1
|
Xie G, Zhu C, Li C, Fan Z, Wang B. Predicting the adsorption of ammonia nitrogen by biochar in water bodies using machine learning strategies: Model optimization and analysis of key characteristic variables. ENVIRONMENTAL RESEARCH 2025; 267:120618. [PMID: 39681178 DOI: 10.1016/j.envres.2024.120618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/26/2024] [Accepted: 12/11/2024] [Indexed: 12/18/2024]
Abstract
Biochar adsorption technology has been widely used to remove ammonia nitrogen from water bodies. However, existing methods for predicting adsorption efficiency often lack sufficient accuracy and practical usability. This study evaluated eight machine learning models, including XGB, LR, KNN, DT, RF, GBR, SVR, and ANN, to predict the adsorption efficiency of ammonia nitrogen. The evaluation utilized a dataset comprising 770 instances of ammonia nitrogen adsorption by biochar. The models' prediction performances were systematically compared, and cross-validation was applied to enhance their generalization ability, leading to the selection of the best-performing model. The selected model's parameters were further optimized using Bayesian optimization to improve the prediction accuracy. The Bayesian-optimized XGB model achieved the highest predictive performance, with a coefficient of determination (R2) of 0.978. The R2 values of the other models ranged from 0.556 (LR) to 0.927 (RF). Key factors influencing ammonia nitrogen adsorption efficiency were identified using SHAP analysis. These factors included biochar dosage, adsorption time, initial ammonia nitrogen concentration, solution pH, pyrolysis time, and O%. Their optimal ranges were further determined through partial dependency plots. This study developed a reliable machine learning tool for accurately predicting ammonia nitrogen adsorption efficiency. Additionally, it provided insights into optimizing the preparation processes and adsorption conditions of biochar, contributing to its practical application in treating ammonia nitrogen pollution in water bodies.
Collapse
Affiliation(s)
- Guixian Xie
- School of Environmental and Safety Engineering, LiaoNing Petrochemical University, Fushun, 113001, China
| | - Chi Zhu
- Jiangsu Environmental Engineering Technology Co., Ltd., Nanjing, 210019, China
| | - Chen Li
- School of Environmental and Safety Engineering, LiaoNing Petrochemical University, Fushun, 113001, China
| | - Zhiping Fan
- School of Environmental and Safety Engineering, LiaoNing Petrochemical University, Fushun, 113001, China
| | - Bo Wang
- School of Environmental and Safety Engineering, LiaoNing Petrochemical University, Fushun, 113001, China.
| |
Collapse
|
2
|
Oliveira HR, Anacleto TM, Abreu F, Enrich-Prast A. New insights into the factors influencing methanogenic pathways in anaerobic digesters. Anaerobe 2025; 91:102925. [PMID: 39617252 DOI: 10.1016/j.anaerobe.2024.102925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
INTRODUCTION Anaerobic digestion integrates waste treatment, energy generation, and nutrient recycling, producing methane mainly through acetoclastic (AM) and hydrogenotrophic methanogenesis (HM). Methanogenic pathway management can improve biogas productivity and quality. The balance between pathways is influenced by environmental and physicochemical conditions, with conflicting results on the effect of different factors often reported. This systematic review aims to clarify the influence of various parameters on methanogenic pathways in anaerobic digesters. METHODS Literature search was conducted in the Web of Science and Scopus databases. The effects of different parameters on the predominant methanogenic pathway were evaluated using Kruskal-Wallis tests and Spearman's rank correlation. RESULTS Thermophilic temperatures and high free ammonia nitrogen concentrations (>300 mg L-1) increase HM, with a strong combined effect of these variables. Conversely, under moderate temperature and ammonia concentrations, the primary feedstock influences the methanogenic pathway, with algae biomass, pig manure, and food industry wastewater showing the lowest contribution of hydrogenotrophic methanogens. pH effect varied with temperature, with acidic and alkaline pH favoring HM in mesophilic and thermophilic digesters, respectively. Furthermore, higher levels of volatile fatty acids (>2000 mg L-1), carbohydrates (>10 g/L) and lipids (>10 g/L) also appeared to favor HM over AM, while most metals - especially Cr, Se and W - promoted AM. CONCLUSION This study emphasizes the role of various factors in methanogenic pathway selection, highlighting the impact of previously overlooked parameters, such as inorganic elements and organic matter composition. These insights are essential for understanding the methanogenic pathway balance and optimizing biogas processes.
Collapse
Affiliation(s)
- Helena Rodrigues Oliveira
- Centro Federal de Educação Tecnológica Celso Suckow da Fonseca (CEFET/RJ), Rio de Janeiro, Brazil; Programa de Pós-Graduação em Biotecnologia Vegetal e Bioprocessos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Unidade Multiusuário de Análises Ambientais, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thuane Mendes Anacleto
- Programa de Pós-Graduação em Biotecnologia Vegetal e Bioprocessos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Unidade Multiusuário de Análises Ambientais, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda Abreu
- Programa de Pós-Graduação em Biotecnologia Vegetal e Bioprocessos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Unidade Multiusuário de Análises Ambientais, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alex Enrich-Prast
- Unidade Multiusuário de Análises Ambientais, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Department of Thematic Studies - Environmental Change and Biogas Solutions Research Center (BSRC), Linköping University, Linköping, Sweden; Institute of Marine Science, Federal University of São Paulo (IMar/UNIFESP), Santos, Brazil.
| |
Collapse
|
3
|
Zhang J, Liu H, Wu J, Chen C, Ding Y, Liu H, Zhou Y. Rethinking the biochar impact on the anaerobic digestion of food waste in bench-scale digester: Spatial distribution and biogas production. BIORESOURCE TECHNOLOGY 2025; 420:132115. [PMID: 39863181 DOI: 10.1016/j.biortech.2025.132115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/15/2025] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
The improvement of biogas production in anaerobic digestion (AD) by biochar introduction has been demonstrated. However, the distribution of biochar in the digester and its effect on AD have been seldom explored. In this study, the distribution of biochar and their impact on AD were investigated in a 30 L semi-continuously operated bench-scale anaerobic digester. The results demonstrated that the biochar significantly increased biogas yields by 23.38 % under an organic loading rate (OLR) of 3.0 g VS/L·d. The stability of the AD under an OLR of 4.0 g VS/L·d was also improved by biochar introduction. The increased stirring speed of the digester enhanced the spatial distribution uniformity of biochar and increased biogas production by 5.89 %. Reducing the particle size of biochar improved its spatial distribution uniformity but did not significantly increase biogas production, likely due to excessive microbial accumulation on the biochar, which have caused substrate competition. Biochar aided AD by boosting microbial genera of Syntrophomonas, Bacteroidota, Cloacimonadot, and Methanosaeta, accelerating volatile fatty acids consumption, and improving microorganisms' spatial ecological niches. The economic analysis showed that applying residue-based biochar for biogas production presented superior benefits and greater development potential than residue incineration in the food waste AD process. Overall, this study presented a novel and comprehensive understanding of the biochar distribution and impact on food waste AD in digesters.
Collapse
Affiliation(s)
- Jing Zhang
- School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - He Liu
- School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology & Material, Suzhou University of Science and Technology, Suzhou 215011, China.
| | - Junyao Wu
- School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Chongjun Chen
- Jiangsu Collaborative Innovation Center of Water Treatment Technology & Material, Suzhou University of Science and Technology, Suzhou 215011, China
| | - Yan Ding
- School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Hongbo Liu
- School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology & Material, Suzhou University of Science and Technology, Suzhou 215011, China
| | - Yan Zhou
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore
| |
Collapse
|
4
|
Liu C, Cao Q, Luo X, Yan S, Sun Q, Zheng Y, Zhen G. In-depth exploration of microbial electrolysis cell coupled with anaerobic digestion (MEC-AD) for methanogenesis in treating protein wastewater at high organic loading rates. ENERGY CONVERSION AND MANAGEMENT 2025; 323:119152. [PMID: 39582929 PMCID: PMC11580529 DOI: 10.1016/j.enconman.2024.119152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
High concentrations of protein wastewater often reduce treatment efficiency due to ammonia inhibition and acid accumulation caused by its low carbon-to-nitrogen ratio (C/N) after digestion, as well as its complex structure. This study investigates the performance of a microbial electrolysis cell (MEC) driving a protein digestion system with gradually increasing organic loading rates (OLR) of bovine serum albumin, elucidating microbial changes and methanogenic metabolic pathways on bioelectrodes under high OLR "inhibited steady-state" (ISS) conditions. The results showed that the accumulation of ammonia nitrogen (AN) from protein hydrolysis under high OLR conditions disrupted microbial growth and caused cell death on the electrode surface, hindering the electron transfer rate. Toxic AN reduced protein hydrolysis, led to propionate accumulation, inhibiting the acetoclastic methanogenesis process and favoring the hydrogenotrophic pathway. As OLR increased from 6 to 11 gCOD/L, cumulative methane production increased significantly from 450.24 mL to 738.72 mL, while average methane yield and production rate decreased by 10.51% and 50.28%, from 375.20 mL/gCOD and 75.04 mL/(gCOD·d) to 335.78 mL/gCOD and 37.31 mL/(gCOD·d), respectively. Despite these declines, the system maintained an ISS. Moderate OLR increases can achieve an ISS, boosting protein waste treatment capacity, methane production, and net energy output (NEO), with an OLR of 6 gCOD/L being optimal for maximizing NEO per unit substrate. These findings provide theoretical insights into the methanogenesis pathway of high OLR proteins in MEC-AD systems and offer an effective method for treating high OLR protein wastewater in future practical applications.
Collapse
Affiliation(s)
- Changqing Liu
- College of Geographical Sciences, College of Carbon Neutral Future Technology, Fujian Normal University, Fuzhou 350007, China
- Fujian College and University Engineering Research Center for Municipal Solid Waste Resuscitation and Management, Fuzhou 350007, Fujian, China
| | - Qi Cao
- Fujian College and University Engineering Research Center for Municipal Solid Waste Resuscitation and Management, Fuzhou 350007, Fujian, China
- College of Environment and Resources, College of Carbon Neutral Modern Technology, Fujian Normal University; Pollution Control and Resource Recycling Laboratory of Fujian Province, Fuzhou 350007, China
| | - Xingguang Luo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, United States
| | - Shenghan Yan
- Fujian College and University Engineering Research Center for Municipal Solid Waste Resuscitation and Management, Fuzhou 350007, Fujian, China
- College of Environment and Resources, College of Carbon Neutral Modern Technology, Fujian Normal University; Pollution Control and Resource Recycling Laboratory of Fujian Province, Fuzhou 350007, China
| | - Qiyuan Sun
- Fujian College and University Engineering Research Center for Municipal Solid Waste Resuscitation and Management, Fuzhou 350007, Fujian, China
- College of Environment and Resources, College of Carbon Neutral Modern Technology, Fujian Normal University; Pollution Control and Resource Recycling Laboratory of Fujian Province, Fuzhou 350007, China
| | - Yuyi Zheng
- Fujian College and University Engineering Research Center for Municipal Solid Waste Resuscitation and Management, Fuzhou 350007, Fujian, China
- College of Environment and Resources, College of Carbon Neutral Modern Technology, Fujian Normal University; Pollution Control and Resource Recycling Laboratory of Fujian Province, Fuzhou 350007, China
| | - Guangyin Zhen
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
5
|
Haroun B, El-Qelish M, Abdulazeez M, Khalil A, Kim M, Nakhla G. Overcoming ammonia inhibition via biochar-assisted anaerobic co-digestion of thermally-treated thickened waste activated sludge and food waste. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123909. [PMID: 39736230 DOI: 10.1016/j.jenvman.2024.123909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/11/2024] [Accepted: 12/24/2024] [Indexed: 01/01/2025]
Abstract
The convergence of sustainability and climate change has catalyzed the pursuit of inventive strategies for waste management and sustainable energy production. Hereby, we explored the effect of coupling biochar addition and thermal pretreatment in anaerobic mono-digestion and co-digestion of thermally pretreated thickened waste activated sludge (PTWAS) with food waste (FW). Six semi-continuous lab-scale digesters were operated for 161 days at various organic loading rates (OLR of 2, 3, 4 and 8 kgCOD/m3/day) with and without biochar (BC) addition. Coupling biochar addition and co-digestion of 30%FW +70% PTWAS, increased methane yield (MY) by 87.5% to 0.15 LCH4/gCOD added, when the systems experienced high ammonia concentration of 2.4 g/L at OLR of 8 kgCOD/m3/d. The non-competitive ammonia inhibition constant (Ki) ranged from 0.250 g/L to 0.345 g/L. The maximum COD-to-BC ratio to overcome inhibition was 16.5 g COD substrate/g BC corresponding to TN-to-BC ratio of 0.84 g TN substrate/g BC. These results imply that biochar addition to the anaerobic co-digestion of thermally pretreated TWAS and FW can promote high-rate anaerobic digestion by relieving ammonia and VFA inhibition.
Collapse
Affiliation(s)
- Basem Haroun
- Chemical and Biochemical Engineering Department, University of Western Ontario, London, ON, N6A 5B9, Canada.
| | - Mohamed El-Qelish
- Chemical and Biochemical Engineering Department, University of Western Ontario, London, ON, N6A 5B9, Canada; Water Pollution Research Department, National Research Centre, El Buhouth St., Dokki, 12622 Cairo, Egypt.
| | - Mariam Abdulazeez
- Civil and Environmental Engineering Department, University of Western Ontario, London, ON, N6A 5B9, Canada.
| | - Ahmed Khalil
- Mechanical and Material Engineering Department, University of Western Ontario, London, ON, N6A 5B9, Canada.
| | - Mingu Kim
- Chemical and Biochemical Engineering Department, University of Western Ontario, London, ON, N6A 5B9, Canada; Lambton College, Sarnia, ON, Canada.
| | - George Nakhla
- Chemical and Biochemical Engineering Department, University of Western Ontario, London, ON, N6A 5B9, Canada; Civil and Environmental Engineering Department, University of Western Ontario, London, ON, N6A 5B9, Canada.
| |
Collapse
|
6
|
Chen S, Kong Z, Qiu L, Wang H, Yan Q. Effects of different quorum sensing signal molecules on alleviation of ammonia inhibition during biomethanation. ENVIRONMENTAL RESEARCH 2025; 264:120295. [PMID: 39505134 DOI: 10.1016/j.envres.2024.120295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/28/2024] [Accepted: 11/04/2024] [Indexed: 11/08/2024]
Abstract
Anaerobic digestion (AD) is a promising technology for achieving both organic wastes treatment and energy recovery. However, challenges such as ammonia inhibition still remain. Quorum sensing (QS) system is relevant with the regulation of microbial community behaviors by releasing and sensing signal molecules, which could improve methane production during AD process. Therefore, the current study explored the effects of different quorum sensing signal molecules on alleviation of ammonia inhibition. The results showed that both secretion of N-butyryl-DL-homoserine lactone (C4-HSL) and N-(β-ketocaproyl)-DL-homoserine lactone (3OC6-HSL) could be inhibited by high ammonia stress while stimulation of N-hexanoyl-L-homoserine lactone (C6-HSL) and N-octanoyl-DL-homoserine lactone (C8-HSL) secretion might be triggered by ammonia toxicity. Moreover, the alleviation of ammonia inhibition could be achieved by both introducing 3OC6-HSL (0.5 μM) and combination of 3OC6-HSL (0.1 μM) and biochar (4 g/L). Exogenous 3OC6-HSL could regulate microbial social behaviors and enhance the secretion of extracellular polymeric substances (EPS) to promote anaerobic digestion. In addition, the mitigation of ammonia inhibition through exogenous 3OC6-HSL and biochar were confirmed by microbial community changes (Methanobacterium, Propionicicella and Petrimonas). Critical enzymes involved in both acidification and methanogenic steps were enhanced after adding the combination of 3OC6-HSL and biochar. The combination of low levels of 3OC6-HSL and biochar could promote both direct interspecies electron transfer (DIET) process and communication between different anaerobic microorganisms to mitigate ammonia inhibition. The current study will provide primary insights for conquering ammonia inhibition during biomethanation.
Collapse
Affiliation(s)
- Siyi Chen
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Ziang Kong
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Liwei Qiu
- Changzhou Cheff Environmental Protection Technology Co., Ltd, Changzhou, 213164, China
| | - Han Wang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi, 214122, China.
| | - Qun Yan
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi, 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou, 215011, China
| |
Collapse
|
7
|
Khattab TA, Ahmed HM, Zhou Y, Ding X, Abdelrahman MS, Hassabo AG. Development of Betalain-immobilized polylactic acid nanofibers as a green and sustainable sensor for toxic ammonia. Int J Biol Macromol 2024; 294:139343. [PMID: 39743107 DOI: 10.1016/j.ijbiomac.2024.139343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/15/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
Ammonia has been an important industrial colorless agent. Exposure to gaseous ammonia results in organ damage or even death. Herein, an environmentally friendly colorimetric detector for aqueous and gaseous ammonia was prepared utilizing vapochromic polylactic acid nanofibers. Betalain (BTN) has been reported as a natural probe that can be extracted from the beetroot plant (Beta vulgaris L.). Mordant (M)/BTN coordinating complex nanoparticles were produced in situ by depositing the Betalain probe onto polylactic acid (PLA) nanofibers. The colorimetric change of the Betalain-dyed PLA nanofibers from red to yellow when exposed to ammonia was examined using both absorbance spectra and coloration parameters. The PLA membrane displayed a detection limit of 5-400 ppm. Upon exposure to ammonia, the absorbance spectra of the nanofibrous membrane showed a hypsochromic shift, moving from 572 nm to 402 nm with an isosbestic wavelength of 466 nm. Scanning electron microscopy (SEM) analysis demonstrated that the nanofibrous membrane had diameters of 100-350 nm. Transmission electron microscopy (TEM) analysis of the M/BTN particles revealed diameters of 10-13 nm. After immobilizing the M/BTN nanoparticles onto the nanofibrous membrane, no substantial variations in the bend length and air permeability were observed. The colorfastness of the Betalain-dyed nanofibrous membrane showed satisfactory results.
Collapse
Affiliation(s)
- Tawfik A Khattab
- Dyeing, Printing and Auxiliaries Department, Textile Research and Technology Institute, National Research Centre, Cairo 12622, Egypt.
| | - Hend M Ahmed
- Dyeing, Printing and Auxiliaries Department, Textile Research and Technology Institute, National Research Centre, Cairo 12622, Egypt
| | - Yang Zhou
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemistry and Chemical Engineering, Hainan University, Haikou, Hainan 570228, China
| | - Xianting Ding
- Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Meram S Abdelrahman
- Dyeing, Printing and Auxiliaries Department, Textile Research and Technology Institute, National Research Centre, Cairo 12622, Egypt
| | - Ahmed G Hassabo
- National Research Centre (Scopus Affiliation ID 60014618), Textile Industries Research Division, Pre-treatment and Finishing of Cellulose Based Textiles Department, 33 El-Buhouth St., (former El-Tahrir St.), Dokki, P.O. 12622, Giza, Egypt
| |
Collapse
|
8
|
Li Y, Zhang J, Wen X, Mazarji M, Chen S, Liu Q, Zhao S, Feng L, Li G, Zhou H, Pan J. Advancing anaerobic digestion with MnO 2-modified biochar: Insights into performance and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176303. [PMID: 39299339 DOI: 10.1016/j.scitotenv.2024.176303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
The use of bio-based composites to enhance the methane production in anaerobic digestion has attracted considerable attention. Nevertheless, the study of electron transfer mechanisms and the applications of biochar/MnO2 (MBC) in complex systems remains largely unexplored. Biochar composited with MnO2 at 10:1 mass ratio (MBC10) increased the content of volatile fatty acids by 9.09 % during acidogenic phase. During the methanogenic experiments using acetate, cumulative methane production (CMP) rose by 5.83 %, and in the methanogenic experiments using food waste, CMP increased by 24.32 %. Microbial community analysis indicated an enrichment of Syntrophomonas, Bacilli, and Methanosaetaceae in the MBC10 group. This enrichment occurred mainly due to the redox capability of MnO2 enhancing MBC capacitance, thereby facilitating microbial electron transfer processes. Additionally, under 2 g/L ammonia nitrogen concentration and 30 g/L organic load, the CMP of MBC10 increased by 12.74 % and 9.44 %, respectively, compared to the BC600 group. This study illuminates MBC's electron transfer mechanisms and applications, facilitating its wider practical adoption and fostering future innovations.
Collapse
Affiliation(s)
- Yeqing Li
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing (CUPB), Beijing 102249, China; Shandong Institute of Petroleum and Chemical Technology, Carbon Neutrality Research Institute, Dongying 257061, China
| | - Jinglei Zhang
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing (CUPB), Beijing 102249, China
| | - Xinran Wen
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing (CUPB), Beijing 102249, China
| | - Mahmoud Mazarji
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shuo Chen
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing (CUPB), Beijing 102249, China
| | - Qiang Liu
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing (CUPB), Beijing 102249, China
| | - Shenggeng Zhao
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing (CUPB), Beijing 102249, China
| | - Lu Feng
- NIBIO, Norwegian Institute of Bioeconomy Research, P.O. Box 115, N-1431 Ås, Norway
| | - Gang Li
- School of Artificial Intelligence, Beijing Technology and Business University, Beijing 100048, China.
| | - Hongjun Zhou
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing (CUPB), Beijing 102249, China; Shandong Institute of Petroleum and Chemical Technology, Carbon Neutrality Research Institute, Dongying 257061, China
| | - Junting Pan
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
9
|
Adams M. Ammonia-stressed anaerobic digestion: Sensitivity dynamics of key syntrophic interactions and methanogenic pathways-A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123183. [PMID: 39492135 DOI: 10.1016/j.jenvman.2024.123183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/17/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
The problematic anaerobic digestion (AD) of protein-rich substrates owing to their high ammonia content continues to hinder optimum methanation despite their high potential for offsetting greenhouse gas (GHG) emissions. This review focuses on the analyses of the sensitivity dynamics of key AD processes as well as the microbial interactions and exchanges that occur with them. Aside from the apparent increased risk associated with thermophilic ammonia-rich substrate AD, the marginally higher energy generation compared to mesophilic systems is not commensurate to the energy requirement. Moreover, while comparable FAN thresholds have been confirmed, TAN thresholds are susceptible to physical chemistry and so vary greatly. Profiling of the metabolic capability of front-end AD microbiome revealed Bacteroidetes, Firmicutes, and Synergistetes as some of the ammonia-resilient bacteria groups while Proteobacteria and Actinobacteria were the most fragile taxa. Besides the predominance of incomplete propionate oxidizing bacteria under ammonia stress conditions, syntrophic propionate oxidation (SPO) is usually shifted from the methylmalonyl CoA to the dismutation pathway. Furthermore, besides their different recoverability potentials, distinct methanogenic groups are differentially impacted by different ammonia species. Prevailing literature evidence suggests that conductive material assisted bioaugmentation with SAO-HM consortia, and in-situ H2 supplementation are the most effective for expediting electron transfer and relieving ammonia stress. These valuable insights should inform the design of targeted ammonia inhibition mitigation strategies.
Collapse
Affiliation(s)
- Mabruk Adams
- Civil Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway, H91 TK33, Ireland.
| |
Collapse
|
10
|
Wu B, Lin R, Gu J, Yuan H, Murphy JD. Biochar confers significant microbial resistance to ammonia toxicity in n-caproic acid production. WATER RESEARCH 2024; 266:122367. [PMID: 39243461 DOI: 10.1016/j.watres.2024.122367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/19/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
Microbial chain elongation integrating innovative bioconversion technologies with organic waste utilization can transition current energy-intensive n-caproic acid production to sustainable circular bioeconomy systems. However, ammonia-rich waste streams, despite their suitability, pose inhibitory challenges to these bioconversion processes. Herein, biochar was employed as an additive to enhance the activity of chain elongating microbes under ammonia inhibition conditions, with an objective to detail underlying mechanisms of improvements. Biochar addition significantly improved chain elongation performance even under severe ammonia stress (exceeding 8 g N/L), increasing n-caproic acid yields by 40 % to 158 % and reducing lag times by 51 % to 90 %, compared with the best-performing group without biochar addition. The material contribution to n-caproic production reached up to 94.3 % (at 4 g N/L). These enhancements were mainly attributed to the new electron syntrophy induced by biochar, which improved electron transfer system activity and electrical conductivity of the fermentation system. This is further substantiated by increased relative abundances of the genus Sporanaerobacter, electroactive bacteria, and up-regulated direct electron transfer-related genes including conductive pili and c-type cytochrome. This study demonstrates that biochar can confer robust resilience to ammonia toxicity in functional microbes, paving a way for efficient and sustainable n-caproic acid production.
Collapse
Affiliation(s)
- Benteng Wu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; MaREI Centre, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland; Guangdong Provincial Key Laboratory of High-Quality Recycling of End-of-Life New Energy Devices, Guangzhou 510640, China
| | - Richen Lin
- MaREI Centre, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland; Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 211189, China
| | - Jing Gu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of High-Quality Recycling of End-of-Life New Energy Devices, Guangzhou 510640, China
| | - Haoran Yuan
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of High-Quality Recycling of End-of-Life New Energy Devices, Guangzhou 510640, China.
| | - Jerry D Murphy
- MaREI Centre, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland; Civil, Structural and Environmental Engineering, School of Engineering and Architecture, University College Cork, Cork T12 YN60, Ireland.
| |
Collapse
|
11
|
He Y, Wang S, Shen C, Wang Z, Liu Y, Meng X, Li X, Zhao X, Chen J, Xu J, Yu J, Cai Y, Ying H. Biochar accelerates methane production efficiency from Baijiu wastewater: Some viewpoints considering direct interspecies electron transfer. CHEMICAL ENGINEERING JOURNAL 2024; 497:154527. [DOI: 10.1016/j.cej.2024.154527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
|
12
|
Lin S, Li Y, Guo C, Yang L, Ma Y, Dong R, Liu S. Effects of hydrothermal pretreatment on sulfadiazine degradation during two-stage anaerobic digestion of pig manure. CHEMOSPHERE 2024; 366:143475. [PMID: 39368499 DOI: 10.1016/j.chemosphere.2024.143475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/14/2024] [Accepted: 10/03/2024] [Indexed: 10/07/2024]
Abstract
Antibiotics in animal manure pose significant risks to the environment and health. While anaerobic digestion (AD) is commonly used for pig manure treatment, its efficiency in antibiotic removal has been considerably limited. This study investigated the impact of hydrothermal pretreatment (HTP) on sulfadiazine (SDZ) removal in a two-stage AD system. Results indicated that the HTP process reduced SDZ concentration by 40.61%. Furthermore, the SDZ removal efficiency of the AD system coupling HTP increased from 50.90% to 65.04% compared to the untreated system. Biogas yield was also improved by 26.17% while maintaining system stability. Changes induced by HTP in the microbial communities revealed that Firmicutes, Bacteroidetes, Caldatribacteriota, and Proteobacteria emerged as the primary bacterial phyla. Following HTP, the relative abundance of Prevotella, which exhibited a strong negative correlation with SDZ concentration, increased significantly by 25-fold in the acidogenic stage. Proteiniphilum, Syntrophomonas and Sedimentibacter showed notable increases in the methanogenic stage after HTP. The N-heterocyclic metabolism carried out by Prevotella might have been the predominant SDZ degradation pathway in the acidogenic stage, while the benzene ring metabolism and hydroxylation by the Proteiniphilum emerged as the primary degradation pathways in the methanogenic stages. Furthermore, biodegradation intermediates were proven to be less toxic than SDZ itself, indicating that the HTP-enhanced two-stage AD process could be a viable way to lower the environmental risks associated with SDZ. The findings from this study provide valuable insights for removing SDZ from the environment via two-stage AD.
Collapse
Affiliation(s)
- Shupeng Lin
- College of Engineering, China Agricultural University, Beijing 100083, PR China
| | - Yitao Li
- Department of Civil and Environmental Engineering, Virginia Tech, Arlington, VA 22202, USA
| | - Chunchun Guo
- College of Engineering, China Agricultural University, Beijing 100083, PR China
| | - Liangcheng Yang
- Department of Health Sciences Environmental Health and Sustainability Program, Illinois State University, USA.
| | - Yanfang Ma
- College of Engineering, China Agricultural University, Beijing 100083, PR China
| | - Renjie Dong
- College of Engineering, China Agricultural University, Beijing 100083, PR China
| | - Shan Liu
- College of Engineering, China Agricultural University, Beijing 100083, PR China; Yantai Research Institute, China Agricultural University, Yantai, 264670, PR China.
| |
Collapse
|
13
|
Babatunde EO, Gurav R, Hwang SS. Pistia stratiotes L. Biochar for Sorptive Removal of Aqueous Inorganic Nitrogen. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3858. [PMID: 39124522 PMCID: PMC11314077 DOI: 10.3390/ma17153858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Biochar has proven effective in the remediation of excess nitrogen from soil and water. Excess nitrogen from agricultural fields ends up in aquatic systems and leads to reduced water quality and the proliferation of invasive species. This study aimed to assess the efficiency of chemically surface-modified biochar produced from invasive Pistia stratiotes L. for the adsorption of inorganic nitrogen (NH4+ and NO3-). Biochar structure was investigated using scanning electron microscopy, energy-dispersive X-ray analysis, X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, and inductively coupled plasma mass spectrometry. The results from adsorption experiments indicate that NH4+ removal was optimal (0.8-1.3 mg N g-1) at near-neutral pH levels (6.0-7.5), while NO3- removal was optimal (0.4-0.8 mg N g-1) under acidic pH conditions (4.8-6.5) using the modified biochar. These findings highlight the significance of solution pH, biochar morphology, and surface chemistry in influencing the adsorption of NH4+ and NO3-. However, further studies are necessary to assess the potential oxidative transformation of NH4+ to NO3- by biochar, which might have contributed to the reduction in NH4+ in the aqueous phase.
Collapse
Affiliation(s)
- Eunice O. Babatunde
- Ingram School of Engineering, Texas State University, San Marcos, TX 78666, USA;
| | - Ranjit Gurav
- Sustainability Cluster, School of Advanced Engineering, University of Petroleum & Energy Studies, Dehradun 248007, Uttarakhand, India;
| | - Sangchul S. Hwang
- Ingram School of Engineering, Texas State University, San Marcos, TX 78666, USA;
| |
Collapse
|
14
|
Margreiter C, Probst M, Prem EM, Hofmann A, Wagner AO. Gasification chars and activated carbon: Systematic physico-chemical characterization and effect on biogas production. Heliyon 2024; 10:e31264. [PMID: 38803868 PMCID: PMC11128995 DOI: 10.1016/j.heliyon.2024.e31264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/29/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024] Open
Abstract
Gasification residues/chars (GR) and activated carbon (AC) are added to wastewater treatment processes mainly as a fourth purification stage, e.g., to adsorb heavy metals or pharmaceutical residues. However, the effects of GR or AC, which are transferred to the anaerobic digestion (AD) via the sludge, are not yet fully understood. Although, the positive effect of char addition on AD has been demonstrated in several investigations, systematic studies with chemically well described chars are still missing. Therefore, in this study, different chars were characterized in detail, subjected to AD in different concentrations, and their effect on methane production investigated. GR of a gasification plant with a floating fixed bed technology, carbon made by chemical impregnation with ZnCl2 from waste-wood, carbon produced by thermochemical activation with CO2 from GR and commercial powdered AC were used for the experiments. Among others, thermogravimetric analysis, physisorption, pH, and conductivity analysis were used to characterize the chars. Mesophilic AD batch tests with different concentrations (0.025, 0.05, 0.5, 1.0, 7.0, 14.0 gL-1) of all chars (GR and ACs, respectively) were performed with digester sludge from a wastewater treatment plant for a period of 47 d. Volatile fatty acids (VFA) as well as biogas production and CH4 concentrations were monitored. It could be shown, that concentrations below 1.0 g char L-1 did not result in significant effects on CH4 and/or VFA production, whereas high concentrations of GR and AC influenced both, the CH4 yield and kinetics. Depending on the production process and the characteristics of the chars, the effect on AD varied, whereby both, positive and negative effects on biogas yield and methane production were observed. This study provides the first systematic evaluation of char application to AD processes, and therefore allows for better predictions of char applicability and effect.
Collapse
Affiliation(s)
- Christian Margreiter
- Department of Microbiology, Universität Innsbruck, Technikerstraße 25d, A-6020, Innsbruck, Austria
- Josef Ressel Center for the Production of Activated Carbon from Municipal Residues, MCI Innsbruck, Maximilianstraße 2, A-6020, Innsbruck, Austria
| | - Maraike Probst
- Department of Microbiology, Universität Innsbruck, Technikerstraße 25d, A-6020, Innsbruck, Austria
| | - Eva Maria Prem
- Department of Microbiology, Universität Innsbruck, Technikerstraße 25d, A-6020, Innsbruck, Austria
| | - Angela Hofmann
- Josef Ressel Center for the Production of Activated Carbon from Municipal Residues, MCI Innsbruck, Maximilianstraße 2, A-6020, Innsbruck, Austria
| | - Andreas Otto Wagner
- Department of Microbiology, Universität Innsbruck, Technikerstraße 25d, A-6020, Innsbruck, Austria
| |
Collapse
|
15
|
Kalogiannis A, Vasiliadou IA, Tsiamis A, Galiatsatos I, Stathopoulou P, Tsiamis G, Stamatelatou K. Enhancement of Biodegradability of Chicken Manure via the Addition of Zeolite in a Two-Stage Dry Anaerobic Digestion Configuration. Molecules 2024; 29:2568. [PMID: 38893444 PMCID: PMC11173769 DOI: 10.3390/molecules29112568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Leach bed reactors (LBRs) are dry anaerobic systems that can handle feedstocks with high solid content, like chicken manure, with minimal water addition. In this study, the chicken manure was mixed with zeolite, a novel addition, and packed in the LBR to improve biogas production. The resulting leachate was then processed in a continuous stirred tank reactor (CSTR), where most of the methane was produced. The supernatant of the CSTR was returned to the LBR. The batch mode operation of the LBR led to a varying methane production rate (MPR) with a peak in the beginning of each batch cycle when the leachate was rich in organic matter. Comparing the MPR in both systems, the peaks in the zeolite system were higher and more acute than in the control system, which was under stress, as indicated by the acetate accumulation at 2328 mg L-1. Moreover, the presence of zeolite in the LBR played a crucial role, increasing the overall methane yield from 0.142 (control experiment) to 0.171 NL CH4 per g of volatile solids of chicken manure entering the system at a solid retention time of 14 d. Zeolite also improved the stability of the system. The ammonia concentration increased gradually due to the little water entering the system and reached 3220 mg L-1 (control system) and 2730 mg L-1 (zeolite system) at the end of the experiment. It seems that zeolite favored the accumulation of the ammonia at a lower rate (14.0 mg L-1 d-1) compared to the control experiment (17.3 mg L-1 d-1). The microbial analysis of the CSTR fed on the leachate from the LBR amended with zeolite showed a higher relative abundance of Methanosaeta (83.6%) compared to the control experiment (69.1%). Both CSTRs established significantly different bacterial profiles from the inoculum after 120 days of operation (p < 0.05). Regarding the archaeal communities, there were no significant statistical differences between the CSTRs and the inoculum (p > 0.05).
Collapse
Affiliation(s)
- Achilleas Kalogiannis
- Department of Environmental Engineering, Democritus University of Thrace, Vas. Sofias 12, GR-67132 Xanthi, Greece; (A.K.); (I.A.V.)
| | - Ioanna A. Vasiliadou
- Department of Environmental Engineering, Democritus University of Thrace, Vas. Sofias 12, GR-67132 Xanthi, Greece; (A.K.); (I.A.V.)
- Department of Chemical Engineering, University of Western Macedonia, GR-50100 Kozani, Greece
| | - Athanasios Tsiamis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, GR-30131 Agrinio, Greece; (A.T.); (I.G.); (P.S.); (G.T.)
| | - Ioannis Galiatsatos
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, GR-30131 Agrinio, Greece; (A.T.); (I.G.); (P.S.); (G.T.)
| | - Panagiota Stathopoulou
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, GR-30131 Agrinio, Greece; (A.T.); (I.G.); (P.S.); (G.T.)
| | - George Tsiamis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, GR-30131 Agrinio, Greece; (A.T.); (I.G.); (P.S.); (G.T.)
| | - Katerina Stamatelatou
- Department of Environmental Engineering, Democritus University of Thrace, Vas. Sofias 12, GR-67132 Xanthi, Greece; (A.K.); (I.A.V.)
| |
Collapse
|
16
|
Zhao ZJ, Liu XL, Wang YX, Wang YS, Shen JY, Pan ZC, Mu Y. Material and microbial perspectives on understanding the role of biochar in mitigating ammonia inhibition during anaerobic digestion. WATER RESEARCH 2024; 255:121503. [PMID: 38537488 DOI: 10.1016/j.watres.2024.121503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/24/2024]
Abstract
With the increasing adoption of carbon-based strategies to enhance methanogenic processes, there is a growing concern regarding the correlation between biochar properties and its stimulating effects on anaerobic digestion (AD) under ammonia inhibition. This study delves into the relevant characteristics and potential mechanisms of biochar in the context of AD system under ammonia inhibition. The introduction of optimized biochar, distinguished by rich CO bond, abundant defect density, and high electronic capacity, resulted in a significant reduction in the lag period of anaerobic digestion system under 5.0 g/L ammonia stress, approximately by around 63 % compared to the control one. Biochar helps regulate the community structure, promotes the accumulation of acetate-consuming bacteria, in the AD system under ammonia inhibition. More examinations show that biochar promotes direct interspecies electron transfer in AD system under ammonia inhibition, as evidenced by diminished levels of bound electroactive extracellular polymeric substances, increased abundance of electroactive bacteria, and notably, the up-regulation of direct interspecies electron transfer associated genes, including the conductive pili and Cytochrome C genes, as revealed by meta-transcriptomic analysis. Additionally, gene expression related to proteins associated with ammonium detoxification were found to be up-regulated in systems supplemented with biochar. These findings provide essential evidence and insights for the selection and potential engineering of effective biochar to enhance AD performance under ammonia inhibition.
Collapse
Affiliation(s)
- Zhi-Jun Zhao
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xiao-Li Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yi-Xuan Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China; Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Yan-Shan Wang
- School of Geographic Sciences, Nantong University, Nantong 226007, China
| | - Jin-You Shen
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zhi-Cheng Pan
- Laboratory of Urban Wastewater Treatment Technology in Sichuan Province of Haitian Water Group Co., Ltd, Chengdu 610041, China
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
17
|
Al-Qahtani SD, Al-Senani GM. Development of toxic gas sensor from anthocyanin-embedded polycaprolactone-co-polylactic acid nanofibrous mat. Int J Biol Macromol 2024; 267:131649. [PMID: 38636751 DOI: 10.1016/j.ijbiomac.2024.131649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/08/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
The colorless ammonia gas has been a significant intermediate in the industrial sector. However, prolonged exposure to ammonia causes harmful effects to organs or even death. Herein, an environmentally friendly solid-state ammonia sensor was developed utilizing colorimetric polycaprolactone-co-polylactic acid nanofibrous membrane. Pomegranate (Punica granatum L.) peel contains anthocyanin (ACN) as a naturally occurring spectroscopic probe. A mordant (potassium aluminum sulfate) is used to immobilize the anthocyanin direct dyestuff inside nanofibers, generating mordant/anthocyanin (M/ACN) coordinated complex nanoparticles. When exposed to ammonia, the color change of anthocyanin-encapsulated polycaprolactone-co-polylactic acid nanofibrous membrane from purple to transparent was examined by absorbance spectra and CIE Lab color parameters. With a quick colorimetric shift, the polycaprolactone-co-polylactic acid fabric exhibits a detection limit of 5-150 mg/L. The absorbance spectra showed a hypsochromic shift when exposed to ammonia, displaying an absorption shift from 559 nm to 391 nm with an isosbestic point of 448 nm. Scanning electron microscopy (SEM) images revealed that the polycaprolactone-co-polylactic acid nanofibers had a diameter of 75-125 nm, whereas transmission electron microscopy (TEM) images revealed that M/ACN nanoparticles exhibited diameters of 10-20 nm.
Collapse
Affiliation(s)
- Salhah D Al-Qahtani
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Ghadah M Al-Senani
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| |
Collapse
|
18
|
Dong P, Li J, Woldeyohans AM, Parmentier D, Van Hulle SWH. Coagulation in combination with anaerobic digestion for enhancement of resource recovery from faecal sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120902. [PMID: 38657411 DOI: 10.1016/j.jenvman.2024.120902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/28/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024]
Abstract
Poorly managed faecal sludge (FS) poses significant challenges to public health and the environment. Anaerobic digestion (AD) of FS provides an effective method for energy recovery while reducing FS associated threats. Recognizing the critical role of the dewatering process before AD, this study investigates the synergistic application of chemical coagulation and mesophilic AD for synthetic FS treatment. FeCl3, AlCl3, Fe2(SO4)3, poly ferric sulfate (PFS) and poly aluminium ferric chloride (PAFC) were utilized at varying dosages to examine their impact on FS properties and subsequent biogas production from the dewatered FS. It was found that coagulation enhances sedimentation efficiencies and dewaterability through mechanisms such as charge neutralization, charge patching and bridging, thereby improving the FS feasibility for AD. Notably, polymer coagulant PFS showed good performance in balancing pollutant removal and methane recovery, contributing to facilitating the hydrolysis and acidogenesis microorganisms involved in the AD process. Optimal dosage was identified at 150 mg/g TS (1.7 g/L FS), achieving prominent removal efficiencies for total COD (67%), turbidity (85%), and total phosphorus (60%), while simultaneously enhancing AD performance with specific CH4 production reaching 517 ml CH₄/g VS or 24.8 ml CH₄/g AD wet feedstock compared to 309 ml CH₄/g VS or 2.7 ml CH₄/g AD wet feedstock in untreated FS.
Collapse
Affiliation(s)
- Pengyu Dong
- Laboratory for Industrial Water and Ecotechnology (LIWET), Department of Green Chemistry and Technology, Ghent University Campus Kortrijk, Sint Martens-Latemlaan 2B, Kortrijk, B-8500, Belgium; Centre for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Belgium.
| | - Jin Li
- Laboratory for Industrial Water and Ecotechnology (LIWET), Department of Green Chemistry and Technology, Ghent University Campus Kortrijk, Sint Martens-Latemlaan 2B, Kortrijk, B-8500, Belgium; School of Human Settlement and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shannxi Province, 710049, PR China
| | - Akalu M Woldeyohans
- Laboratory for Industrial Water and Ecotechnology (LIWET), Department of Green Chemistry and Technology, Ghent University Campus Kortrijk, Sint Martens-Latemlaan 2B, Kortrijk, B-8500, Belgium
| | - Dries Parmentier
- Laboratory for Industrial Water and Ecotechnology (LIWET), Department of Green Chemistry and Technology, Ghent University Campus Kortrijk, Sint Martens-Latemlaan 2B, Kortrijk, B-8500, Belgium; Noah Water Solutions Bvba, Burchtweg 7, B-9890, Gavere, Belgium
| | - Stijn W H Van Hulle
- Laboratory for Industrial Water and Ecotechnology (LIWET), Department of Green Chemistry and Technology, Ghent University Campus Kortrijk, Sint Martens-Latemlaan 2B, Kortrijk, B-8500, Belgium; Centre for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Belgium
| |
Collapse
|
19
|
He K, Liu Y, Tian L, He W, Cheng Q. Review in anaerobic digestion of food waste. Heliyon 2024; 10:e28200. [PMID: 38560199 PMCID: PMC10979283 DOI: 10.1016/j.heliyon.2024.e28200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/27/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
Due to the special property of food waste (FW), anaerobic digestion of food waste is facing many challenges like foaming, acidification, ammonia nitrogen and (NH4+-N) inhibition which resulted in a low biogas yield. A better understanding on the problems exiting in the FW anaerobic digestion would enhance the bio-energy recovery and increase the stable operation. Meanwhile, to overcome the bottle necks, pretreatment, co-digestion and additives is proposed as well as the solutions to improve biogas yield in FW digestion system. At last, future research directions regarding FW anaerobic digestion were proposed.
Collapse
Affiliation(s)
- Kefang He
- School of Management, Wuhan Polytechnic University, China
| | - Ying Liu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, China
| | - Longjin Tian
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, China
| | - Wanyou He
- School of Management, Wuhan Polytechnic University, China
| | - Qunpeng Cheng
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, China
| |
Collapse
|
20
|
Wang Y, Mu L, Chen C, Xu F, Peng H, Song Y, Chen G. Preparation of iron oxide-modified digestate biochar and effect on anaerobic digestion of kitchen waste. BIORESOURCE TECHNOLOGY 2024; 398:130515. [PMID: 38437970 DOI: 10.1016/j.biortech.2024.130515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/06/2024]
Abstract
Two kinds of Fe2O3-modified digestate-derived biochar (BC) were prepared and their effects on anaerobic digestion (AD) of kitchen waste (40.0 g VS/L) were investigated, with BC and Fe2O3 addition used as a comparison. The results showed that Fe2O3-modified BC (Fe2O3-BC1 prepared by co-precipitation and Fe2O3-BC2 by impregnation) significantly increased methane yield (20.8 % and 16.4 %, respectively) and reduced volatile fatty acid concentration (35.6 % and 29.6 %, respectively). Microbial high-throughput analysis revealed that Fe2O3-modified BC selectively enriched Clostridium (47.3 %) and Methanosarcina (72.2 %), suggesting that direct interspecies electron transfer contributing to improved biogas production performance was established and enhanced. Correlation analysis indicated that biogas production performance was improved by the larger specific surface area (83.4 m2/g), pore volume (0.101 cm3/g), and iron content (97.4 g/Kg) of the BC. These results offer insights for enhancing the efficacy of AD processes using Fe2O3-modified BCs as additives.
Collapse
Affiliation(s)
- Yifan Wang
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; China Energy Conservation (Beijing) Energy Conservation and Environment Protection Engineering Co., Ltd., Beijing 101318, China
| | - Lan Mu
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China.
| | - Chen Chen
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Fenglian Xu
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; China Energy Conservation (Beijing) Energy Conservation and Environment Protection Engineering Co., Ltd., Beijing 101318, China
| | - Hao Peng
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yingjin Song
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Guanyi Chen
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China
| |
Collapse
|
21
|
Wang L, He Y, Zhu Y, Ping Q, Li Y. Insight into using hydrochar to alleviate ammonia nitrogen inhibition during anaerobic digestion of waste activated sludge: Performance, metagenomic and metabolomic signatures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170196. [PMID: 38246376 DOI: 10.1016/j.scitotenv.2024.170196] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/13/2024] [Accepted: 01/14/2024] [Indexed: 01/23/2024]
Abstract
In this study, hydrochar (HCR) was used to alleviate high ammonia inhibition to the anaerobic digestion (AD) of waste activated sludge (WAS) and to elucidate the inner microorganism mechanism. After HCR addition, the cumulative methane yield increased by 73.6 % and 35.6 % under ammonia inhibition levels of 3000 and 6000 mg/L, respectively. Metagenomic analysis showed that HCR enriched the diversity of hydrogenotrophic methanotrophs, and the relative abundances of functional microorganisms with electron transfer capabilities (Geobacteraceae bacterium etc.) were 1.5-7.8 times higher than those without HCR addition. Metabolomics analysis implied that metabolites related to fatty acid degradation, such as glutaric acid and hexadecanal, were downregulated (2.9-15.7 %) under ammonia inhibition conditions and that HCR regulates metabolites in the methane metabolic pathway. Moreover, HCR changed the methanogenic pathway from hydrogenotrophic methanogenesis to multiple pathways under ammonia inhibition conditions, especially methanolic and methylotrophic methanogenesis, which facilitated the methane yield. This study provides valuable information for understanding the inner microbial mechanism of HCR addition on alleviating high ammonia inhibition to AD of WAS, and gives basic knowledge for the application of AD of WAS under ammonia inhibition conditions.
Collapse
Affiliation(s)
- Lin Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China
| | - Yunpeng He
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Yuting Zhu
- Tongji Architectural Design (Group) Co., Ltd., Environmental Engineering Branch, Shanghai 200092, People's Republic of China
| | - Qian Ping
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China.
| | - Yongmei Li
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China
| |
Collapse
|
22
|
Wang G, Fu P, Su Y, Zhang B, Zhang M, Li Q, Zhang J, Li YY, Chen R. Comparing the mechanisms of syntrophic volatile fatty acids oxidation and methanogenesis recovery from ammonia stress in regular and biochar-assisted anaerobic digestion: Different roads lead to the same goal. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:120041. [PMID: 38219669 DOI: 10.1016/j.jenvman.2024.120041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/19/2023] [Accepted: 12/25/2023] [Indexed: 01/16/2024]
Abstract
Biochar has been recognized as a promising additive to mitigate ammonia inhibition during syntrophic methanogenesis, while the key function of biochar in this process is still in debates. This study clarified the distinct mechanisms of syntrophic volatile fatty acids -oxidizing and methanogenesis recovery from ammonia inhibition in regular and biochar-assisted anaerobic digestion. Under 5 g/L ammonia stress, adding biochar shortened the methanogenic lag time by 10.9% and dramatically accelerated the maximum methane production rate from 60.3 to 94.7 mLCH4/gVSsludge/d. A photometric analysis with a nano-WO3 probe revealed that biochar enhanced the extracellular electron transfer (EET) capacity of suspended microbes (Pearson's r = -0.98), confirming that biochar facilitated methanogenesis by boosting EET between syntrophic butyrate oxidizer and methanogens. Same linear relationship between EET capacity and methanogenic rate was not observed in the control group. Microbial community integrating functional genes prediction analysis uncovered that biochar re-shaped syntrophic partners by enriching Constridium_sensu_stricto/Syntrophomonas and Methanosarcina. The functional genes encoding Co-enzyme F420 hydrogenase and formylmethanofuran dehydrogenase were upregulated by 1.4-2.3 times, consequently enhanced the CO2-reduction methanogenesis pathway. Meanwhile, the abundances of gene encoding methylene-tetrahydrofolate transformation, a series of intermediate processes involved in acetate oxidation, in the biochar-assisted group were 28.2-63.7% higher than these in control group. Comparatively, Methanosaeta played a pivotal role driving aceticlastic methanogenesis in the control group because the abundance of gene encoding acetyl-CoA decarbonylase/synthase complex increased by 1.9 times, suggesting an aceticlastic combining H2-based syntrophic methanogenesis pathway was established in control group to resist ammonia stress. A 2nd period experiment elucidated that although depending on distinct mechanisms, the volatile fatty acid oxidizers and methanogens in both groups developed sustained and stable strategies to resist ammonia stress. These findings provided new insights to understand the distinct methanogenic recovery strategy to resist toxic stress under varied environmental conditions.
Collapse
Affiliation(s)
- Gaojun Wang
- Key Lab of Environmental Engineering (Shaanxi Province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology (Ministry of Education), Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, China
| | - Peng Fu
- Key Lab of Environmental Engineering (Shaanxi Province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, China
| | - Yan Su
- Xi'an TPRI Water-Management & Environmental Protection Co. Ltd., State Key Laboratory of High-Efficiency Flexible Coal Power Generation and Carbon Capture Utilization and Storage, Xi'an 710054, China
| | - Bo Zhang
- Key Lab of Environmental Engineering (Shaanxi Province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, China
| | - Mengyuan Zhang
- Key Lab of Environmental Engineering (Shaanxi Province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, China
| | - Qian Li
- Key Lab of Environmental Engineering (Shaanxi Province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology (Ministry of Education), Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, China; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| | - Jianfeng Zhang
- Key Lab of Environmental Engineering (Shaanxi Province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| | - Rong Chen
- Key Lab of Environmental Engineering (Shaanxi Province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology (Ministry of Education), Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, China.
| |
Collapse
|
23
|
Xu J, Xu L, Zong Y, Lin R, He Y, Xie L. Electrically-assisted anaerobic digestion under ammonia stress: Facilitating propionate oxidation and activating methanogenesis via direct interspecies electron transfer. BIORESOURCE TECHNOLOGY 2024; 393:130067. [PMID: 37989418 DOI: 10.1016/j.biortech.2023.130067] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 11/23/2023]
Abstract
Electrical assistance is an effective strategy for promoting anaerobic digestion (AD) under ammonia stress. However, the underlying mechanism of electrical assistance affecting AD is insufficiently understood. Here, electrical assistance to AD under 5 g N/L ammonia stress was provided, by employing a 0.6 V voltage to the carbon electrodes. The results demonstrated remarkable enhancements in methane production (104.6 %) and the maximal methane production rate (207.7 %). The critical segment facilitated by electro-stimulation was the microbial metabolism of propionate-to-methane, rather than ammonia removal. Proteins in extracellular polymer substances were enriched, boosting microbial resilience to ammonia intrusion. Concurrently, the promoted humic/fulvic-substances amplified the microbial electron transfer capacity. Metagenomics analysis identified the upsurge of propionate oxidation at the anode (by e.g. unclassified_c__Bacteroidia), and the stimulations of acetoclastic and direct interspecies electron transfer-dependent CO2-reducing methanogenesis at the cathode (by e.g. Methanothrix). This study provides novel insights into the effect of electrical assistance on ammonia-stressed AD.
Collapse
Affiliation(s)
- Jun Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Ling Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Yang Zong
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Rujing Lin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Yingying He
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Li Xie
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
24
|
Zhao W, Hu T, Ma H, Li D, Zhao Q, Jiang J, Wei L. A review of microbial responses to biochar addition in anaerobic digestion system: Community, cellular and genetic level findings. BIORESOURCE TECHNOLOGY 2024; 391:129929. [PMID: 37923231 DOI: 10.1016/j.biortech.2023.129929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/11/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
The biochar is a well-developed porous material with various excellent properties, that has been proven with excellent ability in anaerobic digestion (AD) efficiency promotion. Current research is usually focused on the macro effects of biochar on AD, while the systematic review about the mechanisms of biochar on microbial behavior are still lacking. This review summarizes the effects and potential mechanisms of biochar on microorganisms in AD systems, and found that biochar addition can provide habitats for microbial colonization, alleviate toxins stress, supply essential nutrients, and accelerate interspecies electron transferring. Moreover, it also improves microbial community diversity, facilitates EPS secretion, enhances functional enzyme activity, promotes functional genes expression, and inhibits the antibiotic resistance genes transformation. Future research directions including biochar targeted design, in-depth microbial mechanisms revelation, and modified model development were suggested, which could promote the widely practical application of of biochar-amended AD technology.
Collapse
Affiliation(s)
- Weixin Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Tianyi Hu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hao Ma
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dan Li
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Junqiu Jiang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
25
|
Nie W, He S, Lin Y, Cheng JJ, Yang C. Functional biochar in enhanced anaerobic digestion: Synthesis, performances, and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167681. [PMID: 37839485 DOI: 10.1016/j.scitotenv.2023.167681] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023]
Abstract
Anaerobic digestion technology is crucial in bioenergy recovery and organic waste management. At the same time, it often encounters challenges such as low organic digestibility and inhibition of toxic substances, resulting in low biomethane yields. Biochar has recently been used in anaerobic digestion to alleviate toxicity inhibition, improve the stability of anaerobic digestion processes, and increase methane yields. However, the practical application of biochar is limited, for the properties of pristine biochar significantly affect its application in anaerobic digestion. Although much research focuses on understanding original biochar's fundamental properties and functionalization, there are few reviews on the applications of functional biochar and the effects of critical properties of pristine biochar on anaerobic digestion. This review systematically reviewed functionalization strategies, key performances, and applications of functional biochar in anaerobic digestion. The properties determining the role of biochar were reviewed, the synthesis methods of functional biochar were summarized and compared, the mechanism of functional biochar was discussed, and the factors affecting the function of functional biochar were reviewed. This review provided a comprehensive understanding of functional biochar in anaerobic digestion processes, which would be helpful for the development and applications of engineered biochar.
Collapse
Affiliation(s)
- Wenkai Nie
- College of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Gongshang University, Hangzhou, Zhejiang 310012, China; College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Shanying He
- College of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Gongshang University, Hangzhou, Zhejiang 310012, China.
| | - Yan Lin
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Jay J Cheng
- Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China; Department of Biological and Agricultural Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Chunping Yang
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China; Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China; School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi 330063, China.
| |
Collapse
|
26
|
Wang G, Chen L, Xing Y, Sun C, Fu P, Li Q, Chen R. Biochar establishing syntrophic partnership between exoelectrogens to facilitate extracellular electron transfer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166549. [PMID: 37633395 DOI: 10.1016/j.scitotenv.2023.166549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/31/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Biochar was regarded as a promising accelerator for extracellular electron transfer (EET), while the mechanism of biochar facilitating electricity harvest in bioelectrochemical system (BES) was in debates. In this study, sawdust-based biochar with low conductivity but strong redox-based electron exchange capacity was added into BES with two forms, including a suspended form (S-BC) added in anode chamber and a fixed form closely wrapping up the anode (F-BC). Compared with the control group, S-BC and F-BC addition dramatically increased accumulated electricity output by 2.0 and 5.1 times. However, electrochemical analysis characterized the lowest electrochemical property on anode surface in F-BC modified group. A 2nd period conducted by separating F-BC modified group with "aged F-BC + new anode" group and "single aged anode" group demonstrated that F-BC contributed >95 % to the current generation of F-BC modified group, while the anode almost acted as a conductor to transfer the generated electrons to cathode. Microbial community analysis revealed that both heterotrophic and autotrophic exoelectrogens contributed to current generation. The presence of biochar upregulated functional genes encoding cytochrome-c and type IV pilus, thereby boosting electricity harvest efficiency. Interestingly, the heterotrophic exoelectrogens of Geobacter/Desulfovibrio tended to attach on fixed surfaces of both biochar and anode, and the autotrophic exelectrogen of Hydrogenophaga was selectively enriched on biochar surfaces whatever fixed or suspended form. Consequently, a syntrophic partnership between Geobacter/Desulfovibrio and Hydrogenophaga was potentially establishment on F-BC surface for highly-efficient electricity harvest. In this syntrophic EET model, biochar potentially acted as the redox-active mediator, which temporarily accepted electron released by Geobacter/Desulfovibrio via acetate oxidation, and then donated them to Hydrogenophaga attached on biochar surfaces for autotrophic EET. This was distinct from a regular EET conducted by heterotrophic exoelectrogens. These findings provided new insights to understand the mechanisms of biochar facilitating EET by syntrophic metabolism pathway.
Collapse
Affiliation(s)
- Gaojun Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology (Ministry of Education), Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Lu Chen
- Key Laboratory of Northwest Water Resource, Environment and Ecology (Ministry of Education), Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Yao Xing
- Key Laboratory of Northwest Water Resource, Environment and Ecology (Ministry of Education), Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; Xingrong (Xi'an) Environmental Development Co., No. 3160, Dazhai Road, Xi'an 710055, PR China
| | - Changxi Sun
- Key Laboratory of Northwest Water Resource, Environment and Ecology (Ministry of Education), Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Peng Fu
- Key Laboratory of Northwest Water Resource, Environment and Ecology (Ministry of Education), Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Qian Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology (Ministry of Education), Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Rong Chen
- Key Laboratory of Northwest Water Resource, Environment and Ecology (Ministry of Education), Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China.
| |
Collapse
|
27
|
Liu J, Wang S, Wang Z, Shen C, Liu D, Shen X, Weng L, He Y, Wang S, Wang J, Zhuang W, Cai Y, Xu J, Ying H. Pretreatment of Luzhou distiller's grains for feed protein production using crude enzymes produced by a synthetic microbial consortium. BIORESOURCE TECHNOLOGY 2023; 390:129852. [PMID: 37839649 DOI: 10.1016/j.biortech.2023.129852] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/25/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023]
Abstract
Chinese distillers' grains (CDGs) have low fermentation efficiency due to the presence of lignocellulosic components, such as rice husk. In this study, a microbial consortium synthesized was used based on the "functional complementarity" principle to produce lignocellulolytic crude enzyme. The crude enzyme was used to hydrolyze CDGs. After enzymatic hydrolysis, lignocellulose was damaged to varying degrees and the crystallinity decreased. Subsequently, the feed protein was produced using yeast through two pathways. The results showed that the crude enzyme produced by the microbial consortium (comprising Trichoderma reesei, Aspergillus niger, and Penicillium) exhibited excellent enzymatic efficiency, yielding 27.88%, 19.64%, and 10.88% of reducing sugar, cellulose, and hemicellulose. The true protein content of CDGs increased by 53.49% and 48.35% through the first and second pathways, respectively. Notably, the second pathway demonstrated higher economic benefits to produce feed protein. This study provides a pathway for high-quality utilization of CDGs.
Collapse
Affiliation(s)
- Jixiang Liu
- School of Chemical Engineering, Zhengzhou University, 100 Ke Xue Dadao, Zhengzhou 450001, China
| | - Shilei Wang
- School of Chemical Engineering, Zhengzhou University, 100 Ke Xue Dadao, Zhengzhou 450001, China
| | - Zhi Wang
- School of Chemical Engineering, Zhengzhou University, 100 Ke Xue Dadao, Zhengzhou 450001, China
| | | | - Dong Liu
- National Engineering Technique Research Center for Biotechnology, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China
| | | | - Longfei Weng
- School of Chemical Engineering, Zhengzhou University, 100 Ke Xue Dadao, Zhengzhou 450001, China
| | - Yun He
- School of Chemical Engineering, Zhengzhou University, 100 Ke Xue Dadao, Zhengzhou 450001, China
| | - Simin Wang
- School of Chemical Engineering, Zhengzhou University, 100 Ke Xue Dadao, Zhengzhou 450001, China
| | - Jiaxin Wang
- School of Chemical Engineering, Zhengzhou University, 100 Ke Xue Dadao, Zhengzhou 450001, China
| | - Wei Zhuang
- National Engineering Technique Research Center for Biotechnology, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Yafan Cai
- School of Chemical Engineering, Zhengzhou University, 100 Ke Xue Dadao, Zhengzhou 450001, China.
| | - Jingliang Xu
- School of Chemical Engineering, Zhengzhou University, 100 Ke Xue Dadao, Zhengzhou 450001, China
| | - Hanjie Ying
- National Engineering Technique Research Center for Biotechnology, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China
| |
Collapse
|
28
|
Alexis Parra-Orobio B, Soto-Paz J, Ricardo Oviedo-Ocaña E, Vali SA, Sánchez A. Advances, trends and challenges in the use of biochar as an improvement strategy in the anaerobic digestion of organic waste: a systematic analysis. Bioengineered 2023; 14:2252191. [PMID: 37712696 PMCID: PMC10506435 DOI: 10.1080/21655979.2023.2252191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/29/2023] [Accepted: 06/19/2023] [Indexed: 09/16/2023] Open
Abstract
A recently strategy applied to anaerobic digestion (AD) is the use of biochar (BC) obtained from the pyrolysis of different organic waste. The PRISMA protocol-based review of the most recent literature data from 2011-2022 was used in this study. The review focuses on research papers from Scopus® and Web of Knowledge®. The review protocol used permits to identify 169 articles. The review indicated a need for further research in the following challenges on the application of BC in AD: i) to increase the use of BC in developing countries, which produce large and diverse amounts of waste that are the source of production of this additive; ii) to determine the effect of BC on the AD of organic waste under psychrophilic conditions; iii) to apply tools of machine learning or robust models that allow the process optimization; iv) to perform studies that include life cycle and technical-economic analysis that allow identifying the potential of applying BC in AD in large-scale systems; v) to study the effects of BC on the agronomic characteristics of the digestate once it is applied to the soil and vi) finally, it is necessary to deepen in the effect of BC on the dynamics of nitrogen and microbial consortia that affect AD, considering the type of BC used. In the future, it is necessary to search for new solutions in terms of the transport phenomena that occurs in AD with the use of BC using robust and precise mathematical models at full-scale conditions.
Collapse
Affiliation(s)
- Brayan Alexis Parra-Orobio
- Facultad de Ingenierías Fisicomecánicas, Grupo de Investigación En Recursos Hídricos Y Saneamiento Ambiental – GPH, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Jonathan Soto-Paz
- Facultad de Ingenierías Fisicomecánicas, Grupo de Investigación En Recursos Hídricos Y Saneamiento Ambiental – GPH, Universidad Industrial de Santander, Bucaramanga, Colombia
- Facultad de Ingeniería, Grupo de Investigación En Amenazas, Vulnerabilidad Y Riesgos a Fenómenos Naturales, Universidad de Investigación y Desarrollo, Bucaramanga, Colombia
| | - Edgar Ricardo Oviedo-Ocaña
- Facultad de Ingenierías Fisicomecánicas, Grupo de Investigación En Recursos Hídricos Y Saneamiento Ambiental – GPH, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Seyed Alireza Vali
- Department of Chemical, Biological and Environmental Engineering, Composting Research Group, Autonomous University of Barcelona, Barcelona, Spain
| | - Antoni Sánchez
- Department of Chemical, Biological and Environmental Engineering, Composting Research Group, Autonomous University of Barcelona, Barcelona, Spain
| |
Collapse
|
29
|
Kozłowski M, Igwegbe CA, Tarczyńska A, Białowiec A. Revealing the Adverse Impact of Additive Carbon Material on Microorganisms and Its Implications for Biogas Yields: A Critical Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7250. [PMID: 38067995 PMCID: PMC10707503 DOI: 10.3390/ma16237250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 09/16/2024]
Abstract
Biochar could be a brilliant additive supporting the anaerobic fermentation process. However, it should be taken into account that in some cases it could also be harmful to microorganisms responsible for biogas production. The negative impact of carbon materials could be a result of an overdose of biochar, high biochar pH, increased arsenic mobility in the methane fermentation solution caused by the carbon material, and low porosity of some carbon materials for microorganisms. Moreover, when biochar is affected by an anaerobic digest solution, it could reduce the biodiversity of microorganisms. The purpose of the article is not to reject the idea of biochar additives to increase the efficiency of biogas production, but to draw attention to the properties and ways of adding these materials that could reduce biogas production. These findings have practical relevance for organizations seeking to implement such systems in industrial or local-scale biogas plants and provide valuable insights for future research. Needless to say, this study will also support the implementation of biogas technologies and waste management in implementing the idea of a circular economy, further emphasizing the significance of the research.
Collapse
Affiliation(s)
- Michał Kozłowski
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (M.K.); or (C.A.I.); (A.T.)
| | - Chinenye Adaobi Igwegbe
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (M.K.); or (C.A.I.); (A.T.)
- Department of Chemical Engineering, Nnamdi Azikiwe University, P.M.B. 5025, Awka 420218, Nigeria
| | - Agata Tarczyńska
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (M.K.); or (C.A.I.); (A.T.)
| | - Andrzej Białowiec
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (M.K.); or (C.A.I.); (A.T.)
| |
Collapse
|
30
|
Wei L, Zhang Y, Han Y, Zheng J, Xu X, Zhu L. Effective abatement of ammonium and nitrate release from sediments by biochar coverage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165710. [PMID: 37487903 DOI: 10.1016/j.scitotenv.2023.165710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 07/26/2023]
Abstract
Inorganic forms of N from sediments and runoff water, among others, remain some of the key sources of pollution of water bodies. However, the release of NH4+-N from sediment to water can be effectively reduced by biochar coverage due to high adsorption capacity, unlike NO3-N, where biochar has a low affinity. The feasibility of biochar coverage to abate NO3--N release needs to be evaluated. This study collected four sediments from Lake Taihu (China). Three types of biochar pyrolyzed from ordinary wastes, coconut shell (coBC), algal and excess sludge, were prepared to cover them and were incubated for 90 days. Results showed that the terminal total nitrogen (TN) and NO3--N concentrations decreased from 5.35 to 2.31-3.04 mg/L, 3.05 to 0.34-1.11 mg/L, respectively. CoBC coverage showed the best performance for reducing NO3--N release flux from 26.99 ± 0.19 to 9.30 ± 0.02 mg/m2·d (63.6 %). Potential denitrifiers, such as Flavobacterium and Exiguobacterium, were enriched in the biochar-coverage layer, and the absolute abundance of N-related functional genes (narG, nirS, nosZ and anammox) was increased by 1.76-4.21 times (p < 0.05). Jar tests by 15N isotope labeling further indicated that biochar addition increased the denitrification and anammox rates by 53.5-83.4 %. Experiments combining exogenous organic‑carbon addition and 15N labeling demonstrated that biochar's key role was regulating organic matter's bioavailability. Analysis with partial least square path modeling (PLS-PM) implied biochar with higher adsorption enhanced the denitrification and anammox processes in sediments via modifying the niche with suitable DOC, TN, and pH. This study suggested that biochar coverage could effectively abate NO3--N release from sediments by affecting the denitrification and anammox processes.
Collapse
Affiliation(s)
- Lecheng Wei
- Institute of Environmental Pollution Control and Treatment, Zhejiang University, Hangzhou 310058, China
| | - Yajie Zhang
- Institute of Environmental Pollution Control and Treatment, Zhejiang University, Hangzhou 310058, China
| | - Yutong Han
- Institute of Environmental Pollution Control and Treatment, Zhejiang University, Hangzhou 310058, China
| | - Jingjing Zheng
- Institute of Environmental Pollution Control and Treatment, Zhejiang University, Hangzhou 310058, China
| | - Xiangyang Xu
- Institute of Environmental Pollution Control and Treatment, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China; Zhejiang Provincial Engineering Laboratory of Water Pollution Control, 388 Yuhangtang Road, Hangzhou 310058, China
| | - Liang Zhu
- Institute of Environmental Pollution Control and Treatment, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China; Zhejiang Provincial Engineering Laboratory of Water Pollution Control, 388 Yuhangtang Road, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314000, China.
| |
Collapse
|
31
|
Wang G, Fu P, Zhang B, Zhang J, Huang Q, Yao G, Li Q, Dzakpasu M, Zhang J, Li YY, Chen R. Biochar facilitates methanogens evolution by enhancing extracellular electron transfer to boost anaerobic digestion of swine manure under ammonia stress. BIORESOURCE TECHNOLOGY 2023; 388:129773. [PMID: 37722547 DOI: 10.1016/j.biortech.2023.129773] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/24/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023]
Abstract
This study explored the mechanisms by which biochar mitigates ammonia inhibition in anaerobic digestion (AD) of swine manure. Findings show 2-8 g/L exogenous ammonia dosages gradually inhibited AD, leading to decreases in the efficiencies of hydrolysis, acidogenesis and methanogenesis by 3.4-70.8%, 6.0-82.0%, and 4.9-93.8%, respectively. However, biochar addition mitigated this inhibition and facilitated methane production. Biochar enhanced microbial activities related to electron transport and extracellular electron transfer. Moreover, biochar primarily enriched Methanosarcina, which, consequently, upregulated the genes encoding formylmethanofuran dehydrogenase and methenyltetrahydromethanopterin cyclohydrolase for the CO2-reducing methanogenesis pathway by 26.9-40.8%. It is believed that biochar mediated direct interspecies electron transfer between syntrophic partners, thereby enhancing methane production under ammonia stress. Interestingly, biochar removal did not significantly impact the AD performance of the acclimated microbial community. This indicated the pivotal role of biochar in triggering methanogen evolution to mitigate ammonia stress rather than the indispensable function after the enrichment of ammonia-resistance methanogen.
Collapse
Affiliation(s)
- Gaojun Wang
- Key Lab of Environmental Engineering (Shaanxi Province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology (Ministry of Education), Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Peng Fu
- Key Lab of Environmental Engineering (Shaanxi Province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Bo Zhang
- Key Lab of Environmental Engineering (Shaanxi Province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Ji Zhang
- Key Lab of Environmental Engineering (Shaanxi Province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Qiuyi Huang
- Key Lab of Environmental Engineering (Shaanxi Province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Gaofei Yao
- Key Lab of Environmental Engineering (Shaanxi Province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Qian Li
- Key Lab of Environmental Engineering (Shaanxi Province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology (Ministry of Education), Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Mawuli Dzakpasu
- Key Lab of Environmental Engineering (Shaanxi Province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology (Ministry of Education), Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Jianfeng Zhang
- Key Lab of Environmental Engineering (Shaanxi Province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Rong Chen
- Key Lab of Environmental Engineering (Shaanxi Province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology (Ministry of Education), Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China.
| |
Collapse
|
32
|
Ngo T, Khudur LS, Krohn C, Hassan S, Jansriphibul K, Hakeem IG, Shah K, Surapaneni A, Ball AS. Wood biochar enhances methanogenesis in the anaerobic digestion of chicken manure under ammonia inhibition conditions. Heliyon 2023; 9:e21100. [PMID: 37920507 PMCID: PMC10618790 DOI: 10.1016/j.heliyon.2023.e21100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/28/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023] Open
Abstract
The process of breaking down chicken manure through anaerobic digestion is an effective waste management technology. However, chicken manure can be a challenging feedstock, causing ammonia stress and digester instability. This study examined the impacts of adding wood biochar and acid-alkali-treated wood biochar to anaerobically digest chicken manure under conditions of ammonia inhibition. The results highlighted that only the addition of 5 % acid-alkali-treated wood biochar by volume can achieve cumulative methane production close to the typical methane potential range of chicken manure. The treated wood biochar also exhibited highest total ammonia nitrogen removal compared to the Control treatment. Scanning Electron Microscope revealed growing interactions between biochar and methanogens over time. Real-time polymerase chain reaction showed that treated wood biochar produced the highest number of bacterial biomass. In addition, 16S amplicon-based sequencing identified a more robust archaeal community from treated biochar addition. Overall, the acid-alkali treatment of biochar represents an effective method of modifying biochar to improve its performance in anaerobic digestion.
Collapse
Affiliation(s)
- Tien Ngo
- School of Science, RMIT University, Melbourne, VIC 3083, Australia
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC 3083, Australia
| | - Leadin S. Khudur
- School of Science, RMIT University, Melbourne, VIC 3083, Australia
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC 3083, Australia
| | - Christian Krohn
- School of Science, RMIT University, Melbourne, VIC 3083, Australia
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC 3083, Australia
| | - Soulayma Hassan
- School of Science, RMIT University, Melbourne, VIC 3083, Australia
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC 3083, Australia
| | - Kraiwut Jansriphibul
- School of Science, RMIT University, Melbourne, VIC 3083, Australia
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC 3083, Australia
| | - Ibrahim Gbolahan Hakeem
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC 3083, Australia
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Kalpit Shah
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC 3083, Australia
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Aravind Surapaneni
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC 3083, Australia
- South East Water, 101 Wells Street, Frankston, VIC 3199, Australia
| | - Andrew S. Ball
- School of Science, RMIT University, Melbourne, VIC 3083, Australia
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC 3083, Australia
| |
Collapse
|
33
|
Valentin MT, Świechowski K, Białowiec A. Influence of Pre-Incubation of Inoculum with Biochar on Anaerobic Digestion Performance. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6655. [PMID: 37895637 PMCID: PMC10608094 DOI: 10.3390/ma16206655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023]
Abstract
The application of biochar as an additive to enhance the anaerobic digestion (AD) of biomass has been extensively studied from various perspectives. This study reported, for the first time, the influence of biochar incubation in the inoculum on the anaerobic fermentation of glucose in a batch-type reactor over 20 days. Three groups of inoculum with the same characteristics were pre-mixed once with biochar for different durations: 21 days (D21), 10 days (D10), and 0 days (D0). The BC was mixed in the inoculum at a concentration of 8.0 g/L. The proportion of the inoculum and substrate was adjusted to an inoculum-to-substrate ratio of 2.0 based on the volatile solids. The results of the experiment revealed that D21 had the highest cumulative methane yield, of 348.98 mL, compared to 322.66, 290.05, and 25.15 mL obtained from D10, D0, and the control, respectively. Three models-modified Gompertz, first-order, and Autoregressive Integrated Moving Average (ARIMA)-were used to interpret the biomethane production. All models showed promising fitting of the cumulative biomethane production, as indicated by high R2 and low RMSE values. Among these models, the ARIMA model exhibited the closest fit to the actual data. The biomethane production rate, derived from the modified Gompertz Model, increased as the incubation period increased, with D21 yielding the highest rate of 31.13 mL/gVS. This study suggests that the application of biochar in the anaerobic fermentation of glucose, particularly considering the short incubation period, holds significant potential for improving the overall performance of anaerobic digestion.
Collapse
Affiliation(s)
- Marvin T. Valentin
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 51-630 Wroclaw, Poland or (M.T.V.); (K.Ś.)
- Benguet State University, Km. 5, La Trinidad, Benguet 2601, Philippines
| | - Kacper Świechowski
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 51-630 Wroclaw, Poland or (M.T.V.); (K.Ś.)
| | - Andrzej Białowiec
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 51-630 Wroclaw, Poland or (M.T.V.); (K.Ś.)
| |
Collapse
|
34
|
Wang Z, Wang S, Zhuang W, Liu J, Meng X, Zhao X, Zheng Z, Chen S, Ying H, Cai Y. Trace elements' deficiency in energy production through methanogenesis process: Focus on the characteristics of organic solid wastes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163116. [PMID: 36996981 DOI: 10.1016/j.scitotenv.2023.163116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/28/2023] [Accepted: 03/23/2023] [Indexed: 05/13/2023]
Abstract
Excessive or insufficient supplementation of trace elements (TEs) limits the progression of anaerobic digestion. The main reason for this is the lack of sufficient understanding of digestion substrate characteristics, which significantly affects the demand for TEs. In this review, the relationship between TEs requirements and substrate characteristics is discussed. We mainly focus on three aspects. 1) The basis for TE optimization and existing problems: The optimization of TEs often based on the total solids (TS) or volatile solids (VS) of substrates, does not fully consider substrate characteristics. 2) TE deficiency mechanisms for different types of substrates: nitrogen-rich, sulfur-rich, TE-poor, and easily hydrolyzed substrates are the four main types of substrates. The mechanisms underlying TEs deficiency in the different substrates are investigated. 3) Regulation of TE bioavailability: characteristics of substrates affect digestion parameters, which disturb the bioavailability TE. Therefore, methods for regulating bioavailability of TEs are discussed.
Collapse
Affiliation(s)
- Zhi Wang
- School of Chemical Engineering, Zhengzhou University, Kexue Dadao 100, 450001 Zhengzhou, China
| | - Shilei Wang
- School of Chemical Engineering, Zhengzhou University, Kexue Dadao 100, 450001 Zhengzhou, China
| | - Wei Zhuang
- School of Chemical Engineering, Zhengzhou University, Kexue Dadao 100, 450001 Zhengzhou, China; National Engineering Technique Research Center for Biotechnology, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Jinle Liu
- School of Chemical Engineering, Zhengzhou University, Kexue Dadao 100, 450001 Zhengzhou, China
| | - Xingyao Meng
- Beijing Technology and Business University, State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing 100048, China
| | - Xiaoling Zhao
- School of Chemical Engineering, Zhengzhou University, Kexue Dadao 100, 450001 Zhengzhou, China
| | - Zehui Zheng
- College of Agronomy and Biotechnology/Biomass Engineering Center, China Agricultural University, Beijing 100193, China
| | - Shanshuai Chen
- Sanya Nanfan Research Institute of Hainan University, Hainan University, Sanya 572025, China
| | - Hanjie Ying
- School of Chemical Engineering, Zhengzhou University, Kexue Dadao 100, 450001 Zhengzhou, China; National Engineering Technique Research Center for Biotechnology, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Yafan Cai
- School of Chemical Engineering, Zhengzhou University, Kexue Dadao 100, 450001 Zhengzhou, China.
| |
Collapse
|
35
|
Cai Y, Shen X, Meng X, Zheng Z, Usman M, Hu K, Zhao X. Syntrophic consortium with the aid of coconut shell-derived biochar enhances methane recovery from ammonia-inhibited anaerobic digestion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162182. [PMID: 36773909 DOI: 10.1016/j.scitotenv.2023.162182] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Anaerobic digestion (AD) of nitrogen-rich substrates often suffers from the issue of ammonia inhibition. Although bioaugmentation has been used to assist AD with high ammonia concentration, the combined effect of domesticated syntrophic consortium (MC) together with biochar on ammonia inhibited AD are still unknown. In the present study, MC was adapted and enriched by purposive domestication. As a novel strategy, coconut shell-derived biochar was used as a carrier to aid the MC. The results showed that the digestion system deteriorated completely without the assistance of MC and biochar when the TAN concentration exceeded 8.0 g L-1. The combination of biochar and MC (B-MC treatment) could restore ammonia inhibition in 10 days and achieved a high methane yield of 357.5 mL g-1 volatile solid, which was 7.5 % higher than that of MC treatment. Syntrophomonas, Syntrophobacter, and Methanoculleus in MC played a critical role in reducing propionic acid and butyric acid content and efficiently producing methane. Their abundances increased 12-fold, 10-fold, and 2-fold, respectively. With the assistance of biochar, MC had a better performance in relieving ammonia inhibition. This could be attributed to two aspects. First, biochar encouraged the growth or colonization of key microorganisms such as propionate and butyrate oxidizing bacteria and ammonia-tolerant archaea. Second, biochar induced the growth of conductive microorganisms such as Geobacter. From the perspective of enzyme genes, biochar increased the abundance of related enzyme genes in butyrate and propionate degradation, acetoclastic and hydrogenotrophic pathways. In conclusion, MC combined with biochar is a potential approach to alleviate ammonia nitrogen inhibition.
Collapse
Affiliation(s)
- Yafan Cai
- School of Chemical Engineering, Zhengzhou University, Kexue Dadao 100, 450001 Zhengzhou, China
| | - Xia Shen
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A and F University, Yangling, Shaanxi 712100, China.
| | - Xingyao Meng
- Beijing Technology and Business University, State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing 100048, China
| | - Zehui Zheng
- College of Agronomy and Biotechnology/Biomass Engineering Center, China Agricultural University, Beijing 100193, China
| | - Muhammad Usman
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 2W2, Canada
| | - Kai Hu
- Shenzhen Derun Biomass Investment Co. Ltd., Shenzhen 518066, China
| | - Xiaoling Zhao
- School of Chemical Engineering, Zhengzhou University, Kexue Dadao 100, 450001 Zhengzhou, China.
| |
Collapse
|
36
|
Zhou Y, Zhu Y, Zhu J, Li C, Chen G. A Comprehensive Review on Wastewater Nitrogen Removal and Its Recovery Processes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3429. [PMID: 36834120 PMCID: PMC9967642 DOI: 10.3390/ijerph20043429] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/04/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Discharging large amounts of domestic and industrial wastewater drastically increases the reactive nitrogen content in aquatic ecosystems, which causes severe ecological stress and biodiversity loss. This paper reviews three common types of denitrification processes, including physical, chemical, and biological processes, and mainly focuses on the membrane technology for nitrogen recovery. The applicable conditions and effects of various treatment methods, as well as the advantages, disadvantages, and influencing factors of membrane technologies, are summarized. Finally, it is proposed that developing effective combinations of different treatment methods and researching new processes with high efficiency, economy, and energy savings, such as microbial fuel cells and anaerobic osmotic membrane bioreactors, are the research and development directions of wastewater treatment processes.
Collapse
Affiliation(s)
| | - Yingying Zhu
- Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, China
| | | | | | | |
Collapse
|
37
|
Wang S, Wang Z, Usman M, Zheng Z, Zhao X, Meng X, Hu K, Shen X, Wang X, Cai Y. Two microbial consortia obtained through purposive acclimatization as biological additives to relieve ammonia inhibition in anaerobic digestion. WATER RESEARCH 2023; 230:119583. [PMID: 36638729 DOI: 10.1016/j.watres.2023.119583] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/29/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Ammonia inhibition is a challenging issue in the anaerobic digestion (AD) of nitrogen-rich substrates and hinders the energy recovery from organic wastes. Bioaugmentation is promising strategy to stabilize AD systems with high ammonia concentration. The composition of microbial consortia often determines their effectiveness in bioaugmentation. Up to now, the effect of various microbial consortia as biological additives on the AD systems is not fully understood. In this study, two microbial consortia (syntrophic microbial consortium, MC, and hydrogenotrophic methanogen consortium, SS) were obtained through two domestication methods, and were applied in a nitrogen-rich AD system. The results showed that the MC and SS treatments could restore AD performance within 21 days and 83 days, respectively. The recovery of digestion performance depended on the methanogenic archaea Methanospirillum, Methanothermobacter, and Methanoculleus in the early and later stages. Analysis of the 13C isotope indicated that both MC and SS enhanced the hydrogenotrophic pathway. The KEGG analysis showed that the MC not only promoted the key enzyme genes in the hydrogenotrophic pathway but also had a positive effect on the related enzyme genes of propionate and butyrate degradation, which was affected by the abundant short-chain fatty acids degrading bacteria, such as Syntrophomonas, Syntrophobacter, and Tissierella in the MC. After recovery of digestion performance, there was no significant difference (p > 0.05) in methane yield between the MS and SS treatments. Therefore, the best intervention period for bioaugmentation is when the digestion performance of the AD system is unstable.
Collapse
Affiliation(s)
- Shilei Wang
- School of Chemical Engineering, Zhengzhou University, Ke xue Dadao 100, Zhengzhou, 450001, China
| | - Zhi Wang
- School of Chemical Engineering, Zhengzhou University, Ke xue Dadao 100, Zhengzhou, 450001, China
| | - Muhammad Usman
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 2W2, Canada
| | - Zehui Zheng
- College of Agronomy and Biotechnology/Biomass Engineering Center, China Agricultural University, Beijing, 100193, China
| | - Xiaoling Zhao
- School of Chemical Engineering, Zhengzhou University, Ke xue Dadao 100, Zhengzhou, 450001, China
| | - Xingyao Meng
- Beijing Technology and Business University, State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing, 100048, China
| | - Kai Hu
- Shenzhen Derun Biomass Investment Co., Ltd. Shenzhen, 518066, China
| | - Xia Shen
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A and F University, Yangling, Shaanxi, 712100, China
| | - Xiaofen Wang
- College of Agronomy and Biotechnology/Biomass Engineering Center, China Agricultural University, Beijing, 100193, China
| | - Yafan Cai
- School of Chemical Engineering, Zhengzhou University, Ke xue Dadao 100, Zhengzhou, 450001, China.
| |
Collapse
|
38
|
Zhang L, Chen Z, Zhu S, Li S, Wei C. Effects of biochar on anaerobic treatment systems: Some perspectives. BIORESOURCE TECHNOLOGY 2023; 367:128226. [PMID: 36328170 DOI: 10.1016/j.biortech.2022.128226] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Many anaerobic activities involve carbon, nitrogen, iron, and sulfur cycles. As a well-developed porous material with abundant functional groups, pyrolytic biochar has been widely researched in efforts to promote microbial activities. However, the lack of consensus on the biochar mechanism has limited its practical application. This review summarizes the effects of different pyrolysis temperatures, particle sizes, and dosages of biochar on microbial activities and community in Fe(III) reduction, anaerobic digestion, nitrogen removal, and sulfate reduction systems. It was found that biochar could promote anaerobic activities by stimulating electron transfer, alleviating toxicity, and providing suitable habitats for microbes. However, it inhibits microbial activities by releasing heavy metal ions or persistent free radicals and adsorbing signaling molecules. Finding a balance between the promotion and inhibition of biochar is therefore essential. This review provides valuable perspectives on how to achieve efficient and stable use of biochar in anaerobic systems.
Collapse
Affiliation(s)
- Liqiu Zhang
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, PR China
| | - Zhuokun Chen
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Shishu Zhu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Shugeng Li
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, PR China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Chunhai Wei
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, PR China.
| |
Collapse
|
39
|
Peng Y, Li L, Dong Q, Yang P, Liu H, Ye W, Wu D, Peng X. Evaluation of digestate-derived biochar to alleviate ammonia inhibition during long-term anaerobic digestion of food waste. CHEMOSPHERE 2023; 311:137150. [PMID: 36356814 DOI: 10.1016/j.chemosphere.2022.137150] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/20/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
The feasibility of using food waste anaerobic digestate-derived biochar (FWDB) to mitigate ammonia toxicity in an anaerobic digester was evaluated. The optimal conditions for preparing and adding the activated FWDB were explored using response surface experiments, and the long-term effects of adding activated FWDB on digester performance under optimum conditions were verified in semi-continuous experiments. The results showed that the optimal preparation and addition conditions for activated FWDB were pyrolysis temperature of 565 °C, particle size of 0-0.30 mm, and dosage of 15.52 g·L-1. During the long-term operation of the digesters, when the total ammonia nitrogen (TAN) concentration was higher than 2000 mg·L-1, the control and experimental digesters showed deteriorated reactor performance. Volatile fatty acids in the control digester accumulated to 20,306 mg·L-1 after the TAN concentration increased to 3391 mg·L-1, the methane yield decreased to 31 mL·g VS-1, and the digester experienced process failure. In contrast, the experimental digester with added activated FWDB only suffered a slight short-term accumulation of acetate and a slight decline in methane yield. This may be attributed to the adsorption of NH4+/NH3 by activated FWDB, which reduced the TAN concentration in the anaerobic digestion (AD) system and mitigated ammonia toxicity. Microbial analysis and metagenome predictions demonstrated that the community richness, diversity, and evenness, as well as the abundance of acetogens and related key genes (ACSM1, paaF, and acdA) were higher in the experimental digester than in the control digester. This study provides a closed-loop AD enhancement strategy by pyrolysis of digestate and in-situ supplementation into the digester.
Collapse
Affiliation(s)
- Yun Peng
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.
| | - Lei Li
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.
| | - Qin Dong
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.
| | - Pingjin Yang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.
| | - Hengyi Liu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.
| | - Wenjie Ye
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.
| | - Di Wu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.
| | - Xuya Peng
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
40
|
Ruan R, Wu H, Yu C, Zhao C, Zhou D, Shi X, Cao J, Huang B, Luo J. Impacts of magnetic biochar from reed straw on anaerobic digestion of pigment sludge: Biomethane production and the transformation of heavy metals speciation. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
41
|
Guo Z, Jalalah M, Alsareii SA, Harraz FA, Thakur N, Salama ES. Biochar addition augmented the microbial community and aided the digestion of high-loading slaughterhouse waste: Active enzymes of bacteria and archaea. CHEMOSPHERE 2022; 309:136535. [PMID: 36150484 DOI: 10.1016/j.chemosphere.2022.136535] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
The biogas production (BP), volatile fatty acids (VFAs), microbial communities, and microbes' active enzymes were studied upon the addition of biochar (0-1.5%) at 6% and 8% slaughterhouse waste (SHW) loadings. The 0.5% biochar enhanced BP by 1.5- and 1.6-folds in 6% and 8% SHW-loaded reactors, respectively. Increasing the biochar up to 1.5% caused a reduction in BP at 6% SHW. However, the BP from 8% of SHW was enhanced by 1.4-folds at 1.5% biochar. The VFAs production in all 0.5% biochar amended reactors was highly significant compared to control (p-value < 0.05). The biochar addition increased the bacterial and archaeal diversity at both 6% and 8% SHW loadings. The highest number of OTUs at 0.5% biochar were 567 and 525 in 6% and 8% SHW, respectively. Biochar prompted the Clostridium abundance and increased the lyases and transaminases involved in the degradation of lipids and protein, respectively. Biochar addition improved the Methanosaeta and Methanosphaera abundance in which the major enzymes were reductase and hydrogenase. The archaeal enzymes showed mixed acetoclastic and hydrogenotrophic methanogenesis.
Collapse
Affiliation(s)
- Zhaodi Guo
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu Province, PR China
| | - Mohammed Jalalah
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box: 1988, Najran, 11001, Saudi Arabia; Department of Electrical Engineering, College of Engineering, Najran University, Najran, Saudi Arabia
| | - Saeed A Alsareii
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box: 1988, Najran, 11001, Saudi Arabia; Department of Surgery, College of Medicine, Najran University, Najran, Saudi Arabia
| | - Farid A Harraz
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box: 1988, Najran, 11001, Saudi Arabia; Department of Chemistry, Faculty of Science and Arts at Sharurah, Najran University, Saudi Arabia
| | - Nandini Thakur
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu Province, PR China; MOE, Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, 730000, Gansu Province, PR China
| | - El-Sayed Salama
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu Province, PR China.
| |
Collapse
|
42
|
Hoang AT, Goldfarb JL, Foley AM, Lichtfouse E, Kumar M, Xiao L, Ahmed SF, Said Z, Luque R, Bui VG, Nguyen XP. Production of biochar from crop residues and its application for anaerobic digestion. BIORESOURCE TECHNOLOGY 2022; 363:127970. [PMID: 36122843 DOI: 10.1016/j.biortech.2022.127970] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/08/2022] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
Anaerobic digestion (AD) is a viable and cost-effective method for converting organic waste into usable renewable energy. The efficiency of organic waste digestion, nonetheless, is limited due to inhibition and instability. Accordingly, biochar is an effective method for improving the efficiency of AD by adsorbing inhibitors, promoting biogas generation and methane concentration, maintaining process stability, colonizing microorganisms selectively, and mitigating the inhibition of volatile fatty acids and ammonia. This paper reviews the features of crop waste-derived biochar and its application in AD systems. Four critical roles of biochar in AD systems were identified: maintaining pH stability, promoting hydrolysis, enhancing the direct interspecies electron transfer pathway, and supporting microbial development. This work also highlights that the interaction between biochar dose, amount of organic component in the substrate, and inoculum-to-substrate ratio should be the focus of future research before deploying commercial applications.
Collapse
Affiliation(s)
- Anh Tuan Hoang
- Institute of Engineering, HUTECH University, Ho Chi Minh City, Vietnam.
| | - Jillian L Goldfarb
- Cornell University Department of Biological and Environmental Engineering, Ithaca, NY, United States of America
| | - Aoife M Foley
- School of Mechanical and Aerospace Engineering, Queen's University Belfast, Ashby Building, Belfast BT9 5AH, United Kingdom; Civil, Structural and Environmental Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - Eric Lichtfouse
- Aix-Marseille Univ, CNRS, IRD, INRAE, CEREGE, Avenue Louis Philibert, Aix en Provence 13100, France
| | - Manish Kumar
- Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun 248 007, India
| | - Leilei Xiao
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Shams Forruque Ahmed
- Science and Math Program, Asian University for Women, Chattogram 4000, Bangladesh
| | - Zafar Said
- Department of Sustainable and Renewable Energy Engineering, University of Sharjah, P. O. Box 27272, Sharjah, United Arab Emirates; U.S.-Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Rafael Luque
- Departamento de Química Orgánica, Universidad de Cordoba, Campus de Rabanales, Edificio Marie Curie, Ctra. Nnal. IV-A, Km. 396, E-14014 Cordoba, Spain; Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198 Moscow, Russian Federation
| | - Van Ga Bui
- University of Science and Technology, The University of Da Nang, Da Nang, Viet Nam
| | - Xuan Phuong Nguyen
- PATET Research Group, Ho Chi Minh City University of Transport, Ho Chi Minh City, Vietnam
| |
Collapse
|
43
|
Xu XJ, Yan J, Yuan QK, Wang XT, Yuan Y, Ren NQ, Lee DJ, Chen C. Enhanced methane production in anaerobic digestion: A critical review on regulation based on electron transfer. BIORESOURCE TECHNOLOGY 2022; 364:128003. [PMID: 36155810 DOI: 10.1016/j.biortech.2022.128003] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Anaerobic digestion (AD) is a potential bioprocess for waste biomass utilization and energy conservation. Various iron/carbon-based CMs (e.g., magnetite, biochar, granular activated carbon (GAC), graphite and zero valent iron (ZVI)) have been supplemented in anaerobic digestors to improve AD performance. Generally, the supplementation of CMs has shown to improve methane production, shorten lag phase and alleviate environmental stress because they could serve as electron conduits and promote direct interspecies electron transfer (DIET). However, the CMs dosage varied greatly in previous studies and CMs wash out remains a challenge for its application in full-scale plants. Future work is recommended to standardize the CMs dosage and recover/reuse the CMs. Moreover, additional evidence is required to verify the electrotrophs involved in DIET.
Collapse
Affiliation(s)
- Xi-Jun Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Jin Yan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Qing-Kang Yuan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Xue-Ting Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Yuan Yuan
- College of Biological Engineering, Beijing Polytechnic, Beijing 10076, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; Department of Chemical Engineering & Materials Science, Yuan-Ze University, Chungli 320, Taiwan
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China.
| |
Collapse
|
44
|
Luo X, Zhao B, Peng M, Shen R, Mao L, Zhang W. Effects of Inorganic Passivators on Gas Production and Heavy Metal Passivation Performance during Anaerobic Digestion of Pig Manure and Corn Straw. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14094. [PMID: 36360969 PMCID: PMC9654526 DOI: 10.3390/ijerph192114094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
The treatment of livestock manure caused by the expansion of the breeding industry in China has attracted wide attention. Heavy metals in pig manure can pollute soil and water and even transfer to crops, posing harm to humans through the food chain. In this study, corn straw was selected as the additive and introduced into the anaerobic digestion. Sepiolite (SE), ferric oxide (Fe2O3), attapulgite (AT) and ferric sulfate (FeSO4) were used as passivators to compare the effects of these inorganic passivators on gas production and passivation of heavy metals during the process of the anaerobic digestion. When the dry mass ratio of pig manure to straw is 8:2, the gas production efficiency is optimal. SE, AT and ferric sulfate have a much stronger ability to improve gas production performance than Fe2O3. The total gas production increased by 10.34%, 6.62% and 4.56%, and the average methane production concentration increased by 0.7%, 0.3% and 0.4%, respectively. The influence of SE, AT and ferric sulfate on the passivation of heavy metals is much better than Fe2O3, and the fractions in biological effective forms of Cu and Zn reduced by 41.87 and 19.32%, respectively. The anaerobic digestion of mixed materials is conducive to the gas production and the passivation of heavy metals. Therefore, SE, AT and ferric sulfate are selected as composite passivators, and the optimal ratio of inorganic composite passivators i: AT 7.5 g/L, ferric sulfate 5 g/L and SE 7.5 g/L, according to the results of orthogonal experiments. This study can provide a theoretical basis for the safe application of biogas fertilizers.
Collapse
|
45
|
Xu C, Li J, Zhang X, Wang P, Deng B, Liu N, Yuan Q. Effects of segmented aerobic and anaerobic fermentation assisted with chemical treatment on comprehensive properties and composition of wheat straw. BIORESOURCE TECHNOLOGY 2022; 362:127772. [PMID: 35964920 DOI: 10.1016/j.biortech.2022.127772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Traditional aerobic composting used for straw treatment shows limited regulation effects and unstable properties, and it is necessary to introduce some co-processing methods to optimize its performance. Herein, segmented aerobic/anaerobic fermentation, combined with chemical treatment with wood vinegar/NaOH, was used to treat wheat straw. The results showed that anaerobic fermentation when used as the first stage could stabilize the wheat straw pH between 5.19 and 6.13 and improve nutrient contents. All treatments had greater effects on substrate aeration porosities (range of 14%) than on total porosity (range of 6%), and the water-holding porosities were improved to a greater extent by NaOH than by wood vinegar. The hemicellulose degradation rate of aerobic-anaerobic treatment was higher than that achieved with anaerobic-aerobic treatment, while the latter method was more effective at removing the neutral detergent-soluble as well as remaining organic matter, which was generated due to a higher KCl content in the ash.
Collapse
Affiliation(s)
- Chao Xu
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Agricultural Equipment in Mid-lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China; Technology & Equipment Center for Carbon Neutrality in Agriculture, Huazhong Agricultural University, Wuhan 430070, China; Department of Geosciences and Natural Resource Management, Faculty of Science, University of Copenhagen, Rolighedsvej 23, DK-1958 Frederiksberg C, Denmark
| | - Jun Li
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Agricultural Equipment in Mid-lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China; Technology & Equipment Center for Carbon Neutrality in Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Xin Zhang
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Agricultural Equipment in Mid-lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China; Technology & Equipment Center for Carbon Neutrality in Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Panpan Wang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Bo Deng
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Agricultural Equipment in Mid-lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China; Technology & Equipment Center for Carbon Neutrality in Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Nian Liu
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Agricultural Equipment in Mid-lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China; Technology & Equipment Center for Carbon Neutrality in Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoxia Yuan
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Agricultural Equipment in Mid-lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China; Technology & Equipment Center for Carbon Neutrality in Agriculture, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
46
|
Wood Biochar Enhances the Valorisation of the Anaerobic Digestion of Chicken Manure. CLEAN TECHNOLOGIES 2022. [DOI: 10.3390/cleantechnol4020026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In this study, the efficacy of biochar to mitigate ammonia stress and improve methane production is investigated. Chicken manure (CM) was subjected to high-solid mesophilic anaerobic digestion (15% total solid content) with wood biochar (BC). Wood biochar was further treated using HNO3 and NaOH to produce acid–alkali-treated wood biochar (TBC), with an improvement in its overall ammonium adsorption capacity and porosity. Three treatments were loaded in triplicate into the digesters, without biochar, with biochar and with acid–alkali-treated biochar and maintained at 37 °C for 110 days. The study found a significant improvement in CH4 formation kinetics via enhanced substrate degradation, leading to CH4 production of 74.7 mL g−1 VS and 70.1 mL g−1 VS by BC and TBC treatments, compared to 39.5 mL g−1 VS by control treatments on the 28th day, respectively. However, only the use of TBC was able to prolong methane production during the semi-inhibition phase. The use of TBC also resulted in the highest removal of total ammonia nitrogen (TAN) of 86.3%. In addition, the treatment with TBC preserved the highest microbial biomass at day 110. The presence of TBC also resulted in an increase in electrical conductivity, possibly promoting DIET-mediated methanogenesis. Overall, the acid–alkali treatment of biochar can be a novel approach to improve biochar’s existing characteristics for its utilisation as an additive in anaerobic digestion.
Collapse
|
47
|
Wang S, Shi Y, Xiang H, Liu R, Su L, Zhang L, Ji R. Functional utilization of biochar derived from Tenebrio molitor feces for CO 2 capture and supercapacitor applications. RSC Adv 2022; 12:22760-22769. [PMID: 36105956 PMCID: PMC9376987 DOI: 10.1039/d2ra03575h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/08/2022] [Indexed: 11/21/2022] Open
Abstract
Biochar has attracted great interest in both CO2 capture and supercapacitor applications due to its unique physicochemical properties and low cost.
Collapse
Affiliation(s)
- Saier Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, 8 Jiangwangmiao Street, Nanjing 210042, P. R. China
| | - Ying Shi
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, 8 Jiangwangmiao Street, Nanjing 210042, P. R. China
| | - Huiming Xiang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, 8 Jiangwangmiao Street, Nanjing 210042, P. R. China
| | - Ru Liu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, 8 Jiangwangmiao Street, Nanjing 210042, P. R. China
| | - Lianghu Su
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, 8 Jiangwangmiao Street, Nanjing 210042, P. R. China
| | - Longjiang Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, 8 Jiangwangmiao Street, Nanjing 210042, P. R. China
| | - Rongting Ji
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, 8 Jiangwangmiao Street, Nanjing 210042, P. R. China
| |
Collapse
|