lin
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Zhongfang Lei
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|
10
|
Peng X, Chen N, Wei K, Li S, Shang H, Sun H, Zhang L. Zero-valent iron coupled calcium hydroxide: A highly efficient strategy for removal and magnetic separation of concentrated fluoride from acidic wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156336. [PMID: 35654177 DOI: 10.1016/j.scitotenv.2022.156336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/07/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
The removal of concentrated fluoride in acidic wastewater by the conventional Ca(OH)2 method is challenged by the insufficient efficiency and difficult separation of fine CaF2 precipitate. Herein, we construct a strategy to tackle these challenges by coupling zero-valent iron (ZVI) with Ca(OH)2. ZVI reduces fluoride concentration from 12,000 to 3980 mg L-1 under optimal conditions primarily through the in-situ growth of porous FeF2·4H2O shell on its surface, which simultaneously assists fluoride removal via adsorption. The residual fluoride after ZVI treatment then decreases to 6.74 mg L-1 via precipitation with Ca(OH)2. Interestingly, the iron ions dissolved from ZVI also participate in the precipitation to form magnetite. This co-precipitation reinforces the fluoride removal and meanwhile endows the resulted precipitates with magnetism, thus enabling the perfect solid-liquid separation by the magnetic field before discharge. The application prospect of this coupling strategy is further verified by its ability in decreasing the concentrations of fluoride and other coexisting heavy metals (Zn2+, Cd2+ and Pb2+) in real smeltery wastewater below their discharge limitations. This study provides a promising strategy for the treatment of concentrated fluoride in acidic wastewater and also highlights ZVI as a good candidate to couple with conventional methods for enhanced pollution control.
Collapse
Affiliation(s)
- Xing Peng
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Na Chen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China.
| | - Kai Wei
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Shengbiao Li
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Huan Shang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Hongwei Sun
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China.
| | - Lizhi Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| |
Collapse
|
11
|
Qin C, Yao D, Cheng C, Xie H, Hu Z, Zhang J. Influence of iron species on the simultaneous nitrate and sulfate removal in constructed wetlands under low/high COD concentrations. ENVIRONMENTAL RESEARCH 2022; 212:113453. [PMID: 35537498 DOI: 10.1016/j.envres.2022.113453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/05/2022] [Accepted: 05/05/2022] [Indexed: 06/14/2023]
Abstract
Nitrate and sulfate are crucial factors of eutrophication and black and odorous water in the surface water and thus have raised increasing environmental concerns. Constructed wetlands (CWs) are the last ecological barrier before effluent enters the natural water body. To explore the simultaneous removal of nitrate and sulfate, the CW microcosms of CW-Con (with quartz sand), CW-ZVI (quartz sand and zero-valent iron), CW-Mag (quartz sand and magnetite), CW-ZVI + Mag (quartz sand, ZVI and magnetite) groups were set up under the low (100 mg/L)/high (300 mg/L) chemical oxygen demand (COD) concentration. Under the high COD condition, CW-ZVI group showed the best performance in nitrate (97.1%) and sulfate (96.9%) removal. Under the low COD concentration, the removal content of nitrate and sulfate in CW-ZVI group was better than CW-Mag group. The reason for this result was that zero-valent iron (ZVI) could be the electron donor for nitrate and sulfate reduction. Meanwhile, ZVI promoted chemical denitrification under high COD concentration according to PCA analysis. In addition, the produced sulfides inhibited the relative abundance of denitrifying bacteria, resulting in the lowest nitrate removal rate in CW-Mag group with sufficient electron donors. This study provided an alternative method to enhance simultaneous sulfate and nitrate removal in CWs.
Collapse
Affiliation(s)
- Congli Qin
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Dongdong Yao
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Cheng Cheng
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| | - Huijun Xie
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China.
| | - Zhen Hu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China; College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, PR China
| |
Collapse
|