1
|
Martínez-Fraile C, Muñoz R, Teresa Simorte M, Sanz I, García-Depraect O. Biohydrogen production by lactate-driven dark fermentation of real organic wastes derived from solid waste treatment plants. BIORESOURCE TECHNOLOGY 2024; 403:130846. [PMID: 38754561 DOI: 10.1016/j.biortech.2024.130846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/18/2024]
Abstract
This study evaluated the hydrogen production potential through lactate-driven dark fermentation (LD-DF) of organic wastes from solid waste treatment plants, including the organic fraction of municipal solid waste (OFMSW), mixed sewage sludge, and two OFMSW leachates. In initial batch fermentations, only OFMSW supported a significant hydrogen yield (70.1 ± 7.7 NmL-H2/g-VS added) among the tested feedstocks. Lactate acted as an important hydrogen precursor, requiring the presence of carbohydrates for sequential two-step lactate-type fermentation. The impact of operational pH (5.5-6.5) and initial total solids (TS) concentration (5-12.5 % w/w) was also evaluated using OFMSW as substrate, obtaining hydrogen yields ranging from 6.6 to 55.9 NmL-H2/g-VSadded. The highest yield occurred at 6.5 pH and 7.5 % TS. The LD-DF pathway was indicated to be present under diverse pH and TS conditions, supported by employing a specialized microbial consortium capable of performing LD-DF, along with the observed changes in lactate levels during fermentation.
Collapse
Affiliation(s)
- Cristina Martínez-Fraile
- Institute of Sustainable Processes, Dr. Mergelina s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
| | - Raúl Muñoz
- Institute of Sustainable Processes, Dr. Mergelina s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
| | - María Teresa Simorte
- FCC Medio Ambiente, Avenida Camino de Santiago 40, CTR de Valladolid, Madrid 2850, Spain
| | - Inmaculada Sanz
- FCC Medio Ambiente, Avenida Camino de Santiago 40, CTR de Valladolid, Madrid 2850, Spain
| | - Octavio García-Depraect
- Institute of Sustainable Processes, Dr. Mergelina s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain.
| |
Collapse
|
2
|
Luo L, Mak KL, Mal J, Khanal SK, Pradhan N. Effect of zero-valent iron nanoparticles on taxonomic composition and hydrogen production from kitchen waste. BIORESOURCE TECHNOLOGY 2023; 387:129578. [PMID: 37506933 DOI: 10.1016/j.biortech.2023.129578] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
This study investigated the effects of varying zero-valent iron (ZVI) (0 to 5,000 mg/L) on fermentative hydrogen (H2) production, metabolic pattern, and taxonomic profile by using kitchen waste as substrate. The study demonstrated that the supplementation of 500 mg ZVI/L resulted in the highest H2 yield (219.68 ± 11.19 mL H2/g-volatile solids (VS)added), which was 19% higher than the control. The metabolic pattern analysis showed that acetic and butyric acid production primarily drove the H2 production. The taxonomic analysis further revealed that Firmicutes (relative abundance (RA): 80-96%) and Clostridium sensu stricto 1 (RA: 68-88%) were the dominant phyla and genera, respectively, during the exponential gas production phase, supporting the observation of accumulation of acetic and butyric acids. These findings suggest that supplementation of ZVI can enhance H2 production from organic waste and significantly influence the metabolic pattern and taxonomic profile, including the metalloenzymes.
Collapse
Affiliation(s)
- Lijun Luo
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region.
| | - Ka Lee Mak
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region.
| | - Joyabrata Mal
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, Uttar Pradesh, India.
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA.
| | - Nirakar Pradhan
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region.
| |
Collapse
|
3
|
Regueira-Marcos L, Muñoz R, García-Depraect O. Continuous lactate-driven dark fermentation of restaurant food waste: Process characterization and new insights on transient feast/famine perturbations. BIORESOURCE TECHNOLOGY 2023:129385. [PMID: 37364653 DOI: 10.1016/j.biortech.2023.129385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023]
Abstract
The effect of hydraulic retention time (HRT) on the continuous lactate-driven dark fermentation (LD-DF) of food waste (FW) was investigated. The robustness of the bioprocess against feast/famine perturbations was also explored. The stepwise HRT decrease from 24 to 16 and 12 h in a continuously stirred tank fermenter fed with simulated restaurant FW impacted on hydrogen production rate (HPR). The optimal HRT of 16 h supported a HPR of 4.2 L H2/L-d. Feast/famine perturbations caused by 12-h feeding interruptions led to a remarkable peak in HPR up to 19.2 L H2/L-d, albeit the process became stable at 4.3 L H2/L-d following perturbation. The occurrence of LD-DF throughout the operation was endorsed by metabolites analysis. Particularly, hydrogen production positively correlated with lactate consumption and butyrate production. Overall, the FW LD-DF process was highly sensitive but resilient against transient feast/famine perturbations, supporting high-rate HPRs under optimal HRTs.
Collapse
Affiliation(s)
- Lois Regueira-Marcos
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
| | - Raúl Muñoz
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
| | - Octavio García-Depraect
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain.
| |
Collapse
|
4
|
Bhaskar T, Venkata Mohan S, You S, Kim SH, Porto de Souza Vandenberghe L. Biomass to green hydrogen (BGH2-2022). BIORESOURCE TECHNOLOGY 2023; 376:128924. [PMID: 36948427 DOI: 10.1016/j.biortech.2023.128924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Affiliation(s)
| | - S Venkata Mohan
- CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | | | | | | |
Collapse
|
5
|
Kovalev AA, Kovalev DA, Zhuravleva EA, Laikova AA, Shekhurdina SV, Vivekanand V, Litti YV. Biochemical hydrogen potential assay for predicting the patterns of the kinetics of semi-continuous dark fermentation. BIORESOURCE TECHNOLOGY 2023; 376:128919. [PMID: 36934902 DOI: 10.1016/j.biortech.2023.128919] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
The performance and kinetics response of thermophilic semi-continuous dark fermentation (DF) of simulated complex carbohydrate-rich waste was investigated at various hydraulic retention times (HRT) (2, 2.5, and 3 d) and compared with data obtained from biochemical hydrogen potential assay (BHP). A culture of Thermoanaerobacterium thermosaccharolyticum was used as the inoculum and dominated both in BHP and semi-continuous reactor. Both the modified Gompertz and first-order models described the DF kinetics well (R2 = 0.97-1.00). HRT of 2.5 d was found to be optimal in terms of maximum hydrogen production rate and hydrogen potential, which were 3.97 and 1.26 times higher, respectively, than in BHP. The hydrolysis constant was highest at HRT of 3 d and was closest to the value obtained in the BHP. Overall, BHP has been shown to be a useful tool for predicting H2 potential and the hydrolysis constant, while the maximum H2 production rate is greatly underestimated.
Collapse
Affiliation(s)
- Andrey A Kovalev
- Federal Scientific Agroengineering Center VIM, 1st Institutsky Proezd, 5, 109428 Moscow, Russia.
| | - Dmitriy A Kovalev
- Federal Scientific Agroengineering Center VIM, 1st Institutsky Proezd, 5, 109428 Moscow, Russia
| | - Elena A Zhuravleva
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 60 Let Oktjabrja Pr-t, 7, Bld. 2, 117312 Moscow, Russia
| | - Alexandra A Laikova
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 60 Let Oktjabrja Pr-t, 7, Bld. 2, 117312 Moscow, Russia
| | - Svetlana V Shekhurdina
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 60 Let Oktjabrja Pr-t, 7, Bld. 2, 117312 Moscow, Russia
| | - Vivekanand Vivekanand
- Centre for Energy and Environment, Malaviya National Institute of Technology Jaipur, Jaipur 302017, Rajasthan, India
| | - Yuriy V Litti
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 60 Let Oktjabrja Pr-t, 7, Bld. 2, 117312 Moscow, Russia
| |
Collapse
|
6
|
Cao J, Duan G, Lin A, Zhou Y, You S, Wong JWC, Yang G. Metagenomic insights into the inhibitory mechanisms of Cu on fermentative hydrogen production. BIORESOURCE TECHNOLOGY 2023; 380:129080. [PMID: 37094620 DOI: 10.1016/j.biortech.2023.129080] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/03/2023]
Abstract
Cu is widely present in the feedstocks of dark fermentation, which can inhibit H2 production efficiency of the process. However, current understanding on the inhibitory mechanisms of Cu, especially the microbiological mechanism, is still lacking. This study investigated the inhibitory mechanisms of Cu2+ on fermentative hydrogen production by metagenomics sequencing. Results showed that the exposure to Cu2+ reduced the abundances of high-yielding hydrogen-producing genera (e.g. Clostridium sensu stricto), and remarkably down-regulated the genes involved in substrate membrane transport (e.g., gtsA, gtsB and gtsC), glycolysis (e.g. PK, ppgK and pgi-pmi), and hydrogen formation (e.g. pflA, fdoG, por and E1.12.7.2), leading to significant inhibition on the process performances. The H2 yield was reduced from 1.49 mol H2/mol-glucose to 0.59 and 0.05 mol H2/mol-glucose upon exposure to 500 and 1000 mg/L of Cu2+, respectively. High concentrations of Cu2+ also reduced the rate of H2 production and prolonged the H2-producing lag phase.
Collapse
Affiliation(s)
- Jinman Cao
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Guilan Duan
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Aijun Lin
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Siming You
- James Watt School of Engineering, University of Glasgow, Glasgow G128QQ, UK
| | - Jonathan W C Wong
- Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, China
| | - Guang Yang
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
7
|
Liu T, Li Y, Zhang H, Zhang N, Tahir N, Zhang Q. Estimating the potential of biohydrogen production and carbon neutralization contribution from crop straw. BIORESOURCE TECHNOLOGY 2023; 373:128718. [PMID: 36773813 DOI: 10.1016/j.biortech.2023.128718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
In order to achieve the carbon neutrality goal set by Chinese government, the potential contribution of hydrogen production from crop residues by microbial fermentation technology and Greenhouse gas (GHGs) reduction have been studied. Firstly, the annual yield of crop straw was estimated according to crop yield and grass grain ratio, and then the grey model GM (1, 1) was applied to predict the crop residues resources available for hydrogen production in various provinces in China in 2021. The results showed that the maximum resource of straw being available for hydrogen production is about 4.54 × 108 t, corresponding to 1.31 × 1011 m3 of hydrogen, the energy carried by the obtained hydrogen was 73 % and 1.15 times than the energy of national civil natural gas consumption and energy of transportation gasoline consumption, respectively. The potential reduction of greenhouse gas emission was 2.42 × 108 t/a CO2-eq, representing 2.4 % of GHGs emissions.
Collapse
Affiliation(s)
- Tao Liu
- School of Resources and Environment. Henan University of Economics and Law, Zhengzhou 450002, China; Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs of China, Henan Agricultural University, Zhengzhou 450002, China
| | - Yameng Li
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs of China, Henan Agricultural University, Zhengzhou 450002, China
| | - Huan Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs of China, Henan Agricultural University, Zhengzhou 450002, China.
| | - Ningyuan Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs of China, Henan Agricultural University, Zhengzhou 450002, China
| | - Nadeem Tahir
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs of China, Henan Agricultural University, Zhengzhou 450002, China
| | - Quanguo Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs of China, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
8
|
Martínez-Mendoza LJ, García-Depraect O, Muñoz R. Unlocking the high-rate continuous performance of fermentative hydrogen bioproduction from fruit and vegetable residues by modulating hydraulic retention time. BIORESOURCE TECHNOLOGY 2023; 373:128716. [PMID: 36764366 DOI: 10.1016/j.biortech.2023.128716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Harnessing fruit-vegetable waste (FVW) as a resource to produce hydrogen via dark fermentation (DF) embraces the circular economy concept. However, there is still a need to upgrade continuous FVW-DF bioprocessing to enhance hydrogen production rates (HPR). This study aims to investigate the influence of the hydraulic retention time (HRT) on the DF of FVW by mixed culture. A stirred tank reactor under continuous mesophilic conditions was operated for 47 days with HRT stepwise reductions from 24 to 6 h, leading to organic loading rates between 47 and 188 g volatile solids (VS)/L-d. The optimum HRT of 9 h resulted in an unprecedented HPR from FVW of 11.8 NL/L-d, with a hydrogen yield of 95.6 NmL/g VS fed. Based on an overarching inspection of hydrogen production in conjunction with organic acids and carbohydrates analyses, it was hypothesized that the high FVW-to-biohydrogen conversion rate achieved was powered by lactate metabolism.
Collapse
Affiliation(s)
| | - Octavio García-Depraect
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n., 47011 Valladolid, Spain
| | - Raúl Muñoz
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n., 47011 Valladolid, Spain.
| |
Collapse
|