1
|
Mafat IH, Surya DV, Rao CS, Kandya A, Basak T. A review on the role of various machine learning algorithms in microwave-assisted pyrolysis of lignocellulosic biomass waste. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123277. [PMID: 39531768 DOI: 10.1016/j.jenvman.2024.123277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
The fourth industrial revolution will heavily rely on machine learning (ML). The rationale is that these strategies make various business operations in many sectors easier. ML modeling is the discovery of hidden patterns between multiple process parameters and accurately predicting the test values. ML has provided a wide range of applications in Chemical Engineering. One major application of ML can be found in the microwave-assisted pyrolysis (MAP) of lignocellulose bio-waste. MAP is an energy-efficient technology to obtain high-saturated hydrogen-rich liquid fuels. The main focus of this review study is understanding the utilization of various types of ML algorithms, including supervised and unsupervised techniques in microwave-assisted heating techniques for diverse biomass feedstocks, including waste materials like used tea powder, wood blocks, kraft lignin, and others. In addition to developing effective ML-based models, alternative traditional modeling approaches are also explored. In addition to various thermochemical conversion processes for biomass, MAP is also briefly reviewed with several case studies from the literature. The conventional modeling methodology for biomass pyrolysis with microwave heating is also discussed for comparison with ML-based modeling methodologies.
Collapse
Affiliation(s)
- Iradat Hussain Mafat
- Department of Chemical Engineering, School of Energy Technology, Pandit Deendayal Energy University, Gandhinagar, 382426, India
| | - Dadi Venkata Surya
- Department of Chemical Engineering, School of Energy Technology, Pandit Deendayal Energy University, Gandhinagar, 382426, India.
| | - Chinta Sankar Rao
- Department of Chemical Engineering, National Institute of Technology Karnataka, Surathkal, 575025, India.
| | - Anurag Kandya
- Department of Civil Engineering, School of Technology, Pandit Deendayal Energy University, Gandhinagar, 382426, India
| | - Tanmay Basak
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
2
|
Rex P, Meenakshisundaram N, Barmavatu P. Sustainable valorisation of kitchen waste through greenhouse solar drying and microwave pyrolysis- technology readiness level for the production of biochar. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2024; 22:381-395. [PMID: 39464812 PMCID: PMC11499482 DOI: 10.1007/s40201-024-00909-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 06/08/2024] [Indexed: 10/29/2024]
Abstract
This study proposes an integrated and sustainable approach for the effective conversion of kitchen waste into valuable products through a two-step process. The primary step involves the implementation of greenhouse solar drying to reduce the moisture content of kitchen waste. The secondary step implies microwave pyrolysis for effective degradation of kitchen waste to biooil, biogas and biochar. Biooil and biogas can be used as renewable fuel source. Biochar can be used as soil amendment. Selection of atmospheric conditions for biochar preparation is discussed, highlighting its crucial role in biochar characteristics. This article highlights, technology readiness level of biochar production from kitchen waste to assess the economic viability for the scalability of the process. In this entirety, the conversion of kitchen waste to valuable products through microwave pyrolysis has significant potential to address the challenges posed by high moisture content and heterogenous nature. With continued research and innovation, it is possible to develop a wide array of value-added products from kitchen waste, ultimately leading to a more eco-friendly and economic approach to waste management. Graphical Abstract
Collapse
Affiliation(s)
- Prathiba Rex
- Institute of Agricultural Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 602 105 India
| | - Nagaraj Meenakshisundaram
- Institute of Agricultural Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 602 105 India
| | - Praveen Barmavatu
- Department of Mechanical Engineering, Faculty of Engineering, Universidad Tecnológica Metropolitana, Av. José Pedro Alessandri 1242, Santiago, Chile
| |
Collapse
|
3
|
Wang Z, Ahmad W, Zhu A, Zhao S, Ouyang Q, Chen Q. Recent advances review in tea waste: High-value applications, processing technology, and value-added products. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174225. [PMID: 38914337 DOI: 10.1016/j.scitotenv.2024.174225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/15/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Tea waste (TW) includes pruned tea tree branches, discarded summer and fall teas, buds and wastes from the tea making process, as well as residues remaining after tea preparation. Effective utilization and proper management of TW is essential to increase the economic value of the tea industry. Through effective utilization of tea waste, products such as activated carbon, biochar, composite membranes, and metal nanoparticle composites can be produced and successfully applied in the fields of fuel production, composting, preservation, and heavy metal adsorption. Comprehensive utilization of tea waste is an effective and sustainable strategy to improve the economic efficiency of the tea industry and can be applied in various fields such as energy production, energy storage and pharmaceuticals. This study reviews recent advances in the strategic utilization of TW, including its processing, conversion technologies and high value products obtained, provides insights into the potential applications of tea waste in the plant, animal and environmental sectors, summarizes the effective applications of tea waste for energy and environmental sustainability, and discusses the effectiveness, variability, advantages and disadvantages of different processing and thermochemical conversion technologies. In addition, the advantages and disadvantages of producing new products from tea wastes and their derivatives are analyzed, and recommendations for future development of high-value products to improve the efficiency and economic value of tea by-products are presented.
Collapse
Affiliation(s)
- Zhen Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Waqas Ahmad
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Afang Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Songguang Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Qin Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; College of Food and Biological Engineering, Jimei University, Xiamen 361021, PR China.
| |
Collapse
|
4
|
Hamzah HT, Sridevi V, Surya DV, Palla S, Yadav A, Rao PV. Conventional and microwave-assisted acid pretreatment of tea waste powder: analysis of functional groups using FTIR. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:57523-57532. [PMID: 37368215 DOI: 10.1007/s11356-023-28272-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/11/2023] [Indexed: 06/28/2023]
Abstract
Tea waste powder (TWP) is one of the potential biomass waste to recover valuable chemicals and materials. The prime objective of this work is to investigate the role of acid pretreatment on TWP. Diluted acids (HCl, H3PO4, CH3COOH, and H2SO4) were used to soak the TWP to understand the role of acids on bond cleavage and chemicals formation. One gram of TWP was soaked in 100 mL of diluted acids for 24 h. The soaked samples were further subjected to a hot air oven (temperature: 80 °C, duration: 6 h), orbital shaking (shaking speed: 80-100 rpm, duration: 6 h), and microwave irradiation (microwave power: 100 W, duration: 10 min) to understand the synergistic effects of acids and mode of exposure. The pretreated solid samples and liquid samples were analyzed using FTIR to understand the presence of functional groups. The mass loss of TWP after treatment significantly varied with the type of acid and exposure mode used. In the orbital shaker, the mass loss was varied in the following order: H2SO4 (36%) > CH3COOH (32%) > H3PO4 (22%) > HCl (15%). In hot air oven, high mass loss was observed compared to orbital shaking [HCl (48%) > CH3COOH (37%) > H2SO4 (35%) > H3PO4 (33%)]. The mass loss in microwave irradiation is lower (19 to 25%) with all acids compared to orbital shaking. In the solid samples, O-H stretching, C-H stretching, C=O stretching, C=C stretching, -C-O-, and -C-OH- functional groups were noticed. Similarly, C=O and C=C peaks and C-O and -C-OH peaks were noticed in liquid samples. Interestingly, microwave irradiation showed promising results in 10 min of pretreatment, whereas orbital shaking and hot air oven pretreatments require 6 h to achieve the same result.
Collapse
Affiliation(s)
- Husam Talib Hamzah
- Department of Chemical Engineering, AU College of Engineering (A), Andhra University, -530003, Visakhapatnam, India
| | - Veluru Sridevi
- Department of Chemical Engineering, AU College of Engineering (A), Andhra University, -530003, Visakhapatnam, India.
| | - Dadi Venkata Surya
- Department of Chemical Engineering, Pandit Deendayal Energy University, -382426, Gandhinagar, India
| | - Sridhar Palla
- Department of Chemical Engineering, Indian Institute of Petroleum Energy, -530003, Visakhapatnam, India
| | - Abhishek Yadav
- Department of Chemical Engineering, Pandit Deendayal Energy University, -382426, Gandhinagar, India
| | - Poiba Venkata Rao
- Department of Chemical Engineering, AU College of Engineering (A), Andhra University, -530003, Visakhapatnam, India
| |
Collapse
|
5
|
Palla S, Surya DV, Pritam K, Puppala H, Basak T, Palla VCS. A critical review on the influence of operating parameters and feedstock characteristics on microwave pyrolysis of biomass. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:57570-57593. [PMID: 38888826 DOI: 10.1007/s11356-024-33607-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 05/04/2024] [Indexed: 06/20/2024]
Abstract
Biomass pyrolysis is the most effective process to convert abundant organic matter into value-added products that could be an alternative to depleting fossil fuels. A comprehensive understanding of the biomass pyrolysis is essential in designing the experiments. However, pyrolysis is a complex process dependent on multiple feedstock characteristics, such as biomass consisting of volatile matter, moisture content, fixed carbon, and ash content, all of which can influence yield formation. On top of that, product composition can also be affected by the particle size, shape, susceptors used, and pre-treatment conditions of the feedstock. Compared to conventional pyrolysis, microwave-assisted pyrolysis (MAP) is a novel thermochemical process that improves internal heat transfer. MAP experiments complicate the operation due to additional governing factors (i.e. operating parameters) such as heating rate, temperature, and microwave power. In most instances, a single parameter or the interaction of parameters, i.e. the influence of other parameter integration, plays a crucial role in pyrolysis. Although various studies on a few operating parameters or feedstock characteristics have been discussed in the literature, a comprehensive review still needs to be provided. Consequently, this review paper deconstructed biomass and its sources, including microwave-assisted pyrolysis, and discussed the impact of operating parameters and biomass properties on pyrolysis products. This paper addresses the challenge of handling multivariate problems in MAP and delivers solutions by application of the machine learning technique to minimise experimental effort. Techno-economic analysis of the biomass pyrolysis process and suggestions for future research are also discussed.
Collapse
Affiliation(s)
- Sridhar Palla
- Department of Chemical Engineering, Indian Institute of Petroleum and Energy Visakhapatnam, Visakhapatnam, Andhra Pradesh, 530003, India
| | - Dadi Venkata Surya
- Department of Chemical Engineering, Pandit Deendayal Energy University, Gandhinagar, 382426, India.
| | - Kocherlakota Pritam
- Department of Mathematics, Pandit Deendayal Energy University, Gandhinagar, 382426, India
| | - Harish Puppala
- 1Department of Civil Engineering, SRM University AP, Mangalagiri, Andhra Pradesh, 522502, India
| | - Tanmay Basak
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Venkata Chandra Sekhar Palla
- Materials Resource Efficiency Division (MRED), CSIR-Indian Institute of Petroleum (IIP), Dehradun, 248005, India
| |
Collapse
|
6
|
Son J, Lim SH, Kim YJ, Lim HJ, Lee JY, Jeong S, Park C, Park SJ. Customized valorization of waste streams by Pseudomonas putida: State-of-the-art, challenges, and future trends. BIORESOURCE TECHNOLOGY 2023; 371:128607. [PMID: 36638894 DOI: 10.1016/j.biortech.2023.128607] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Preventing catastrophic climate events warrants prompt action to delay global warming, which threatens health and food security. In this context, waste management using engineered microbes has emerged as a long-term eco-friendly solution for addressing the global climate crisis and transitioning to clean energy. Notably, Pseudomonas putida can valorize industry-derived synthetic wastes including plastics, oils, food, and agricultural waste into products of interest, and it has been extensively explored for establishing a fully circular bioeconomy through the conversion of waste into bio-based products, including platform chemicals (e.g., cis,cis-muconic and adipic acid) and biopolymers (e.g., medium-chain length polyhydroxyalkanoate). However, the efficiency of waste pretreatment technologies, capability of microbial cell factories, and practicability of synthetic biology tools remain low, posing a challenge to the industrial application of P. putida. The present review discusses the state-of-the-art, challenges, and future prospects for divergent biosynthesis of versatile products from waste-derived feedstocks using P. putida.
Collapse
Affiliation(s)
- Jina Son
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Seo Hyun Lim
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yu Jin Kim
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hye Jin Lim
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Ji Yeon Lee
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Seona Jeong
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Chulhwan Park
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Si Jae Park
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
7
|
Prasertpong P, Onsree T, Khuenkaeo N, Tippayawong N, Lauterbach J. Exposing and understanding synergistic effects in co-pyrolysis of biomass and plastic waste via machine learning. BIORESOURCE TECHNOLOGY 2023; 369:128419. [PMID: 36462765 DOI: 10.1016/j.biortech.2022.128419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
During co-pyrolysis of biomass with plastic waste, bio-oil yields (BOY) could be either induced or reduced significantly via synergistic effects (SE). However, investigating/ interpreting the SE and BOY in multidimensional domains is complicated and limited. This work applied XGBoost machine-learning and Shapley additive explanation (SHAP) to develop interpretable/ explainable models for predicting BOY and SE from co-pyrolysis of biomass and plastic waste using 26 input features. Imbalanced training datasets were improved by synthetic minority over-sampling technique. The prediction accuracy of XGBoost models was nearly 0.90 R2 for BOY while greater than 0.85 R2 for SE. By SHAP, individual impact and interaction of input features on the XGBoost models can be achieved. Although reaction temperature and biomass-to-plastic ratio were the top two important features, overall contributions of feedstock characteristics were more than 60 % in the system of co-pyrolysis. The finding provides a better understanding of co-pyrolysis and a way of further improvements.
Collapse
Affiliation(s)
- Prapaporn Prasertpong
- Department of Mechanical Engineering, Rajamangala University of Technology Thanyaburi 12120, Thailand
| | - Thossaporn Onsree
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, 29201, USA
| | - Nattawut Khuenkaeo
- Graduate Program in Energy Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Mechanical Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nakorn Tippayawong
- Department of Mechanical Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Jochen Lauterbach
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, 29201, USA
| |
Collapse
|
8
|
Suriapparao DV, Tanneru HK, Reddy BR. A review on the role of susceptors in the recovery of valuable renewable carbon products from microwave-assisted pyrolysis of lignocellulosic and algal biomasses: Prospects and challenges. ENVIRONMENTAL RESEARCH 2022; 215:114378. [PMID: 36150436 DOI: 10.1016/j.envres.2022.114378] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/10/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Sustainable bio-economics can be achieved by the processing of renewable biomass resources. Hence, this review article presents a detailed analysis of the effect of susceptors on microwave-assisted pyrolysis (MAP) of biomass. Biomass is categorized as lignocellulosic and algal biomass based on available sources. Selected seminal works reporting the MAP of pure biomasses are reviewed thoroughly. Focus is given to understanding the role of the susceptor used for pyrolysis on the characteristics of products produced. The goal is to curate the literature and report variation in the product characteristics for the combinations of the biomass and susceptor. The review explores the factors such as the susceptor to feed-stock ratio and its implications on the product compositions. The process parameters including microwave power, reaction temperature, heating rate, feedstock composition, and product formation are discussed in detail. A repository of such information would enable researchers to glance through the closest possible susceptors they should use for a chosen biomass of their interest for better oil yields. Further, a list of potential applications of MAP products of biomasses, along with the susceptor used, are reported. To this end, this review presents the possible opportunities and challenges for tapping valuable carbon resources from the MAP of biomass for sustainable energy needs.
Collapse
Affiliation(s)
- Dadi V Suriapparao
- Department of Chemical Engineering, Pandit Deendayal Energy University, Gandhinagar, 382426, India.
| | - Hemanth Kumar Tanneru
- Department of Chemical Engineering, Indian Institute of Petroleum and Energy Visakhapatnam, Visakhapatnam, Andhra Pradesh, 530003, India
| | - Busigari Rajasekhar Reddy
- Department of Fuel, Mineral and Metallurgical Engineering, Indian Institute of Technology (Indian School of Mines) Dhanbad, Dhanbad, 826004, India
| |
Collapse
|
9
|
Upcycling Polystyrene. Polymers (Basel) 2022; 14:polym14225010. [PMID: 36433142 PMCID: PMC9695542 DOI: 10.3390/polym14225010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/09/2022] [Accepted: 11/13/2022] [Indexed: 11/22/2022] Open
Abstract
Several environmental and techno-economic assessments highlighted the advantage of placing polystyrene-based materials in a circular loop, from production to waste generation to product refabrication, either following the mechanical or thermochemical routes. This review provides an assortment of promising approaches to solving the dilemma of polystyrene waste. With a focus on upcycling technologies available in the last five years, the review first gives an overview of polystyrene, its chemistry, types, forms, and varied applications. This work presents all the stages that involve polystyrene's cycle of life and the properties that make this product, in mixtures with other polymers, command a demand on the market. The features and mechanical performance of the studied materials with their associated images give an idea of the influence of recycling on the structure. Notably, technological assessments of elucidated approaches are also provided. No single approach can be mentioned as effective per se; hybrid technologies appear to possess the highest potential. Finally, this review correlates the amenability of these polystyrene upcycling methodologies to frontier technologies relating to 3D printing, human space habitation, flow chemistry, vertical farming, and green hydrogen, which may be less intuitive to many.
Collapse
|
10
|
Talib Hamzah H, Sridevi V, Seereddi M, Suriapparao DV, Ramesh P, Sankar Rao C, Gautam R, Kaka F, Pritam K. The role of solvent soaking and pretreatment temperature in microwave-assisted pyrolysis of waste tea powder: Analysis of products, synergy, pyrolysis index, and reaction mechanism. BIORESOURCE TECHNOLOGY 2022; 363:127913. [PMID: 36089130 DOI: 10.1016/j.biortech.2022.127913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
This study focuses on microwave-assisted pyrolysis (MAP) of fresh waste tea powder and torrefied waste tea powder as feedstocks. Solvents including benzene, acetone, and ethanol were used for soaking feedstocks. The feedstock torrefaction temperature (at 150 °C) and solvents soaking enhanced the yields of char (44.2-59.8 wt%) and the oil (39.8-45.3 wt%) in MAP. Co-pyrolysis synergy induced an increase in the yield of gaseous products (4.7-20.1 wt%). The average heating rate varied in the range of 5-25 °C/min. The energy consumption in MAP of torrefied feedstock (1386 KJ) significantly decreased compared to fresh (3114 KJ). The pyrolysis index dramatically varied with the solvent soaking in the following order: ethanol (26.7) > benzene (25.6) > no solvent (10) > acetone (6). It shows that solvent soaking plays an important role in the pyrolysis process. The obtained bio-oil was composed of mono-aromatics, poly-aromatics, and oxygenated compounds.
Collapse
Affiliation(s)
- Husam Talib Hamzah
- Department of Chemical Engg, AU College of Engineering (A), Andhra University, Visakhapatnam 530003, India
| | - Veluru Sridevi
- Department of Chemical Engg, AU College of Engineering (A), Andhra University, Visakhapatnam 530003, India
| | - Meghana Seereddi
- Department of Chemical Engg, AU College of Engineering (A), Andhra University, Visakhapatnam 530003, India
| | - Dadi V Suriapparao
- Department of Chemical Engineering, Pandit Deendayal Energy University, Gandhinagar 382007, India.
| | - Potnuri Ramesh
- Department of Chemical Engineering, National Institute of Technology Karnataka, Surathkal 575025, India
| | - Chinta Sankar Rao
- Department of Chemical Engineering, National Institute of Technology Karnataka, Surathkal 575025, India
| | - Ribhu Gautam
- Clean Combustion Research Center, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Fiyanshu Kaka
- Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology, Pune 411025, India
| | - Kocherlakota Pritam
- Department of Mathematics, Pandit Deendayal Energy University, Gandhinagar 382007, India
| |
Collapse
|