1
|
Ning YN, Tian D, Zhao S, Feng JX. Regulation of genes encoding polysaccharide-degrading enzymes in Penicillium. Appl Microbiol Biotechnol 2024; 108:16. [PMID: 38170318 DOI: 10.1007/s00253-023-12892-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/02/2023] [Accepted: 10/10/2023] [Indexed: 01/05/2024]
Abstract
Penicillium fungi, including Penicillium oxalicum, can secrete a range of efficient plant-polysaccharide-degrading enzymes (PPDEs) that is very useful for sustainable bioproduction, using renewable plant biomass as feedstock. However, the low efficiency and high cost of PPDE production seriously hamper the industrialization of processes based on PPDEs. In Penicillium, the expression of PPDE genes is strictly regulated by a complex regulatory system and molecular breeding to modify this system is a promising way to improve fungal PPDE yields. In this mini-review, we present an update on recent research progress concerning PPDE distribution and function, the regulatory mechanism of PPDE biosynthesis, and molecular breeding to produce PPDE-hyperproducing Penicillium strains. This review will facilitate future development of fungal PPDE production through metabolic engineering and synthetic biology, thereby promoting PPDE industrial biorefinery applications. KEY POINTS: • This mini review summarizes PPDE distribution and function in Penicillium. • It updates progress on the regulatory mechanism of PPDE biosynthesis in Penicillium. • It updates progress on breeding of PPDE-hyperproducing Penicillium strains.
Collapse
Affiliation(s)
- Yuan-Ni Ning
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, People's Republic of China
| | - Di Tian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, People's Republic of China
| | - Shuai Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, People's Republic of China.
| | - Jia-Xun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, People's Republic of China.
| |
Collapse
|
2
|
Zhao S, Zhang T, Hasunuma T, Kondo A, Zhao XQ, Feng JX. Every road leads to Rome: diverse biosynthetic regulation of plant cell wall-degrading enzymes in filamentous fungi Penicillium oxalicum and Trichoderma reesei. Crit Rev Biotechnol 2024; 44:1241-1261. [PMID: 38035670 DOI: 10.1080/07388551.2023.2280810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/23/2023] [Accepted: 10/16/2023] [Indexed: 12/02/2023]
Abstract
Cellulases and xylanases are plant cell wall-degrading enzymes (CWDEs) that are critical to sustainable bioproduction based on renewable lignocellulosic biomass to reduce carbon dioxide emission. Currently, these enzymes are mainly produced from filamentous fungi, especially Trichoderma reesei and Penicillium oxalicum. However, an in-depth comparison of these two producers has not been performed. Although both P. oxalicum and T. reesei harbor CWDE systems, they exhibit distinct features regulating the production of these enzymes, mainly through different transcriptional regulatory networks. This review presents the strikingly different modes of genome-wide regulation of cellulase and xylanase biosynthesis in P. oxalicum and T. reesei, including sugar transporters, signal transduction cascades, transcription factors, chromatin remodeling, and three-dimensional organization of chromosomes. In addition, different molecular breeding approaches employed, based on the understanding of the regulatory networks, are summarized. This review highlights the existence of very different regulatory modes leading to the efficient regulation of CWDE production in filamentous fungi, akin to the adage that "every road leads to Rome." An understanding of this divergence may help further improvements in fungal enzyme production through the metabolic engineering and synthetic biology of certain fungal species.
Collapse
Affiliation(s)
- Shuai Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Ting Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Tomohisa Hasunuma
- Graduate School of Science, Technology and Innovation, Engineering Biology Research Center, Kobe University, Kobe, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Engineering Biology Research Center, Kobe University, Kobe, Japan
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jia-Xun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
3
|
Mamtimin T, Ouyang X, Wu WM, Zhou T, Hou X, Khan A, Liu P, Zhao YL, Tang H, Criddle CS, Han H, Li X. Novel Feruloyl Esterase for the Degradation of Polyethylene Terephthalate (PET) Screened from the Gut Microbiome of Plastic-Degrading Mealworms ( Tenebrio Molitor Larvae). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17717-17731. [PMID: 39315846 DOI: 10.1021/acs.est.4c01495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Mealworms (Tenebrio molitor) larvae can degrade both plastics and lignocellulose through synergistic biological activities of their gut microbiota because they share similarities in chemical and physical properties. Here, a total of 428 genes encoding lignocellulose-degrading enzymes were screened from the gut microbiome of T. molitor larvae to identify poly(ethylene terephthalate) (PET)-degrading activities. Five genes were successfully expressed in E. coli, among which a feruloyl esterase-like enzyme named TmFae-PETase demonstrated the highest PET degradation activity, converting PET into MHET (0.7 mgMHETeq ·h-1·mgenzyme-1) and TPA (0.2 mgTPAeq ·h-1·mgenzyme-1) at 50 °C. TmFae-PETase showed a preference for the hydrolysis of ferulic acid methyl ester (MFA) in the presence of both PET and MFA. Site-directed mutagenesis and molecular dynamics simulations of TmFae-PETase revealed similar catalytic mechanisms for both PET and MFA. TmFae-PETase effectively depolymerized commercial PET, making it a promising candidate for application. Additionally, the known PET hydrolases IsPETase, FsC, and LCC also hydrolyzed MFA, indicating a potential origin of PET hydrolytic activity from its lignocellulosic-degrading abilities. This study provides an innovative strategy for screening PET-degrading enzymes identified from lignocellulose degradation-related enzymes within the gut microbiome of plastic-degrading mealworms. This discovery expands the existing pool of plastic-degrading enzymes available for resource recovery and bioremediation applications.
Collapse
Affiliation(s)
- Tursunay Mamtimin
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- Center for Grassland Microbiome, State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Xingyu Ouyang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200000, China
| | - Wei-Min Wu
- Department of Civil and Environmental Engineering, William & Cloy Codiga Resource Recovery Center, Stanford University, Stanford, California 94305, United States
| | - Tuoyu Zhou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiaoxiao Hou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Aman Khan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Pu Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yi-Lei Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200000, China
| | - Hongzhi Tang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200000, China
| | - Craig S Criddle
- Department of Civil and Environmental Engineering, William & Cloy Codiga Resource Recovery Center, Stanford University, Stanford, California 94305, United States
| | - Huawen Han
- Center for Grassland Microbiome, State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
4
|
Hu Z, Liu Q, Ouyang B, Wang G, Wei C, Zhao X. Recent advances in genetic engineering to enhance plant-polysaccharide-degrading enzyme expression in Penicillium oxalicum: A brief review. Int J Biol Macromol 2024; 278:134775. [PMID: 39153674 DOI: 10.1016/j.ijbiomac.2024.134775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
With the depletion of non-renewable fossil fuels, there has been an increasing emphasis on renewable biomass. Penicillium oxalicum is notable for its exceptional capacity to secrete a diverse array of enzymes that degrade plant polysaccharides into monosaccharides. These valuable monosaccharides can be harnessed in the production of bioethanol and other sustainable forms of energy. By enhancing the production of plant-polysaccharide-degrading enzymes (PPDEs) in P. oxalicum, we can optimize the utilization of plant biomass. This paper presents recent advances in augmenting PPDE expression in P. oxalicum through genetic engineering strategies involving protoplast preparation, transformation, and factors influencing PPDE gene expression.
Collapse
Affiliation(s)
- Ziyan Hu
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Qiling Liu
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Bei Ouyang
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Guoping Wang
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Chenyang Wei
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Xihua Zhao
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China.
| |
Collapse
|
5
|
Zhu Y, Bai S, Li N, Wang JH, Wang JK, Wang Q, Wang K, Zhang T. Expression and characterization of a novel microbial GH9 glucanase, IDSGLUC9-4, isolated from sheep rumen. Anim Biosci 2024; 37:1581-1594. [PMID: 38810985 PMCID: PMC11366526 DOI: 10.5713/ab.24.0138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/15/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024] Open
Abstract
OBJECTIVE This study aimed to identify and characterize a novel endo-β-glucanase, IDSGLUC9-4, from the rumen metatranscriptome of Hu sheep. METHODS A novel endo-β-glucanase, IDSGLUC9-4, was heterologously expressed in Escherichia coli and biochemically characterized. The optimal temperature and pH of recombinant IDSGLUC9-4 were determined. Subsequently, substrate specificity of the enzyme was assessed using mixed-linked glucans including barley β-glucan and Icelandic moss lichenan. Thin-layer chromatography (TLC), high-performance liquid chromatography (HPLC), matrix assisted laser desorption ionization time of flight mass spectrometry analyses were conducted to determine the products released from polysaccharides and cello-oligosaccharides substrates. RESULTS The recombinant IDSGLUC9-4 exhibited temperature and pH optima of 40°C and pH 6.0, respectively. It exclusively hydrolyzed mixed-linked glucans, with significant activity observed for barley β-glucan (109.59±3.61 μmol/mg min) and Icelandic moss lichenan (35.35±1.55 μmol/mg min). TLC and HPLC analyses revealed that IDSGLUC9-4 primarily released cellobiose, cellotriose, and cellotetraose from polysaccharide substrates. Furthermore, after 48 h of reaction, IDSGLUC9-4 removed most of the glucose, indicating transglycosylation activity alongside its endo-glucanase activity. CONCLUSION The recombinant IDSGLUC9-4 was a relatively acid-resistant, mesophilic endo-glucanase (EC 3.2.1.4) that hydrolyzed glucan-like substrates, generating predominantly G3 and G4 oligosaccharides, and which appeared to have glycosylation activity. These findings provided insights into the substrate specificity and product profiles of rumen-derived GH9 glucanases and contributed to the expanding knowledge of cellulolytic enzymes and novel herbivore rumen enzymes in general.
Collapse
Affiliation(s)
- Yongzhen Zhu
- Jilin Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112,
China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310058,
China
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058,
China
| | - Shuning Bai
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310058,
China
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058,
China
| | - Nuo Li
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310058,
China
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058,
China
| | - Jun-Hong Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310058,
China
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058,
China
| | - Jia-Kun Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310058,
China
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058,
China
| | - Qian Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310058,
China
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058,
China
| | - Kaiying Wang
- Jilin Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112,
China
| | - Tietao Zhang
- Jilin Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112,
China
| |
Collapse
|
6
|
Jiang H, Nie J, Zeng L, Zhu F, Gao Z, Zhang A, Xie J, Chen Y. Selective Removal of Hemicellulose by Diluted Sulfuric Acid Assisted by Aluminum Sulfate. Molecules 2024; 29:2027. [PMID: 38731518 PMCID: PMC11085920 DOI: 10.3390/molecules29092027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Hemicellulose can be selectively removed by acid pretreatment. In this study, selective removal of hemicellulose was achieved using dilute sulfuric acid assisted by aluminum sulfate pretreatment. The optimal pretreatment conditions were 160 °C, 1.5 wt% aluminum sulfate, 0.7 wt% dilute sulfuric acid, and 40 min. A component analysis showed that the removal rate of hemicellulose and lignin reached 98.05% and 9.01%, respectively, which indicated that hemicellulose was removed with high selectivity by dilute sulfuric acid assisted by aluminum sulfate pretreatment. Structural characterizations (SEM, FTIR, BET, TGA, and XRD) showed that pretreatment changed the roughness, crystallinity, pore size, and functional groups of corn straw, which was beneficial to improve the efficiency of enzymatic hydrolysis. This study provides a new approach for the high-selectivity separation of hemicellulose, thereby offering novel insights for its subsequent high-value utilization.
Collapse
Affiliation(s)
- Huabin Jiang
- Institute of Biomass Engineering, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, South China Agricultural University, Guangzhou 510642, China; (H.J.); (L.Z.); (F.Z.); (Z.G.); (Y.C.)
| | - Jiaqi Nie
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China;
| | - Lei Zeng
- Institute of Biomass Engineering, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, South China Agricultural University, Guangzhou 510642, China; (H.J.); (L.Z.); (F.Z.); (Z.G.); (Y.C.)
| | - Fei Zhu
- Institute of Biomass Engineering, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, South China Agricultural University, Guangzhou 510642, China; (H.J.); (L.Z.); (F.Z.); (Z.G.); (Y.C.)
| | - Zhongwang Gao
- Institute of Biomass Engineering, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, South China Agricultural University, Guangzhou 510642, China; (H.J.); (L.Z.); (F.Z.); (Z.G.); (Y.C.)
| | - Aiping Zhang
- Institute of Biomass Engineering, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, South China Agricultural University, Guangzhou 510642, China; (H.J.); (L.Z.); (F.Z.); (Z.G.); (Y.C.)
| | - Jun Xie
- Institute of Biomass Engineering, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, South China Agricultural University, Guangzhou 510642, China; (H.J.); (L.Z.); (F.Z.); (Z.G.); (Y.C.)
| | - Yong Chen
- Institute of Biomass Engineering, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, South China Agricultural University, Guangzhou 510642, China; (H.J.); (L.Z.); (F.Z.); (Z.G.); (Y.C.)
| |
Collapse
|
7
|
Liu X, Wang Y, Zhang R, Gao Y, Chen H, Dong S, Hu X. Insights into the transcriptomic mechanism and characterization of endoglucanases from Aspergillus terreus in cellulose degradation. Int J Biol Macromol 2024; 263:130340. [PMID: 38387642 DOI: 10.1016/j.ijbiomac.2024.130340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/12/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Filamentous fungi are the main industrial source of cellulases which are important in the process of converting cellulose to fermentable sugars. In this study, transcriptome analysis was conducted on Aspergillus terreus NEAU-7 cultivated using corn stover and glucose as carbon sources. Four putative endoglucanases (EG5A, EG7A, EG12A, and EG12C) from A. terreus NEAU-7 were efficiently expressed in Pichia pastoris. Among them, EG7A exhibited the highest enzyme activity (75.17 U/mg) with an optimal temperature of 40 °C and pH 5.0. EG5A and EG12A displayed specific activities of 19.92 U/mg and 14.62 U/mg, respectively, at 50 °C. EG12C showed acidophilic characteristics with an optimal pH of 3.0 and a specific activity of 12.21 U/mg at 40 °C. With CMC-Na as the substrate, the Km value of EG5A, EG7A, EG12A or, EG12C was, 11.08 ± 0.87 mg/mL, 6.82 ± 0.74 mg/mL, 7.26 ± 0.64 mg/mL, and 9.88 ± 0.86 mg/mL, with Vmax values of 1258.23 ± 51.62 μmol∙min-1∙mg-1, 842.65 ± 41.53 μmol∙min-1∙mg-1, 499.38 ± 20.42 μmol∙min-1∙mg-1, and 681.41 ± 30.08 μmol∙min-1∙mg-1, respectively. The co-treatment of EG7A with the commercial cellulase increased the yield of reducing sugar by 155.77 % (filter paper) and 130.49 % (corn stover). Molecular docking assay showed the interaction energy of EG7A with cellotetraose at -10.50 kcal/mol, surpassing EG12A (-10.43 kcal/mol), EG12C (-10.28 kcal/mol), and EG5A (-9.00 kcal/mol). Root Mean Square Deviation (RMSD) and Solvent Accessible Surface Area (SASA) values revealed that the presence of cellotetraose stabilized the molecular dynamics simulation of the cellotetraose-protein complex over a 100 ns time scale. This study provides valuable insights for developing recombinant enzymes and biomass degradation technologies.
Collapse
Affiliation(s)
- Xin Liu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yanbo Wang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Rui Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yunfei Gao
- Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Heshu Chen
- Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | | | - Xiaomei Hu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
8
|
Yu X, Li J, Sun Y, Xie Y, Su Y, Tang S, Bian S, Liu L, Huo F, Huang Q, Chen G. Co-immobilized multi-enzyme biocatalytic system on reversible and soluble carrier for saccharification of corn straw cellulose. BIORESOURCE TECHNOLOGY 2024; 395:130325. [PMID: 38228219 DOI: 10.1016/j.biortech.2024.130325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 01/18/2024]
Abstract
Herein, three enzymes (cellulase, β-glucosidase, and pectinase) with synergistic effects were co-immobilized on the Eudragit L-100, and the recovery of co-immobilized enzymes from solid substrates were achieved through the reversible and soluble property of the carrier. The optimization of enzyme ratio overcomed the problem of inappropriate enzyme activity ratio caused by different immobilization efficiencies among enzymes during the preparation process of co-immobilized enzymes. The co-immobilized enzymes were utilized to catalytically hydrolyze cellulose from corn straw into glucose, achieving a cellulose conversion rate of 74.45% under conditions optimized for their enzymatic characteristics and hydrolytic reaction conditions. As a result of the reversibility and solubility of the carrier, the co-immobilized enzymes were recovered from the solid substrate after five cycles, retaining 54.67% of the enzyme activity. The aim of this study is to investigate the potential of co-immobilizing multiple enzymes onto the Eudragit L-100 carrier for the synergistic degradation of straw cellulose.
Collapse
Affiliation(s)
- Xiaoxiao Yu
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, The Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Jianzhen Li
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, The Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Yan Sun
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, The Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Yubing Xie
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Yingjie Su
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, The Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Shanshan Tang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, The Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Sijia Bian
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, The Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Liying Liu
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, The Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Fei Huo
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, The Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Qing Huang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, The Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Guang Chen
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, The Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
9
|
Xu C, Tong S, Sun L, Gu X. Cellulase immobilization to enhance enzymatic hydrolysis of lignocellulosic biomass: An all-inclusive review. Carbohydr Polym 2023; 321:121319. [PMID: 37739542 DOI: 10.1016/j.carbpol.2023.121319] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/15/2023] [Accepted: 08/20/2023] [Indexed: 09/24/2023]
Abstract
Cellulase-mediated lignocellulosic biorefinery plays a crucial role in the production of high-value biofuels and chemicals, with enzymatic hydrolysis being an essential component. The advent of cellulase immobilization has revolutionized this process, significantly enhancing the efficiency, stability, and reusability of cellulase enzymes. This review offers a thorough analysis of the fundamental principles underlying immobilization, encompassing various immobilization approaches such as physical adsorption, covalent binding, entrapment, and cross-linking. Furthermore, it explores a diverse range of carrier materials, including inorganic, organic, and hybrid/composite materials. The review also focuses on emerging approaches like multi-enzyme co-immobilization, oriented immobilization, immobilized enzyme microreactors, and enzyme engineering for immobilization. Additionally, it delves into novel carrier technologies like 3D printing carriers, stimuli-responsive carriers, artificial cellulosomes, and biomimetic carriers. Moreover, the review addresses recent obstacles in cellulase immobilization, including molecular-level immobilization mechanism, diffusion limitations, loss of cellulase activity, cellulase leaching, and considerations of cost-effectiveness and scalability. The knowledge derived from this review is anticipated to catalyze the evolution of more efficient and sustainable biocatalytic systems for lignocellulosic biomass conversion, representing the current state-of-the-art in cellulase immobilization techniques.
Collapse
Affiliation(s)
- Chaozhong Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| | - Shanshan Tong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Liqun Sun
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Xiaoli Gu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| |
Collapse
|
10
|
Wang Z, Tang H, Liu G, Gong H, Li Y, Chen Y, Yang Y. Compound probiotics producing cellulase could replace cellulase preparations during solid-state fermentation of millet bran. BIORESOURCE TECHNOLOGY 2023; 385:129457. [PMID: 37422095 DOI: 10.1016/j.biortech.2023.129457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/10/2023]
Abstract
Low-value agricultural by-products can be converted into high-value biological products by fermentation with probiotic strains or by enzymatic hydrolysis. However, the high costs of enzyme preparations significantly limit their applications in fermentation. In this study, the solid-state fermentation of millet bran was performed using a cellulase preparation and compound probiotics producing cellulase (CPPC), respectively. The results showed that both factors effectively destroyed the fiber structure, reduced the crude fiber content by 23.78% and 28.32%, respectively, and significantly increased the contents of beneficial metabolites and microorganisms. Moreover, CPPC could more effectively reduce the anti-nutrient factors and increase the content of anti-inflammatory metabolites. The correlation analysis revealed that Lactiplantibacillus and Issatchenkia had synergistic growth during fermentation. Overall, these results suggested that CPPC could replace cellulase preparation and improve antioxidant properties while reducing anti-nutrient factors of millet bran, thus providing a theoretical reference for the efficient utilization of agricultural by-products.
Collapse
Affiliation(s)
- Zhiwei Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Haoran Tang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Gongwei Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Hanxuan Gong
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yangguang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yulin Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yuxin Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China.
| |
Collapse
|
11
|
Yang J, Yue HR, Pan LY, Feng JX, Zhao S, Suwannarangsee S, Chempreda V, Liu CG, Zhao XQ. Fungal strain improvement for efficient cellulase production and lignocellulosic biorefinery: Current status and future prospects. BIORESOURCE TECHNOLOGY 2023:129449. [PMID: 37406833 DOI: 10.1016/j.biortech.2023.129449] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Lignocellulosic biomass (LCB) has been recognized as a valuable carbon source for the sustainable production of biofuels and value-added biochemicals. Crude enzymes produced by fungal cell factories benefit economic LCB degradation. However, high enzyme production cost remains a great challenge. Filamentous fungi have been widely used to produce cellulolytic enzymes. Metabolic engineering of fungi contributes to efficient cellulase production for LCB biorefinery. Here the latest progress in utilizing fungal cell factories for cellulase production was summarized, including developing genome engineering tools to improve the efficiency of fungal cell factories, manipulating promoters, and modulating transcription factors. Multi-omics analysis of fungi contributes to identifying novel genetic elements for enhancing cellulase production. Furthermore, the importance of translation regulation of cellulase production are emphasized. Efficient development of fungal cell factories based on integrative strain engineering would benefit the overall bioconversion efficacy of LCB for sustainable bioproduction.
Collapse
Affiliation(s)
- Jie Yang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hou-Ru Yue
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Li-Ya Pan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Jia-Xun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Shuai Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Surisa Suwannarangsee
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phaholyothin Road, Khlong Luang, Pathumthani 12120, Thailand
| | - Verawat Chempreda
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phaholyothin Road, Khlong Luang, Pathumthani 12120, Thailand
| | - Chen-Guang Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
12
|
Li Y, Li C, Muhammad Aqeel S, Wang Y, Zhang Q, Ma J, Zhou J, Li J, Du G, Liu S. Enhanced expression of xylanase in Aspergillus niger enabling a two-step enzymatic pathway for extracting β-glucan from oat bran. BIORESOURCE TECHNOLOGY 2023; 377:128962. [PMID: 36966944 DOI: 10.1016/j.biortech.2023.128962] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 06/18/2023]
Abstract
The high cost and process complexity limit the enzymatic extraction of β-glucan. In this study, β-glucan was extracted from oat bran in a two-step enzymatic pathway using a recombinant strain of Aspergillus niger AG11 overexpressing the endogenous xylanase (xynA) and amylolytic enzyme. First, co-optimization of promoter and signal peptide and a fusion of glucoamylase (glaA) fragment were integrated into the β-glucosidase (bgl) locus to improve xynA expression. Then, the optimized expression cassette was simultaneously integrated into bgl, α-amylase amyA, and acid α-amylase ammA loci, yielding the Rbya with 3,650-fold and 31.2% increase in xynA and amylolytic enzyme activity than the wild-type strain, respectively. Finally, Rbya's supernatants at 72 h (rich in xynA and amylolytic enzyme) and 10 d (rich in proteases) were used to decompose xylan/starch and proteins in oat bran, respectively, to obtain 85.1% pure β-glucan. Rbya could be a robust candidate for the cost-effective extraction of β-glucan.
Collapse
Affiliation(s)
- Yangyang Li
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Cen Li
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, China
| | - Sahibzada Muhammad Aqeel
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Yachan Wang
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Quan Zhang
- Dalian Research Institute of Petrolem and Petrochemicals, SINOPEC, Dalian 116000, China
| | - Jianing Ma
- School of Chemical Engineering, Dalian University of Technology, Dalian 116000, China
| | - Jingwen Zhou
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jianghua Li
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Guocheng Du
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Song Liu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| |
Collapse
|
13
|
Gong M, Wang Y, Bao D, Jiang S, Chen H, Shang J, Wang X, Hnin Yu H, Zou G. Improving cold-adaptability of mesophilic cellulase complex with a novel mushroom cellobiohydrolase for efficient low-temperature ensiling. BIORESOURCE TECHNOLOGY 2023; 376:128888. [PMID: 36925076 DOI: 10.1016/j.biortech.2023.128888] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
Low ambient temperature poses a challenge for rice straw-silage processing in cold climate regions, as cold limits enzyme and microbial activity in silages. Here, a novel cold-active cellobiohydrolase (VvCBHI-I) was isolated from Volvariella volvacea, which exhibited outstanding cellobiohydrolase activity at 10-30 °C. The crude cellulase complex in the VvCBHI-I-expressing transformant T1 retained 50% relative activity at 10 °C, while the wildtype Trichoderma reesei showed <5% of the activity. VvCBHI-I greatly improved the saccharification efficiency of the cellulase complex with pretreated rice straw as substrate at 10 °C. In rice straw silage, pH (<4.5) and lactic acid content (>4.6%) remained stable after 15-day ensiling with the cellulase complex from T1 and Lactobacillus plantarum. Moreover, the proportions of cellulose and hemicellulose decreased to 29.84% ± 0.15% and 21.25% ± 0.26% of the dried material. This demonstrates the crucial potential of mushroom-derived cold-active cellobiohydrolases in successful ensiling in cold regions.
Collapse
Affiliation(s)
- Ming Gong
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agriculture Science, 1000 Jinqi Rd, Fengxian 201403, Shanghai, China
| | - Ying Wang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agriculture Science, 1000 Jinqi Rd, Fengxian 201403, Shanghai, China
| | - Dapeng Bao
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agriculture Science, 1000 Jinqi Rd, Fengxian 201403, Shanghai, China
| | - Shan Jiang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agriculture Science, 1000 Jinqi Rd, Fengxian 201403, Shanghai, China
| | - Hongyu Chen
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agriculture Science, 1000 Jinqi Rd, Fengxian 201403, Shanghai, China
| | - Junjun Shang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agriculture Science, 1000 Jinqi Rd, Fengxian 201403, Shanghai, China
| | - Xiaojun Wang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agriculture Science, 1000 Jinqi Rd, Fengxian 201403, Shanghai, China
| | - Hnin Hnin Yu
- Microbiology Laboratory, Botany Department, University of Mandalay, 73 & 41 Street, Maharaungmyay Township, Mandalay Division, Myanmar
| | - Gen Zou
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agriculture Science, 1000 Jinqi Rd, Fengxian 201403, Shanghai, China.
| |
Collapse
|
14
|
Zhang T, Li HZ, Li WT, Tian D, Ning YN, Liang X, Tan J, Zhao YH, Luo XM, Feng JX, Zhao S. Kinase POGSK-3β modulates fungal plant polysaccharide-degrading enzyme production and development. Appl Microbiol Biotechnol 2023; 107:3605-3620. [PMID: 37119203 DOI: 10.1007/s00253-023-12548-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 05/01/2023]
Abstract
The filamentous fungus Penicillium oxalicum secretes integrative plant polysaccharide-degrading enzymes (PPDEs) applicable to biotechnology. Glycogen synthase kinase-3β (GSK-3β) mediates various cellular processes in eukaryotic cells, but the regulatory mechanisms of PPDE biosynthesis in filamentous fungi remain poorly understood. In this study, POGSK-3β (POX_c04478), a homolog of GSK-3β in P. oxalicum, was characterised using biochemical, microbiological and omics approaches. Knockdown of POGSK-3β in P. oxalicum using a copper-responsive promoter replacement system led to 53.5 - 63.6%, 79.0 - 92.8% and 76.8 - 94.7% decreases in the production of filter paper cellulase, soluble starch-degrading enzyme and raw starch-degrading enzyme, respectively, compared with the parental strain ΔKu70. POGSK-3β promoted mycelial growth and conidiation. Transcriptomic profiling and real-time quantitative reverse transcription PCR analyses revealed that POGSK-3β dynamically regulated the expression of genes encoding major PPDEs, as well as fungal development-associated genes. The results broadened our understanding of the regulatory functions of GKS-3β and provided a promising target for genetic engineering to improve PPDE production in filamentous fungi. KEY POINTS: • The roles of glycogen synthase kinase-3β were investigated in P. oxalicum. • POGSK-3β regulated PPDE production, mycelial growth and conidiation. • POGSK-3β controlled the expression of major PPDE genes and regulatory genes.
Collapse
Affiliation(s)
- Ting Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China
- College of Food and Quality Engineering, Nanning University, Nanning, 530200, Guangxi, China
| | - Han-Zhi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China
| | - Wen-Tong Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China
| | - Di Tian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China
| | - Yuan-Ni Ning
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China
| | - Xue Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China
| | - Jing Tan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China
| | - Yan-Hao Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China
| | - Xue-Mei Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China
| | - Jia-Xun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China.
| | - Shuai Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China.
| |
Collapse
|
15
|
Jin X, Wang JK, Wang Q. Microbial β-glucanases: production, properties, and engineering. World J Microbiol Biotechnol 2023; 39:106. [PMID: 36847914 DOI: 10.1007/s11274-023-03550-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/14/2023] [Indexed: 03/01/2023]
Abstract
Lignocellulosic biomass, which mainly consists of cellulose and hemicellulose, is the most abundant renewable biopolymer on earth. β-Glucanases are glycoside hydrolases (GHs) that hydrolyze β-glucan, one of the dominant components of the plant cell wall, into cello-oligosaccharides and glucose. Among them, endo-β-1,4-glucanase (EC 3.2.1.4), exo-glucanase/cellobiohydrolase (EC 3.2.1.91), and β-glucosidase (EC 3.2.1.21) play critical roles in the digestion of glucan-like substrates. β-Glucanases have attracted considerable interest within the scientific community due to their applications in the feed, food, and textile industries. In the past decade, there has been considerable progress in the discovery, production, and characterization of novel β-glucanases. Advances in the development of next-generation sequencing techniques, including metagenomics and metatranscriptomics, have unveiled novel β-glucanases isolated from the gastrointestinal microbiota. The study of β-glucanases is beneficial for research and development of commercial products. In this study, we review the classification, properties, and engineering of β-glucanases.
Collapse
Affiliation(s)
- Xinyi Jin
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, 310058, China.,Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jia-Kun Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, 310058, China.,Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qian Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, 310058, China. .,Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
16
|
Bioethanol Production from Lignocellulosic Biomass-Challenges and Solutions. Molecules 2022; 27:molecules27248717. [PMID: 36557852 PMCID: PMC9785513 DOI: 10.3390/molecules27248717] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Regarding the limited resources for fossil fuels and increasing global energy demands, greenhouse gas emissions, and climate change, there is a need to find alternative energy sources that are sustainable, environmentally friendly, renewable, and economically viable. In the last several decades, interest in second-generation bioethanol production from non-food lignocellulosic biomass in the form of organic residues rapidly increased because of its abundance, renewability, and low cost. Bioethanol production fits into the strategy of a circular economy and zero waste plans, and using ethanol as an alternative fuel gives the world economy a chance to become independent of the petrochemical industry, providing energy security and environmental safety. However, the conversion of biomass into ethanol is a challenging and multi-stage process because of the variation in the biochemical composition of biomass and the recalcitrance of lignin, the aromatic component of lignocellulose. Therefore, the commercial production of cellulosic ethanol has not yet become well-received commercially, being hampered by high research and production costs, and substantial effort is needed to make it more widespread and profitable. This review summarises the state of the art in bioethanol production from lignocellulosic biomass, highlights the most challenging steps of the process, including pretreatment stages required to fragment biomass components and further enzymatic hydrolysis and fermentation, presents the most recent technological advances to overcome the challenges and high costs, and discusses future perspectives of second-generation biorefineries.
Collapse
|