1
|
Liu Q, Li X, Wu M, Huang H, Chen Y. N 2O recovery from wastewater and flue gas via microbial denitrification: Processes and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174231. [PMID: 38917909 DOI: 10.1016/j.scitotenv.2024.174231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/06/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024]
Abstract
Nitrous oxide (N2O) is increasingly regarded as a significant greenhouse gas implicated in global warming and the depletion of the ozone layer, yet it is also recognized as a valuable resource. This paper comprehensively reviews innovative microbial denitrification techniques for recovering N2O from nitrogenous wastewater and flue gas. Critical analysis is carried out on cutting-edge processes such as the coupled aerobic-anoxic nitrous decomposition operation (CANDO) process, semi-artificial photosynthesis, and the selective utilization of microbial strains, as well as flue gas absorption coupled with heterotrophic/autotrophic denitrification. These processes are highlighted for their potential to facilitate denitrification and enhance the recovery rate of N2O. The review integrates feasible methods for process control and optimization, and presents the underlying mechanisms for N2O recovery through denitrification, primarily achieved by suppressing nitrous oxide reductase (Nos) activity and intensifying competition for electron donors. The paper concludes by recognizing the shortcomings in existing technologies and proposing future research directions, with an emphasis on prioritizing the collection and utilization of N2O while considering environmental sustainability and economic feasibility. Through this review, we aim to inspire interest in the recovery and utilization of N2O, as well as the development and application of related technologies.
Collapse
Affiliation(s)
- Qimeng Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xinyi Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Meirou Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Haining Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; The Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai, China.
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
2
|
Li D, Sun Z, Luo G, Lu L, Zhang S, Xi J. Enhancing biological conversion of NO to N 2O by utilizing thermophiles instead of mesophiles. CHEMOSPHERE 2024; 350:141037. [PMID: 38147927 DOI: 10.1016/j.chemosphere.2023.141037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/24/2023] [Accepted: 12/23/2023] [Indexed: 12/28/2023]
Abstract
The production of nitrous oxide (N2O) through the biological denitrification of nitric oxide (NO) from flue gases has recently been achieved. Although the temperature of flue gas after desulphurization is usually 45-70 °C, all previous studies conducted microbial denitrification of NO under mesophilic conditions (22-35 °C). This study investigated the biological conversion of NO to N2O in both mesophilic (35-45 °C) and thermophilic conditions (45-50 °C). The results showed that temperature has a great impact on N2O production, with a maximum conversion efficiency (from NO to N2O) of 82% achieved at 45 °C, which is obviously higher than the reported conversion efficiencies (24-71%) under mesophilic conditions. Additionally, high-throughput sequencing result showed that the genera Enterococcus, Clostridium, Romboutsia, and Streptococcus were closely related to NO denitrification and N2O production. Microbial communities at 40 and 45 °C had greater metabolizing capacities for polymeric carbon sources. This study suggests that thermophilic condition (45 °C) is more suitable for biological production of N2O from NO.
Collapse
Affiliation(s)
- Dan Li
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Zhuqiu Sun
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Ga Luo
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Lichao Lu
- School of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Shaobo Zhang
- Beijing Capital Sludge Disposal Technology Co. LTD, 100044, Beijing, China
| | - Jinying Xi
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
3
|
Deng R, Huo P, Chen X, Chen Z, Yang L, Liu Y, Wei W, Ni BJ. Towards efficient heterotrophic recovery of N 2O via Fe(II)EDTA-NO: A modeling study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160285. [PMID: 36403844 DOI: 10.1016/j.scitotenv.2022.160285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Efficient recovery of nitrous oxide (N2O) through heterotrophic denitrification with the help of Fe(II)EDTA-NO as a chelating agent has been regarded as an ideal technology to treat nitric oxide (NO)-rich flue gas. In this study, an integrated NO-based biological denitrification model was developed to describe the sequential reduction of the NO fixed in Fe(II)EDTA-NO with organic carbon as the electron donor. With the inclusion of only the key pathways contributing to nitrogen transformation, the model was firstly developed and then calibrated/validated and evaluated using the data of batch tests mediated by the identified functional heterotrophic bacteria at various substrates concentrations and then used to explore the possibility of enhancing N2O recovery by altering the substrates condition and reactor setup. The results demonstrated that the optimal COD/N ratio decreased consistently from 1.5 g-COD/g-N at the initial NO concentration of 40 g-N/m3 to 1.0 g-COD/g-N at the initial NO concentration of 420 g-N/m3. Furthermore, sufficiently increasing the headspace volume of the reactor was considered an ideal strategy to obtain ideal N2O production of 86.6 % under the studied conditions. The production of high-purity N2O (98 %) confirmed the practical application potential of this integrated treatment technology to recover a valuable energy resource from NO-rich flue gas.
Collapse
Affiliation(s)
- Ronghua Deng
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, China
| | - Pengfei Huo
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, China
| | - Xueming Chen
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, China.
| | - Zhijie Chen
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Linyan Yang
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yiwen Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
4
|
Cubides D, Guimerà X, Jubany I, Gamisans X. A review: Biological technologies for nitrogen monoxide abatement. CHEMOSPHERE 2023; 311:137147. [PMID: 36347354 DOI: 10.1016/j.chemosphere.2022.137147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/18/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Nitrogen oxides (NOx), including nitrogen monoxide (NO) and nitrogen dioxide (NO2), are among the most important global atmospheric pollutants because they have a negative impact on human respiratory health, animals, and the environment through the greenhouse effect and ozone layer destruction. NOx compounds are predominantly generated by anthropogenic activities, which involve combustion processes such as energy production, transportation, and industrial activities. The most widely used alternatives for NOx abatement on an industrial scale are selective catalytic and non-catalytic reductions; however, these alternatives have high costs when treating large air flows with low pollutant concentrations, and most of these methods generate residues that require further treatment. Therefore, biotechnologies that are normally used for wastewater treatment (based on nitrification, denitrification, anammox, microalgae, and combinations of these) are being investigated for flue gas treatment. Most of such investigations have focused on chemical absorption and biological reduction (CABR) systems using different equipment configurations, such as biofilters, rotating reactors, or membrane reactors. This review summarizes the current state of these biotechnologies available for NOx treatment, discusses and compares the use of different microorganisms, and analyzes the experimental performance of bioreactors used for NOx emission control, both at the laboratory scale and in industrial settings, to provide an overview of proven technical solutions and biotechnologies for NOx treatment. Additionally, a comparative assessment of the advantages and disadvantages is performed, and special challenges for biological technologies for NO abatement are presented.
Collapse
Affiliation(s)
- David Cubides
- Department of Mining, Industrial and ICT Engineering (EMIT), Biological Treatment of Gaseous Pollutants and Odours Group (BIOGAP), Manresa School of Engineering (EPSEM), Universitat Politècnica de Catalunya (UPC), Av. Bases de Manresa 61-73, 08242 Manresa, Spain; Eurecat, Centre Tecnològic de Catalunya, Sustainability Area, Plaça de la Ciència, 2, Manresa 08242, Spain
| | - Xavier Guimerà
- Department of Mining, Industrial and ICT Engineering (EMIT), Biological Treatment of Gaseous Pollutants and Odours Group (BIOGAP), Manresa School of Engineering (EPSEM), Universitat Politècnica de Catalunya (UPC), Av. Bases de Manresa 61-73, 08242 Manresa, Spain.
| | - Irene Jubany
- Eurecat, Centre Tecnològic de Catalunya, Sustainability Area, Plaça de la Ciència, 2, Manresa 08242, Spain
| | - Xavier Gamisans
- Department of Mining, Industrial and ICT Engineering (EMIT), Biological Treatment of Gaseous Pollutants and Odours Group (BIOGAP), Manresa School of Engineering (EPSEM), Universitat Politècnica de Catalunya (UPC), Av. Bases de Manresa 61-73, 08242 Manresa, Spain
| |
Collapse
|
5
|
Deng L, Liu W, Chang N, Sun L, Zhang J, Bello A, Uzoamaka Egbeagu U, Shi S, Sun Y, Xu X. Disentangling the coupling relationships between functional denitrifiers and nitrogen transformation during cattle-manure and biochar composting: A novel perspective. BIORESOURCE TECHNOLOGY 2023; 367:128235. [PMID: 36332857 DOI: 10.1016/j.biortech.2022.128235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
This study explored the coupling relationships between denitrifiers and N-transformation using multi-level (DNA, RNA and enzyme) and multi-aspect (abundance, diversity, structure, key community, network pattern, and functional module) analyses during cattle-manure (CM) and biochar (CMB) composting. Amino sugar-N (ASN, 0.914) and hydrolysable unknown-N (-0.724) were main organic-N components mediating NH4+-N in CM and CMB, respectively. Biochar lowered nirK, nirS, and nosZ genes copies, up-regulated nir gene transcripts, and inhibited nitrite reductase (NIR) activity. For nirK-denitrifiers, Luteimonas was predominant taxa influencing NO2--N and amino acid-N (AAN). Unclassified_k_norank_d_Bacteria and unclassified_p_Proteobacteria regulated NO3--N and ASN, respectively. These three genera played crucial roles in mediating NIR activity and nosZ/nirK. For nirS-denitrifiers, Paracoccus and Pseudomonas mediated NH4+-N and AAN, respectively, and they were vital genera regulating NO3--N, ASN and NIR activity. Furthermore, nirK-denitrifiers was major contributor to denitrification. Overall, functional denitrifiers might simultaneously participate in multiple N-transformation processes.
Collapse
Affiliation(s)
- Liting Deng
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Wanying Liu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Nuo Chang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Lei Sun
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Jizhou Zhang
- Institute of Natural Resources and Ecology, Heilongjiang Academy of Sciences, Harbin 150040, China
| | - Ayodeji Bello
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ugochi Uzoamaka Egbeagu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Shuai Shi
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yu Sun
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xiuhong Xu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
6
|
Lee YJ, Lin BL, Lei Z. Nitrous oxide emission mitigation from biological wastewater treatment - A review. BIORESOURCE TECHNOLOGY 2022; 362:127747. [PMID: 35964917 DOI: 10.1016/j.biortech.2022.127747] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Nitrous oxide (N2O) emitted from wastewater treatment processes has emerged as a focal point for academic and practical research amidst pressing environmental issues. This review presents an updated view on the biological pathways for N2O production and consumption in addition to the critical process factors affecting N2O emission. The current research trends including the strain and reactor aspects were then outlined with discussions. Last but not least, the research needs were proposed. The holistic life cycle assessment needs to be performed to evaluate the technical and economic feasibility of the proposed mitigation strategies or recovery options. This review also provides the background information for the proposed future research prospects on N2O mitigation and recovery technologies. As pointed out, dilution effects of the produced N2O gas product would hinder its use as renewable energy; instead, its use as an effective oxidizing agent is proposed as a promising recovery option.
Collapse
Affiliation(s)
- Yu-Jen Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 10649, Taiwan
| | - Bin-le Lin
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Zhongfang Lei
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|