1
|
Ke Y, Zhu X, Wang K, Wang L, Zhou S, Zhang Z. Role of humic acid on benzo[a]anthracene: Insights from aging on adsorption, speciation distribution and bioavailability. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125723. [PMID: 39828199 DOI: 10.1016/j.envpol.2025.125723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/22/2025]
Abstract
As a crucial component of soil organic matter, humic acid (HA) persists in soil and exert a complex interaction with hydrophobic organic pollutants, yet its specific role still remains unclear. In this study, HA was obtained from weathered coal via alkaline dissolution and acidic precipitation for the adsorption of benzo[a]anthracene (BAA). Subsequently, an aging simulation was employed to assess its long-term performance. The results demonstrated a theoretical maximal adsorption capacity of 0.29 mg/g for BAA on HA, and aging led to a 32.7% decline in its adsorption performance. While the speciation distribution of sorbed BAA remained largely unchanged. Combined with the characterization results, it can be inferred that the surface interactions between HA and BAA, including partitioning, van der Waals forces, hydrophobic interactions and hydrogen bonds, could be identified as the mechanisms underlying the desorbing BAA fraction, whereas strong hydrogen bonds, n-π and π-π staking contribute to the formation of non-desorbing BAA. The bound residue fraction of BAA was ascribed to the internal sequestration by porous structure in HA. Upon inoculation with BAA-degrading bacteria, all three fractions of sorbed BAA were decreased, demonstrating their availability. Further applied HA into soil media, a significant passivation effect was obtained as a substantial amount of desorbing and non-desorbing BAA was converted into bound-residue and non-extractable fractions. Overall, this study highlighted the potential of HA as adsorbent for mitigating PAHs environmental activity and its synergistic remediation with microorganisms.
Collapse
Affiliation(s)
- Yuxin Ke
- College of Urban and Environmental Science, Northwest University, Xi'an, 710127, China
| | - Xiaoli Zhu
- College of Urban and Environmental Science, Northwest University, Xi'an, 710127, China; Carbon Neutrality College, Northwest University, Yulin, 719099, China.
| | - Ke Wang
- College of Urban and Environmental Science, Northwest University, Xi'an, 710127, China
| | - Lei Wang
- College of Urban and Environmental Science, Northwest University, Xi'an, 710127, China
| | - Shi Zhou
- College of Urban and Environmental Science, Northwest University, Xi'an, 710127, China
| | - Ziye Zhang
- Xi'an Jinborui Ecological Tech. Co., Ltd., Xi'an, 710065, China
| |
Collapse
|
2
|
Zhao J, Ji C, Peng C, Wang Y, Yang S, Li Y, Tao E. Interfacial interaction mechanism between Mn doped highly conjugated biochar and berberine hydrochloride. J Colloid Interface Sci 2025; 677:108-119. [PMID: 39083888 DOI: 10.1016/j.jcis.2024.07.147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024]
Abstract
MnSO4-modified biochar (Mn-BC) was synthesized to remove berberine hydrochloride (BH) from wastewater by utilizing tea waste as raw material and MnSO4 as modifier. Brunel Emmett Taylor (BET) analysis reveals that the specific surface area (SSA) and average pore size (Dave) of Mn-BC are 1.4 and 7 times higher than those of pristine biochar apart, attributing to the dissociation effect can promote the dispersion of MnSO4 in the pores of the biochar. Meanwhile, the doping of Mn not only introduces additional oxygen-containing functional groups (OCFGs), but also modulates the π electron density. Furthermore, Response surface method (RSM) analysis reveals that Mn-BC dosage has the most significant effect on BH removal, followed by BH concentration and pH value. Kinetic and isothermal studies reveal that the BH adsorption process of Mn-BC was mainly dominated by chemical and monolayer adsorption. Meanwhile, density functional theory (DFT) calculations confirm the contribution of Mn doping to the conjugation effect in the adsorption system. Originally proposed Mn-BC is one potentially propitious material to eliminate BH from wastewater, meanwhile this also provides a newfangled conception over the sustainable utilization of tea waste resources.
Collapse
Affiliation(s)
- Jiangmei Zhao
- Liaoning Province Key Laboratory for Synthesis and Application of Functional Compounds, College of Chemistry and Material Engineering, Bohai University, Jinzhou 121013, Liaoning, China
| | - Cheng Ji
- Liaoning Province Key Laboratory for Synthesis and Application of Functional Compounds, College of Chemistry and Material Engineering, Bohai University, Jinzhou 121013, Liaoning, China
| | - Chong Peng
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Yuanfei Wang
- Liaoning Huadian Environmental Testing Co., LTD, Jinzhou 121013, Liaoning, China
| | - Shuyi Yang
- Liaoning Province Key Laboratory for Synthesis and Application of Functional Compounds, College of Chemistry and Material Engineering, Bohai University, Jinzhou 121013, Liaoning, China.
| | - Yun Li
- Chemistry & Chemical Engineering of College, Yantai University, Yantai 264005, China.
| | - E Tao
- Liaoning Province Key Laboratory for Synthesis and Application of Functional Compounds, College of Chemistry and Material Engineering, Bohai University, Jinzhou 121013, Liaoning, China.
| |
Collapse
|
3
|
do Nascimento RA, Novaes NDRDO, Morilla DP, da Luz PTS, Costa CML, de Faria LJG. Removal of Ciprofloxacin and Norfloxacin from Aqueous Solution with Activated Carbon from Cupuaçu ( Theobroma grandiflorum) Bark. Molecules 2024; 29:5853. [PMID: 39769943 PMCID: PMC11676745 DOI: 10.3390/molecules29245853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/30/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
The widespread use of antibiotics such as fluoroquinolones (FQs) has raised environmental and health concerns. This study is innovative as we investigate the removal of ciprofloxacin (CIP) and norfloxacin (NOR) from water using activated carbon derived from cupuaçu bark (CAC). This previously discarded biomass is now a low-cost raw material for the production of activated carbon, boosting the local economy. CAC was physiochemically characterized, and adsorption experiments were designed using the Box-Behnken design to assess the effects of contact time, adsorbate concentration, and adsorbent dosage on the removal efficiency and adsorption capacity. The optimal conditions were determined using the desirability function, and kinetic, isothermal, and thermodynamic experiments were performed. CAC showed a 50.22% yield, low humidity (4.81%), and low ash content (4.27%), with acidic functional groups dominating. The surface area was 1335.66 m2/g, with an average pore volume of 0.753 cm3/g and a pore diameter of 2.206 nm. Adsorption was most effective at pH 5.0 due to electrostatic interactions between the basic adsorbent and cationic forms of CIP and NOR. Optimal conditions yielded adsorption capacities of 6.02 mg/g for CIP and 5.70 mg/g for NOR, with the Langmuir model suggesting monolayer adsorption. The regeneration with NaOH was effective, but the adsorption efficiency decreased below 50% after two cycles. These findings demonstrate that CAC is a sustainable, low-cost adsorbent for treating antibiotic-contaminated water.
Collapse
Affiliation(s)
- Rafael Alves do Nascimento
- Postgraduate Program in Amazonian Natural Resources Engineering, Federal University of Pará, Rua Augusto Correa, 01, Belém 66075-110, Brazil;
- Federal Institute of Education Science and Technology of Rondônia, Porto Velho Calama Campus, Av. Calama, 4985, Porto Velho 76820-441, Brazil;
| | - Nilson dos Reis de Oliveira Novaes
- Federal Institute of Education Science and Technology of Rondônia, Porto Velho Calama Campus, Av. Calama, 4985, Porto Velho 76820-441, Brazil;
| | - Demetrius Pereira Morilla
- Federal Institute of Education Science and Technology of Alagoas, Maceió Campus, Rua Mizael Domingues, 530, Maceió 57020-600, Brazil;
| | - Patricia Teresa Souza da Luz
- Federal Institute of Education Science and Technology of Pará, Belém Campus, Av. Alm. Barroso, 1155, Belém 66093-020, Brazil;
| | - Cristiane Maria Leal Costa
- Postgraduate Program in Chemical Engineering, Federal University of Pará, Rua Augusto Correa, 01, Belém 66075-110, Brazil;
- Chemical Engineering School, Federal University of Pará, Rua Augusto Correa, 01, Belém 66075-110, Brazil
| | - Lênio José Guerreiro de Faria
- Postgraduate Program in Amazonian Natural Resources Engineering, Federal University of Pará, Rua Augusto Correa, 01, Belém 66075-110, Brazil;
- Postgraduate Program in Chemical Engineering, Federal University of Pará, Rua Augusto Correa, 01, Belém 66075-110, Brazil;
- Chemical Engineering School, Federal University of Pará, Rua Augusto Correa, 01, Belém 66075-110, Brazil
| |
Collapse
|
4
|
He D, Ma H, Hu D, Wang X, Dong Z, Zhu B. Biochar for sustainable agriculture: Improved soil carbon storage and reduced emissions on cropland. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123147. [PMID: 39504664 DOI: 10.1016/j.jenvman.2024.123147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/22/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024]
Abstract
Climate change, driven by excessive greenhouse gas (GHG) emissions from agricultural land, poses a serious threat to ecological security. It is now understood that significant differences exist in the responses of soil GHG emissions and soil carbon (C) sequestration to the application of different C-based materials (i.e., straw, organic manure (OM), and biochar). Therefore, elucidating the mechanisms by which differences in the properties of these materials affect soil GHG emissions is essential to comprehensively investigate the mechanisms through which variations in material properties influence soil GHG emissions. Herein, we conducted a field experiment to evaluate the responses of soil GHG emissions to cropland application of different C-based materials and employed molecular modeling calculations to explore the mechanisms by which differences in the properties of these materials affect soil GHG emissions. The results showed that biochar demonstrated superior resistance to biochemical decomposition and soil GHG adsorption capacity, leading to a significant reduction in soil GHG emissions due to its excellent physicochemical properties. The active surface properties of straw and OM enhanced their interaction with decomposing enzymes and accelerated their biochemical decomposition. Wheat-maize rotation with biochar application reduced CO2 emissions by 1089.8 kg CO2eq ha-1 and increased soil organic carbon by 141.8% compared to the control after one year. Collectively, these results contribute to the optimization of cropland application strategies for crop residues to balance soil C sequestration and soil GHG emissions, and to ensure sustainable agriculture and ecological security.
Collapse
Affiliation(s)
- Debo He
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China; Key Laboratory of Mountain Surface Process and Ecological Regulation, Chinese Academy of Sciences, Chengdu, 610041, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Han Ma
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China; Key Laboratory of Mountain Surface Process and Ecological Regulation, Chinese Academy of Sciences, Chengdu, 610041, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dongni Hu
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China; Key Laboratory of Mountain Surface Process and Ecological Regulation, Chinese Academy of Sciences, Chengdu, 610041, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoguo Wang
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China; Key Laboratory of Mountain Surface Process and Ecological Regulation, Chinese Academy of Sciences, Chengdu, 610041, China.
| | - Zhixin Dong
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China; Key Laboratory of Mountain Surface Process and Ecological Regulation, Chinese Academy of Sciences, Chengdu, 610041, China.
| | - Bo Zhu
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China; Key Laboratory of Mountain Surface Process and Ecological Regulation, Chinese Academy of Sciences, Chengdu, 610041, China.
| |
Collapse
|
5
|
Feng Y, Lin D, Yang K, Wu W. Desorption hysteresis of antibiotics on biochar produced at high temperature: The role of amine groups and amidation reaction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175998. [PMID: 39233067 DOI: 10.1016/j.scitotenv.2024.175998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/16/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
Knowledge of antibiotic desorption from high-temperature biochar is essential for assessing their environmental risks, and for the successful application of biochar to remove antibiotics. In previous studies, irreversible pore deformation, formation of charge-assisted hydrogen bonds or amide bonds were individually proposed to explain the desorption hysteresis of antibiotics on biochars, leading to a debate on hysteresis mechanism. In this study, desorption of sulfamethoxazole (SMX), ciprofloxacin (CFX) and tetracycline (TET) on a wood chip biochar produced at 700 °C (WBC700) and its oxidized product (O-WBC700) was investigated to explore the underlying hysteresis mechanism. Significant desorption hysteresis was observed for SMX, CFX and TET on WBC700 and O-WBC700. Hysteresis index (HI) of each antibiotic was higher on O-WBC700 with more oxygen-containing groups than WBC700, and was higher at lower equilibrium concentration. HI of antibiotics on WBC700 (or O-WBC700) increased in the order of SMX < CFX < TET. The calculated adsorption enthalpy of each antibiotic on WBC700 was positive, indicating an endothermic process. These phenomena together with FTIR, XPS spectra confirmed that the desorption hysteresis mechanism of antibiotics on high-temperature biochar is the formation of amide bonds by amidation reaction, but not the pore deformation or the hydrogen bond. Moreover, antibiotic can form amide bonds with WBC700 only if the amine group with pKa > 4.0, and the HI values were positively correlated with their pKa values. Amine group of antibiotics with higher pKa value show more nucleophilicity and could form stronger amide bonds with carboxyl group of biochar. The obtained results could help to solve the debate on desorption hysteresis mechanism of antibiotics on high-temperature biochars, and provide a new insight into the role of amine groups and amidation reaction on the hysteresis.
Collapse
Affiliation(s)
- Yizhou Feng
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China
| | - Kun Yang
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China
| | - Wenhao Wu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China.
| |
Collapse
|
6
|
Liu A, Feng LJ, Ou Y, Zhang X, Zhang J, Chen H. Competitive adsorption of polycyclic aromatic hydrocarbons on phosphorus tailing-modified sludge biochar provides mechanistic insights. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:497. [PMID: 39508923 DOI: 10.1007/s10653-024-02283-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 10/21/2024] [Indexed: 11/15/2024]
Abstract
Biochar has been widely used to solve the wastewater pollution of polycyclic aromatic hydrocarbons (PAHs). However, the competition of PAHs with different benzene ring numbers (e.g., phenanthrene [Phe], pyrene [Pyr], and benzo[a]pyrene [BaP]) for adsorption sites on biochar has received little attention. In this study, biochar was produced by co-pyrolysis of sludge and phosphorus tailing at different temperatures (300, 500, or 800 °C) to adsorb PAHs. The results show that phosphorus tailing increased the adsorption of PAH by increasing the biochar's BET surface area (SBET), micropore volume, hydrophobicity (at low temperatures) and aromaticity (at high temperatures). The maximum adsorption capacities were 29.90 µmol/g for Phe, 25.58 µmol/g for Pyr and 20.45 µmol/g for BaP, respectively. Importantly, the types and functions of groups involved in the adsorption of various PAHs were discussed. Adsorption of Phe and Pyr on the biochar mainly involved C=O and C-O-C functional groups, and there was a certain degree of competition between these PAHs for those sites. In contrast, BaP mainly adsorbed at C-OH and C=C moieties, without competing with Phe or Pyr at C-OH sites. The competitive edge of BaP was also stronger than that of Phe and Pyr on C=C functional groups. The adsorption mechanisms involving pore filling, hydrophobic interactions, and π-π interactions governed the adsorption of the evaluated PAHs. Overall, the adsorption of PAHs on biochar followed a heterogeneous chemical adsorption process.
Collapse
Affiliation(s)
- Anrong Liu
- School of Geography and Environmental Science, Guizhou Normal University, Guiyang, 550001, Guizhou, People's Republic of China
- State Engineering Technology Institute for Karst Desertification Control, Guiyang, 550001, People's Republic of China
| | - Li-Juan Feng
- School of Geography and Environmental Science, Guizhou Normal University, Guiyang, 550001, Guizhou, People's Republic of China.
| | - Yangyang Ou
- School of Geography and Environmental Science, Guizhou Normal University, Guiyang, 550001, Guizhou, People's Republic of China
- The State Key Laboratory Incubation Base for Karst Mountain Ecology Environment of Guizhou Province, Guiyang, 550001, People's Republic of China
| | - Xiaoya Zhang
- School of Geography and Environmental Science, Guizhou Normal University, Guiyang, 550001, Guizhou, People's Republic of China
- State Engineering Technology Institute for Karst Desertification Control, Guiyang, 550001, People's Republic of China
| | - Jinhong Zhang
- School of Geography and Environmental Science, Guizhou Normal University, Guiyang, 550001, Guizhou, People's Republic of China
| | - Hongyan Chen
- School of Geography and Environmental Science, Guizhou Normal University, Guiyang, 550001, Guizhou, People's Republic of China
| |
Collapse
|
7
|
Zhao X, Zhu G, Liu J, Wang J, Zhang S, Wei C, Cao L, Zhao S, Zhang S. Efficient Removal of Tetracycline from Water by One-Step Pyrolytic Porous Biochar Derived from Antibiotic Fermentation Residue. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1377. [PMID: 39269039 PMCID: PMC11397281 DOI: 10.3390/nano14171377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024]
Abstract
The disposal and treatment of antibiotic residues is a recognized challenge due to the huge production, high moisture content, high processing costs, and residual antibiotics, which caused environmental pollution. Antibiotic residues contained valuable components and could be recycled. Using a one-step controllable pyrolysis technique in a tubular furnace, biochar (OSOBs) was produced without the preliminary carbonization step, which was innovative and time- and cost-saving compared to traditional methods. The main aim of this study was to explore the adsorption and removal efficiency of tetracycline (TC) in water using porous biochar prepared from oxytetracycline fermentation residues in one step. A series of characterizations were conducted on the prepared biochar materials, and the effects of biochar dosage, initial tetracycline concentration, reaction time, and reaction temperature on the adsorption capacity were studied. The experimental results showed that at 298 K, the maximum adsorption capacity of OSOB-3-700 calculated by the Langmuir model reached 1096.871 mg/g. The adsorption kinetics fitting results indicated that the adsorption of tetracycline on biochar was more consistent with the pseudo-second-order kinetic model, which was a chemical adsorption. The adsorption isotherm fitting results showed that the Langmuir model better described the adsorption process of tetracycline on biochar, indicating that tetracycline was adsorbed in a monolayer on specific homogeneous active sites through chemical adsorption, consistent with the kinetic conclusions. The adsorption process occurred on the surface of the biochar containing rich active sites, and the chemical actions such as electron exchange promoted the adsorption process.
Collapse
Affiliation(s)
- Xinyu Zhao
- Miami College, Henan University, Kaifeng 475004, China
| | - Guokai Zhu
- Miami College, Henan University, Kaifeng 475004, China
| | - Jiangtao Liu
- Miami College, Henan University, Kaifeng 475004, China
| | - Jieni Wang
- Miami College, Henan University, Kaifeng 475004, China
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Shuqin Zhang
- Miami College, Henan University, Kaifeng 475004, China
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Chenlin Wei
- Miami College, Henan University, Kaifeng 475004, China
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Leichang Cao
- Miami College, Henan University, Kaifeng 475004, China
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Shuguang Zhao
- Huaxia Besince Environmental Technology Co., Ltd., Zhengzhou 450018, China
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| |
Collapse
|
8
|
Kumari S, Chowdhry J, Kumar M, Garg MC. Machine learning (ML): An emerging tool to access the production and application of biochar in the treatment of contaminated water and wastewater. GROUNDWATER FOR SUSTAINABLE DEVELOPMENT 2024; 26:101243. [DOI: 10.1016/j.gsd.2024.101243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
|
9
|
Cui S, Lv J, Hough R, Fu Q, Zhang Z, Dong X, Fan X, Li YF. Imidacloprid removal by modified graphitic biochar with Fe/Zn bimetallic oxides. ENVIRONMENTAL RESEARCH 2024; 258:119444. [PMID: 38914251 DOI: 10.1016/j.envres.2024.119444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/01/2024] [Accepted: 06/18/2024] [Indexed: 06/26/2024]
Abstract
Coping with the critical challenge of imidacloprid (IMI) contamination in sewage treatment and farmland drainage purification, this study presents a pioneering development of an advanced modified graphitic white melon seed shells biochar (Fe/Zn@WBC). The Fe/Zn@WBC demonstrates a substantial enhancement in adsorption efficiency for IMI, achieving a remarkable removal rate of 87.69% within 30 min and a significantly higher initial adsorption rate parameter h = 4.176 mg g-1·min-1. This significant improvement outperforms WBC (12.22%, h = 0.115 mg g-1·min-1) and highlights the influence of optimized adsorption conditions at 900 °C and the graphitization degree resulting from Fe/Zn bimetallic oxide modification. Characterization analysis and batch sorption experiments including kinetics, isotherms, thermodynamics and pH factors illustrate that chemical adsorption is the main type of adsorption mechanism responsible for this superior ability to remove IMI through pore filling, hydrogen bonding, hydrophobic interaction, electrostatics interaction, π-π interactions as well as complexation processes. Furthermore, we demonstrate exceptional stability of Fe/Zn@WBC across a broad pH range (pH = 3-11), co-existing ions presence along with humic acid under various real water conditions while maintaining high removal efficiency. This study presents an advanced biochar adsorbent, Fe/Zn@WBC, with efficient adsorption capacity and easy preparation. Through three regeneration cycles via pyrolysis method, it demonstrates excellent pyrolysis regeneration capabilities with an average removal efficiency of 92.02%. The magnetic properties enable rapid separation facilitated by magnetic analysis. By elucidating the efficacy and mechanistic foundations of Fe/Zn@WBC, this research significantly contributes to the field of environmental remediation by providing a scalable solution for IMI removal and enhancing scientific understanding of bimetallic oxides-hydrophilic organic pollutant interactions.
Collapse
Affiliation(s)
- Song Cui
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| | - Jialin Lv
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Rupert Hough
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
| | - Qiang Fu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Zulin Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
| | - Xiaolong Dong
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Xiaohu Fan
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| |
Collapse
|
10
|
Wu W, Zhang J, Zhu W, Zhao S, Gao Y, Li Y, Ding L, Ding H. Novel manganese and nitrogen co-doped biochar based on sodium bicarbonate activation for efficient removal of bisphenol A: Mechanism insight and role analysis of manganese and nitrogen by combination of characterizations, experiments and density functional theory calculations. BIORESOURCE TECHNOLOGY 2024; 399:130608. [PMID: 38499202 DOI: 10.1016/j.biortech.2024.130608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/12/2024] [Accepted: 03/16/2024] [Indexed: 03/20/2024]
Abstract
A novel porous manganese and nitrogen co-doped biochar (Mn-N@SBC) was synthesized via one-step pyrolysis, utilizing loofah agricultural waste as the precursor and NaHCO3 as the activator. The behavior of bisphenol A adsorbed on Mn-N@SBC was evaluated using static batch adsorption experiments. Compared to direct manganese-nitrogen co-doping, co-doping based on NaHCO3 activation significantly increased the specific surface area (231 to 1027 m2·g-1) and adsorption capacity (15 to 351 mg·g-1). Wide pH (2-10) and good resistance to cation/anion, humic acid and actual water demonstrated the robust adaptability of Mn-N@SBC to environmental factors. The significantly reduced specific surface area after adsorption, adverse effects of ethanol and phenanthrene on the removal of bisphenol A, and theoretically predicted interaction sites indicated the primary adsorption mechanisms involved pore filling, hydrophobicity, and π-π-electron-donor-acceptor interaction. This work presented an approach to create high-efficiency adsorbents from agricultural waste, offering theoretical and practical guidance for the removal of pollutants.
Collapse
Affiliation(s)
- Wenlong Wu
- School of Energy and Environment, Anhui University of Technology, Ma'anshan 243032, China
| | - Jinwei Zhang
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China
| | - Weijie Zhu
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China
| | - Shouhui Zhao
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China
| | - Yuchen Gao
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China
| | - Yan Li
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China; Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan 243032, China
| | - Lei Ding
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China; Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan 243032, China.
| | - Heng Ding
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China.
| |
Collapse
|
11
|
Zhou Y, Wang Z, Hu W, Zhou Q, Chen J. Norfloxacin adsorption by urban green waste biochar: characterization, kinetics, and mechanisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:29088-29100. [PMID: 38568303 DOI: 10.1007/s11356-024-33085-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/21/2024] [Indexed: 05/01/2024]
Abstract
Biochar, as a potential adsorbent, has been widely employed to remove pollutants from sewage. In this study, a lignin-based biochar (CB-800) was prepared by a simple high-temperature pyrolysis using urban green waste (Cinnamomum camphora leaves) as a feedstock to remove norfloxacin (NOR) from water. Batch adsorption test results indicated that CB-800 had a strong removal capacity for NOR at a wide range of pH values. The maximum adsorption achieved in the study was 50.90 ± 0.64 mg/g at 298 K. The pseudo-first and second-order kinetic models and the Dubinin-Radushkevich isotherm fitted the experimental data well, indicating that NOR adsorption by CB-800 was a complex process involving both physi-sorption and chemi-sorption. The physical properties of CB-800 were characterized by SEM and BET. The mesoporous structures were formed hierarchically on the surface of CB-800 (with an average pore size of 2.760 nm), and the spatial structure of NOR molecules was more easily adsorbed by mesoporous structures. Combined with Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) analysis, it was showed that the main NOR adsorption mechanisms by CB-800 included ion exchange, π-electron coordination, hydrogen bonding, and electrostatic adsorption. Meanwhile, the reduction of C = O and pyridine nitrogen, and the presence of C-F2, also indicated the occurrence of substitution, addition, and redox. This study not only determined the reaction mechanism between biochar and NOR, but also provides guidance to waste managers for the removal of NOR from water by biochar. It is envisaged that the results will broaden the utilization of urban green waste.
Collapse
Affiliation(s)
- Yu Zhou
- School of Biological Recourse and Environmental Science, Jishou University, Jishou, 416000, People's Republic of China.
| | - Ziyan Wang
- School of Biological Recourse and Environmental Science, Jishou University, Jishou, 416000, People's Republic of China
| | - Wenyong Hu
- School of Biological Recourse and Environmental Science, Jishou University, Jishou, 416000, People's Republic of China
| | - Qiang Zhou
- School of Biological Recourse and Environmental Science, Jishou University, Jishou, 416000, People's Republic of China
- Hunan Engineering Laboratory of Control and Remediation of Heavy Metal Pollution From Mn-Zn Mining, Jishou, Hunan, China
| | - Jiao Chen
- School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu, 611730, China
| |
Collapse
|
12
|
Ma W, Han R, Zhang W, Zhang H, Chen L, Zhu L. Magnetic biochar enhanced copper immobilization in agricultural lands: Insights from adsorption precipitation and redox. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:120058. [PMID: 38219671 DOI: 10.1016/j.jenvman.2024.120058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/01/2023] [Accepted: 01/04/2024] [Indexed: 01/16/2024]
Abstract
Biochar has exceeded expectations for heavy metal immobilization and has been prepared from widely available sources and inexpensive materials. In this research, coconut shell biochar (CSB), bamboo biochar (BC), magnetic coconut shell charcoal (MCSB), and magnetic bamboo biochar (MBC) were manufactured via co-pyrolysis, and their adsorption properties were tested. The pseudo-secondary (R2 = 0.980-0.985) adsorption kinetic fittings for the four biochas were superior to the pseudo-primary kinetics (R2 = 0.969-0.982). Unmodified biochar adsorption isotherms were more consistent with the Freundlich model, while magnetic biochar fitted Langmuir models better. The maximum adsorption capacity of MCSB for Cu(Ⅱ) reached 371.50 mg g-1. The adsorption mechanisms quantitatively analysis of the biochar indicated that chemical precipitation and ion exchange contributed to the adsorption, in which the magnetic biochar metal-π complexation also enhanced the adsorption. The pot experiment revealed that MCSB (2.0 %DW) significantly enhanced the biomass of lettuce, and facilitated the immobilization of DTPA-Cu (p < 0.05). SEM-EDS, XPS, and FTIR were utilized for morphological characterization and functional group identification, and the increased active adsorption sites (-OH, -COOH, CO, and Fe-O) of MCSB enhanced chemisorption and π-π EDA complexation with Cu(Ⅱ). EEM-PARAFAC and RDA analysis further elucidated that magnetic biochar immobilized copper and reduced biotoxicity (efficiency: 76.12%) by adjusting soil pH, phosphate, and SOM release (negative correlation). The presence of iron oxides (FeOx) promoted in situ adsorption of metallic copper and offered new insights into soil remediation.
Collapse
Affiliation(s)
- Wucheng Ma
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China.
| | - Rui Han
- CSD Water Service Co., Ltd. Jiangsu Branch, Nanjing, 210000, China
| | - Wei Zhang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Hao Zhang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Lin Chen
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Liang Zhu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China.
| |
Collapse
|
13
|
Maged A, Elgarahy AM, Hlawitschka MW, Haneklaus NH, Gupta AK, Bhatnagar A. Synergistic mechanisms for the superior sorptive removal of aquatic pollutants via functionalized biochar-clay composite. BIORESOURCE TECHNOLOGY 2023; 387:129593. [PMID: 37558100 DOI: 10.1016/j.biortech.2023.129593] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/11/2023]
Abstract
This study investigated the successful synthesis of functionalized algal biochar-clay composite (FBKC). Subsequently, the sorption performance of FBKC towards norfloxacin (NFX) antibiotic and crystal violet dye (CVD) from water was extensively assessed in both batch and continuous flow systems. A series of characterization techniques were carried out for FBKC and the utilized precursors, indicating that the surface area of FBKC was increased thirty-fold with a well-developed pore structure compared to the original precursors. FBKC demonstrated a maximum sorption capacity of 192.80 and 281.24 mg/g for NFX and CVD, respectively. The suited fitting of the experimental data to Freundlich and Clark models suggested multi-layer sorption of NFX/CVD molecules. The mechanistic studies of NFX/CVD sorption onto FBKC unveiled multiple mechanisms, including π-π interaction, hydrogen bonding, electrostatic attraction, and surface/pore filling effect. The estimated cost of 5.72 €/kg and superior sorption capacity makes FBKC an efficient low-cost sorbent for emergent water pollutants.
Collapse
Affiliation(s)
- Ali Maged
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130 Mikkeli, Finland; Geology Department, Faculty of Science, Suez University, P.O. Box 43518, El Salam City, Suez Governorate, Egypt.
| | - Ahmed M Elgarahy
- Environmental Chemistry Division, Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt; Egyptian Propylene and Polypropylene Company (EPPC), Port Said, Egypt.
| | - Mark W Hlawitschka
- Institute of Process Engineering, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria
| | - Nils H Haneklaus
- Td Lab Sustainable Mineral Resources, University for Continuing Education Krems, Dr. Karl-Dorrek-Straße 30, 3500 Krems, Austria
| | - Ashok Kumar Gupta
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130 Mikkeli, Finland
| |
Collapse
|
14
|
Ren CY, Xu QJ, Alvarez PJJ, Zhu L, Zhao HP. Simultaneous antibiotic removal and mitigation of resistance induction by manganese bio-oxidation process. WATER RESEARCH 2023; 244:120442. [PMID: 37549546 DOI: 10.1016/j.watres.2023.120442] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/09/2023]
Abstract
Microbial degradation to remove residual antibiotics in wastewater is of growing interest. However, biological treatment of antibiotics may cause resistance dissemination by mutations and horizontal gene transfer (HGT) of antibiotic resistance genes (ARGs). In this study, a Mn(Ⅱ)-oxidizing bacterium (MnOB), Pseudomonas aeruginosa MQ2, simultaneously degraded antibiotics, decreased HGT, and mitigated antibiotic resistance mutation. Intracellular Mn(II) levels increased during manganese oxidation, and biogenic manganese oxides (BioMnOx, including Mn(II), Mn(III) and Mn(IV)) tightly coated the cell surface. Mn(II) bio-oxidation mitigated antibiotic resistance acquisition from an E. coli ARG donor and mitigated antibiotic resistance inducement by decreasing conjugative transfer and mutation, respectively. BioMnOx also oxidized ciprofloxacin (1 mg/L) and tetracycline (5 mg/L), respectively removing 93% and 96% within 24 h. Transcriptomic analysis revealed that two new multicopper oxidase and one peroxidase genes are involved in Mn(II) oxidation. Downregulation of SOS response, multidrug resistance and type Ⅳ secretion system related genes explained that Mn(II) and BioMnOx decreased HGT and mitigated resistance mutation by alleviating oxidative stress, which makes recipient cells more vulnerable to ARG acquisition and mutation. A manganese bio-oxidation based reactor was constructed and completely removed tetracycline with environmental concentration within 4-hour hydraulic retention time. Overall, this study suggests that Mn (II) bio-oxidation process could be exploited to control antibiotic contamination and mitigate resistance propagation during water treatment.
Collapse
Affiliation(s)
- Chong-Yang Ren
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Qiu-Jin Xu
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston 77005, United States
| | - Lizhong Zhu
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - He-Ping Zhao
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
15
|
Jia L, Zhou Q, Li Y, Wu W. Application of manganese oxides in wastewater treatment: Biogeochemical Mn cycling driven by bacteria. CHEMOSPHERE 2023:139219. [PMID: 37327824 DOI: 10.1016/j.chemosphere.2023.139219] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 06/18/2023]
Abstract
Manganese oxides (MnOx) are recognized as a strongest oxidant and adsorbent, of which composites have been proved to be effective in the removal of contaminants from wastewater. This review provides a comprehensive analysis of Mn biochemistry in water environment including Mn oxidation and Mn reduction. The recent research on the application of MnOx in the wastewater treatment was summarized, including the involvement of organic micropollutant degradation, the transformation of nitrogen and phosphorus, the fate of sulfur and the methane mitigation. In addition to the adsorption capacity, the Mn cycling mediated by Mn(II) oxidizing bacteria and Mn(IV) reducing bacteria is the driving force for the MnOx utilization. The common category, characteristics and functions of Mn microorganisms in recent studies were also reviewed. Finally, the discussion on the influence factors, microbial response, reaction mechanism and potential risk of MnOx application in pollutants' transformation were proposed, which might be the promising opportunities for the future investigation of MnOx application in wastewater treatment.
Collapse
Affiliation(s)
- Lixia Jia
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Qi Zhou
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Yuanwei Li
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Weizhong Wu
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China; The Key Laboratory of Water and Sediment Sciences (Peking University), Ministry of Education, Beijing, 100871, China.
| |
Collapse
|
16
|
Yang J, Xu SY, Zhang T, Zhao ZQ, Xie XJ, Wang WF, Zhang C, Zheng HB. A dual bacterial alliance removed erythromycin residues by immobilizing on activated carbon. BIORESOURCE TECHNOLOGY 2023:129288. [PMID: 37315621 DOI: 10.1016/j.biortech.2023.129288] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 06/16/2023]
Abstract
Removing erythromycin from the environment is a major challenge. In this study, a dual microbial consortium (Delftia acidovorans ERY-6A and Chryseobacterium indologenes ERY-6B) capable of degrading erythromycin was isolated, and the erythromycin biodegradation products were studied. Coconut shell activated carbon was modified and its adsorption characteristics and erythromycin removal efficiency of the immobilized cells were studied. It was indicated that alkali-modified and water-modified coconut shell activated carbon and the dual bacterial system had excellent erythromycin removal ability. The dual bacterial system follows a new biodegradation pathway to degrade erythromycin. The immobilized cells removed 95% of erythromycin at a concentration of 100 mg L-1 within 24 h through pore adsorption, surface complexation, hydrogen bonding, and biodegradation. This study provides a new erythromycin removal agent and for the first time describes the genomic information of erythromycin-degrading bacteria, providing new clues regarding bacterial cooperation and efficient erythromycin removal.
Collapse
Affiliation(s)
- Jian Yang
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, College of Environmental and Resources Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Shuang-Yan Xu
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, College of Environmental and Resources Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Tao Zhang
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, College of Environmental and Resources Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhuo-Qun Zhao
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, College of Environmental and Resources Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Xiao-Jie Xie
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, College of Environmental and Resources Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Wen-Fan Wang
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, College of Environmental and Resources Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Cheng Zhang
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, College of Environmental and Resources Sciences, Zhejiang A&F University, Hangzhou 311300, China.
| | - Hua-Bao Zheng
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, College of Environmental and Resources Sciences, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
17
|
Zhang F, Wang J, Tian Y, Liu C, Zhang S, Cao L, Zhou Y, Zhang S. Effective removal of tetracycline antibiotics from water by magnetic functionalized biochar derived from rice waste. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121681. [PMID: 37087086 DOI: 10.1016/j.envpol.2023.121681] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/03/2023]
Abstract
The effective removal of tetracycline antibiotics (TCs) from water is of great significance and remains a big challenge. In this work, a novel magnetized biochar (magnetic functionalized carbon microsphere, MF-CMS) was prepared by the coupling hydrothermal carbonization and pyrolysis activation of starch-rich rice waste using ZnCl2 and FeCl3 as activators. As the MF-CMS dose was 2.0 g/L, the initial concentration of TCs was 100 mg/L, the removal rates of tetracycline, doxycycline, oxytetracycline, and chlortetracycline were 96.02%, 96.10%, 96.52%, and 85.88%, respectively. The best modeled on pseudo second order, Langmuir adsorption model, and intraparticle diffusion kinetic models suggested that both chemisorption and physisorption occurred in all removal processes, in which chemisorption dominated. TCs were efficiently adsorbed through the combined effects of pore filling, electrostatic attraction, π-π interactions, and complexation reactions of surface functional groups (such as γ-Fe2O3 and FeOOH). The removal rates of TCs after five cycles approximately decreased by 20%. And the cycling and metal ion release experiments of MF-CMS indicated that MF-CMS had good reusability, stability, and safety. The estimated cost of preparing MF-CMS is 5.91 USD per kg, and 1 kg of MF-CMS (consuming 8 kg of waste rice) can approximately treat 0.55 tons of TCs wastewater. Overall, the magnetic biochar derived from starch-rich rice waste as an adsorbent has promising and effective for the removal of TCs from water, but also provides a new idea for the resourceful treatment of solid waste.
Collapse
Affiliation(s)
- Fangfang Zhang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China; Miami College, Henan University, Kaifeng, 475004, China
| | - Jieni Wang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China; Miami College, Henan University, Kaifeng, 475004, China
| | - Yijun Tian
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China; Miami College, Henan University, Kaifeng, 475004, China
| | - Chenxiao Liu
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China; Miami College, Henan University, Kaifeng, 475004, China
| | - Shuqin Zhang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China; Miami College, Henan University, Kaifeng, 475004, China
| | - Leichang Cao
- Miami College, Henan University, Kaifeng, 475004, China; Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China.
| | - Yanmei Zhou
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| |
Collapse
|