1
|
Sathasivam J, Rajaraman PV, Narayanasamy S. Assessment of cerium adsorption potential of phosphoric acid activated biochar in aqueous system: Modelling and mechanistic insights. ENVIRONMENTAL RESEARCH 2025; 264:120301. [PMID: 39505131 DOI: 10.1016/j.envres.2024.120301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 10/21/2024] [Accepted: 11/04/2024] [Indexed: 11/08/2024]
Abstract
Cerium pollution in waterbodies by improper industrial waste disposal is a major concern due to its detrimental impacts on the environment. Therefore, treatment of cerium-contaminated water is inevitable. Hence, this study is focused on the remediation of cerium pollution using phosphoric acid-activated biochar (PPMB) as an adsorbent, synthesized upon pyrolytic activation of palmyra palm male flower-based pristine biochar (PMFB) with H3PO4 at 500 °C. The physico-chemical surface properties of PMFB and PPMB were evaluated through various microscopic and spectroscopic analyses. The key parameters such as biochar dosage, pH, temperature, contact time and initial cerium concentration were optimized as 0.5 g/L, 5.0, 303 K, 180 min and 50 mg/L respectively via batch adsorption. Pseudo-second order kinetic and Toth isotherm are the best-fitted models. The thermodynamic parameters including ΔG◦ (-30.4707 ± 0.7618 kJ/mol at 303 K), ΔH◦ (16.1499 ± 0.78 kJ/mol), and ΔS◦ (153.617 ± 3.8404 J/mol/K) conveying that cerium adsorption onto PPMB was spontaneous, endothermic, and highly disordered at PPMB-bulk adsorption medium interface. Precipitation, electrostatic attraction, and surface complexation are predicted to be the predominant mechanisms for the chosen PPMB-cerium adsorption system. Moreover, cerium phytotoxicity on Vigna radiata explains the real-time applicability and feasibility of cerium adsorption using PPMB. Thus, the key findings of this study specified that the higher adsorption capacity of PPMB (141.3484 ± 6.9856 mg/g) contributed by the incorporated phosphate groups, predominant mesoporosity, SSABET of 230.559 m2/g and anionic surface at a wider pH range (pH>3.08) make PPMB as efficient, economically feasible and environmentally friendly adsorbent for cerium adsorption in aqueous system.
Collapse
Affiliation(s)
- Jeevanantham Sathasivam
- Biochemical and Environmental Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | | | - Selvaraju Narayanasamy
- Biochemical and Environmental Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
2
|
Jari Y, Najid N, Necibi MC, Gourich B, Vial C, Elhalil A, Kaur P, Mohdeb I, Park Y, Hwang Y, Garcia AR, Roche N, El Midaoui A. A comprehensive review on TiO 2-based heterogeneous photocatalytic technologies for emerging pollutants removal from water and wastewater: From engineering aspects to modeling approaches. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 373:123703. [PMID: 39706003 DOI: 10.1016/j.jenvman.2024.123703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/14/2024] [Accepted: 12/10/2024] [Indexed: 12/23/2024]
Abstract
The increasing presence of emerging pollutants (EPs) in water poses significant environmental and health risks, necessitating effective treatment solutions. Originating from industrial, agricultural, and domestic sources, these contaminants threaten ecological and public health, underscoring the urgent need for innovative and efficient treatment methods. TiO2-based semiconductor photocatalysts have emerged as a promising approach for the degradation of EPs, leveraging their unique band structures and heterojunction schemes. However, few studies have examined the synergistic effects of operating conditions on these contaminants, representing a key knowledge gap in the field. This review addresses this gap by exploring recent trends in TiO2-driven heterogeneous photocatalysis for water and wastewater treatment, with an emphasis on photoreactor setups and configurations. Challenges in scaling up these photoreactors are also discussed. Furthermore, Machine Learning (ML) models play a crucial role in developing predictive frameworks for complex processes, highlighting intricate temporal dynamics essential for understanding EPs behavior. This capability integrates seamlessly with Computational Fluid Dynamics (CFD) modeling, which is also addressed in this review. Together, these approaches illustrate how CFD can simulate the degradation of EPs by effectively coupling chemical kinetics, radiative transfer, and hydrodynamics in both suspended and immobilized photocatalysts. By elucidating the synergy between ML and CFD models, this study offers new insights into overcoming traditional limitations in photocatalytic process design and optimizing operating conditions. Finally, this review presents recommendations for future directions and insights on optimizing and modeling photocatalytic processes.
Collapse
Affiliation(s)
- Yassine Jari
- International Water Research Institute (IWRI), Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Noura Najid
- Laboratory of Process and Environmental Engineering, Higher School of Technology, Hassan II University of Casablanca, Morocco
| | - Mohamed Chaker Necibi
- International Water Research Institute (IWRI), Mohammed VI Polytechnic University, Ben Guerir, Morocco.
| | - Bouchaib Gourich
- International Water Research Institute (IWRI), Mohammed VI Polytechnic University, Ben Guerir, Morocco; Laboratory of Process and Environmental Engineering, Higher School of Technology, Hassan II University of Casablanca, Morocco.
| | - Christophe Vial
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, F-63000, Clermont-Ferrand, France
| | - Alaâeddine Elhalil
- Laboratory of Process and Environmental Engineering, Higher School of Technology, Hassan II University of Casablanca, Morocco
| | - Parminder Kaur
- Geological Survey of Finland, P.O. Box 96, FI-02151, Espoo, Finland
| | - Idriss Mohdeb
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | - Yuri Park
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | - Yuhoon Hwang
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | - Alejandro Ruiz Garcia
- Department of Electronic Engineering and Automation, University of Las Palmas de Gran Canaria, Edificio de Ingenierías, Campus Universitario de Tafira, 35017, Las Palmas de Gran Canaria, Spain
| | - Nicolas Roche
- International Water Research Institute (IWRI), Mohammed VI Polytechnic University, Ben Guerir, Morocco; Aix-Marseille University, CNRS, IRD, INRAE, Coll France, CEREGE, CEDEX, 13454, Aix-en-Provence, France
| | - Azzeddine El Midaoui
- International Water Research Institute (IWRI), Mohammed VI Polytechnic University, Ben Guerir, Morocco
| |
Collapse
|
3
|
Zhou Y, Li S, Sun X, Wang J, Chen H, Xu Q, Ye H, Li S, Shi S, Zhang X. Preparation of novel magnetic ethylene glycol dimethacrylate-based molecularly imprinted polymer for rapid adsorption of phthalate esters from ethanol aqueous solution. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124891. [PMID: 39241951 DOI: 10.1016/j.envpol.2024.124891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/06/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Phthalate esters (PAEs), as emerging pollutants, pose a serious threat to human health and have become a major concern in the fields of environmental protection and food safety. Selective adsorption using molecularly imprinted polymer (MIP) is feasible, but most MIPs use the potentially toxic methacrylic acid (MAA) as a functional monomer, along with other crosslinking agents. In this study, MIP adsorbent was prepared using only ethylene glycol dimethacrylate (EGDMA) as both the functional monomer and crosslinking agent, without the inclusion of MAA. The adsorbent was utilized for the adsorption of PAEs from an ethanol aqueous solution. The results showed that EGDMA-based MIP (EMIP) achieved better adsorption performance of PAEs than MAA-based MIP (MMIP) due to more interactions of EGDMA with PAEs than MAA with them. For the adsorption of dibutyl phthalate (DBP) using EMIP, 95% of the equilibrium adsorption capacity was achieved within the first 15 min. In the isotherm analysis, the theoretical maximum adsorption capacity of EMIP was obtained as high as 159.24 mg/g at 20 °C in an ethanol (10 v%) aqueous solution. Furthermore, the adsorption of EMIP was not affected by the pH of the solution. The adsorption process of EMIP followed the pseudo-second-order kinetic and Freundlich isotherm model. Ethanol had a significant impact on the adsorption of DBP, and the results of molecular simulation could validate this. In addition, the regeneration experiments indicated that EMIP could be recycled 5 times without significant performance change and had a high recovery efficiency of 94.55%.
Collapse
Affiliation(s)
- Yuanhao Zhou
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing, 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Shunying Li
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing, 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Xiaoya Sun
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing, 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Jun Wang
- Shanxi Kunming Tobacco Company Ltd., Shanxi, 030032, China
| | - Haoxiang Chen
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing, 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Qiangqiang Xu
- Shandong Zhaojin Motian Company Ltd., Shandong, 265400, China
| | - Hong Ye
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing, 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, 100048, China.
| | - Shuangyang Li
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, 100048, China.
| | - Shengpeng Shi
- SINOPEC Beijing Research Institute of Chemical Industry, Beijing, 100013, China
| | - Xianren Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
4
|
Yu J, Gu T, Wang R, Li B, Dong Z, Zhu X, Li Z, Hu T, Huang Y. Preparation and characterization of biochar from four different solid wastes and its ampicillin adsorption performance. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:440. [PMID: 39316157 DOI: 10.1007/s10653-024-02221-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024]
Abstract
The integration of biochar (BC) production from organic waste with ampicillin (AMP), an emerging pollutant, adsorption is a novel and promising treatment approach. In this study, peanut shells, coffee grounds, digestates, and oyster shells were used for BC production. Among these, the use of anaerobic digestate from food waste fermentation to produce extracts for antibiotic adsorption is relatively unexplored. The pyrolysis temperature was determined using thermogravimetric analysis (TGA) and the materials were characterized with BET, SEM, FTIR, and XRD. The TGA results indicate that PSB, CRB, and DSB underwent pyrolysis involving cellulose, hemicellulose, and lignin, whereas OSB underwent crystal formation. Characterization revealed that DSB has more functional groups, a superior mesoporous structure, appropriate O/C ratio, and trace amounts of calcite crystals, which are favorable for AMP adsorption. Adsorption experiments demonstrate that all four materials adhere to the Freundlich and Langmuir isotherm and Elovich kinetic models, indicating predominant physical adsorption, with some chemical adsorption also present. Thermodynamic studies demonstrate that BC is spontaneous during adsorption and is a heat-absorbing reaction. DSB exhibits the strongest AMP adsorption. A 53.81 mg g-1 adsorbance was obtained at a dosage of 150 mg, pH = 2, and 60 °C. This study introduces innovative approaches for managing waste types and provides data to support the selection of suitable solid wastes for the preparation of BC with excellent adsorption properties. Furthermore, it lays the groundwork for future studies aimed at enhancing the AMP treatment efficacy.
Collapse
Affiliation(s)
- Junxin Yu
- School of Civil and Environmental Engineering and Geography Science, Ningbo University, Ningbo, 315000, Zhejiang, China
| | - Tianyu Gu
- School of Civil and Environmental Engineering and Geography Science, Ningbo University, Ningbo, 315000, Zhejiang, China
| | - Ruiying Wang
- School of Civil and Environmental Engineering and Geography Science, Ningbo University, Ningbo, 315000, Zhejiang, China
| | - Bing Li
- School of Civil and Environmental Engineering and Geography Science, Ningbo University, Ningbo, 315000, Zhejiang, China.
| | - Zhiying Dong
- School of Civil and Environmental Engineering and Geography Science, Ningbo University, Ningbo, 315000, Zhejiang, China.
| | - Xiaohui Zhu
- School of Civil and Environmental Engineering and Geography Science, Ningbo University, Ningbo, 315000, Zhejiang, China
| | - Zhexuan Li
- School of Civil and Environmental Engineering and Geography Science, Ningbo University, Ningbo, 315000, Zhejiang, China
| | - Tiantian Hu
- School of Civil and Environmental Engineering and Geography Science, Ningbo University, Ningbo, 315000, Zhejiang, China
| | - Ying Huang
- School of Civil and Environmental Engineering and Geography Science, Ningbo University, Ningbo, 315000, Zhejiang, China
| |
Collapse
|
5
|
Zhao X, Zhu G, Liu J, Wang J, Zhang S, Wei C, Cao L, Zhao S, Zhang S. Efficient Removal of Tetracycline from Water by One-Step Pyrolytic Porous Biochar Derived from Antibiotic Fermentation Residue. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1377. [PMID: 39269039 PMCID: PMC11397281 DOI: 10.3390/nano14171377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024]
Abstract
The disposal and treatment of antibiotic residues is a recognized challenge due to the huge production, high moisture content, high processing costs, and residual antibiotics, which caused environmental pollution. Antibiotic residues contained valuable components and could be recycled. Using a one-step controllable pyrolysis technique in a tubular furnace, biochar (OSOBs) was produced without the preliminary carbonization step, which was innovative and time- and cost-saving compared to traditional methods. The main aim of this study was to explore the adsorption and removal efficiency of tetracycline (TC) in water using porous biochar prepared from oxytetracycline fermentation residues in one step. A series of characterizations were conducted on the prepared biochar materials, and the effects of biochar dosage, initial tetracycline concentration, reaction time, and reaction temperature on the adsorption capacity were studied. The experimental results showed that at 298 K, the maximum adsorption capacity of OSOB-3-700 calculated by the Langmuir model reached 1096.871 mg/g. The adsorption kinetics fitting results indicated that the adsorption of tetracycline on biochar was more consistent with the pseudo-second-order kinetic model, which was a chemical adsorption. The adsorption isotherm fitting results showed that the Langmuir model better described the adsorption process of tetracycline on biochar, indicating that tetracycline was adsorbed in a monolayer on specific homogeneous active sites through chemical adsorption, consistent with the kinetic conclusions. The adsorption process occurred on the surface of the biochar containing rich active sites, and the chemical actions such as electron exchange promoted the adsorption process.
Collapse
Affiliation(s)
- Xinyu Zhao
- Miami College, Henan University, Kaifeng 475004, China
| | - Guokai Zhu
- Miami College, Henan University, Kaifeng 475004, China
| | - Jiangtao Liu
- Miami College, Henan University, Kaifeng 475004, China
| | - Jieni Wang
- Miami College, Henan University, Kaifeng 475004, China
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Shuqin Zhang
- Miami College, Henan University, Kaifeng 475004, China
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Chenlin Wei
- Miami College, Henan University, Kaifeng 475004, China
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Leichang Cao
- Miami College, Henan University, Kaifeng 475004, China
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Shuguang Zhao
- Huaxia Besince Environmental Technology Co., Ltd., Zhengzhou 450018, China
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| |
Collapse
|
6
|
Wang BY, Li B, Xu HY. Machine learning screening of biomass precursors to prepare biomass carbon for organic wastewater purification: A review. CHEMOSPHERE 2024; 362:142597. [PMID: 38889873 DOI: 10.1016/j.chemosphere.2024.142597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/18/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
In the past decades, the amount of biomass waste has continuously increased in human living environments, and it has attracted more and more attention. Biomass is regarded as the most high-quality and cost-effective precursor material for the preparation carbon of adsorbents and catalysts. The application of biomass carbon has extensively explored. The efficient application of biomass carbon in organic wastewater purification were reviewed. With briefly introducing biomass types, the latest progress of Machine learning in guiding the preparation and application of biomass carbon was emphasized. The key factors in constructing efficient biomass carbon for adsorption and catalytic applications were discussed. Based on the functional groups, rich pore structure and active site of biomass carbon, it exhibits high efficiency in water purification performance in the fields of adsorption and catalysis. In addition, out of a firm belief in the enormous potential of biomass carbon, the remaining challenges and future research directions were discussed.
Collapse
Affiliation(s)
- Bao-Ying Wang
- Heilongjiang Provincial Key Laboratory of CO(2) Resource Utilization and Energy Catalytic Materials, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, PR China
| | - Bo Li
- Heilongjiang Provincial Key Laboratory of CO(2) Resource Utilization and Energy Catalytic Materials, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, PR China
| | - Huan-Yan Xu
- Heilongjiang Provincial Key Laboratory of CO(2) Resource Utilization and Energy Catalytic Materials, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, PR China.
| |
Collapse
|
7
|
Klitzke EF, Ketzer F, Almeida MOP, Calisto JFF, Wancura JHC, Rodrigues CA, Oliveira JV, Dal Magro J. Adsorption of methane by modified-biochar aiming to improve the gaseous fuels storage/transport capacity: process evaluation and modeling. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34465-6. [PMID: 39066943 DOI: 10.1007/s11356-024-34465-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/20/2024] [Indexed: 07/30/2024]
Abstract
The CH4 storage by adsorption on activated carbons for natural gas handling has gained interest due to the appearance of lightweight materials with large surface areas and pore volumes. Consequently, kinetic parameters estimation of the adsorptive process can play a crucial role in understanding and scaling up the system. Concerning its versatility, banana peel (BP) is a biomass with potential for obtaining different products, such as biochar, a solid residue from the biomass' thermal decomposition of difficult disposal, where through an activation process, the material porous features are taken advantage to application as adsorbent of gaseous substances. This research reported data for the CH4 adsorption kinetic modeling by biochar from BP pyrolysis. The activated biochar textural characterization showed particles with fine mesoporous structure (pore diameter ranging between 29.39 and 55.62 Å). Adsorption kinetic analysis indicated that a modified pseudo-first-order model was the most suitable to represent the experimental data, with equilibrium adsorption of 28 mg g-1 for the samples activated with 20.0% vol wt.-1 of H3PO4 and pyrolysis at 500 °C. The equilibrium constant was consistent with the Freundlich isotherm model, suggesting a physisorption mechanism, and led to a non-ideal, reversible, and not limited to monolayer CH4 adsorption.
Collapse
Affiliation(s)
- Ederson F Klitzke
- Department of Environmental Sciences, Community University of Chapecó Region, Chapecó, SC, Brazil
| | - Felipe Ketzer
- Industrial Processes Group - Technology and Control (IPG - TC), Farroupilha Federal Institute, Panambi, RS, Brazil
| | - Manuelle O P Almeida
- Department of Environmental Sciences, Community University of Chapecó Region, Chapecó, SC, Brazil
| | - Jean F F Calisto
- Department of Environmental Sciences, Community University of Chapecó Region, Chapecó, SC, Brazil
| | - João H C Wancura
- Laboratory of Biomass and Biofuels (L2B), Federal University of Santa Maria, Roraima Avenue, Building 9B, Santa Maria, RS, 97105-900, Brazil.
| | - Clovis A Rodrigues
- Chemical-Pharmaceutical Research Center (NIQFAR), University of Vale Do Itajai, Itajaí, SC, Brazil
| | - José Vladimir Oliveira
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Jacir Dal Magro
- Department of Environmental Sciences, Community University of Chapecó Region, Chapecó, SC, Brazil
| |
Collapse
|
8
|
Wang L, Zhang J, Cheng D, Guo W, Cao X, Xue J, Haris M, Ye Y, Ngo HH. Biochar-based functional materials for the abatement of emerging pollutants from aquatic matrices. ENVIRONMENTAL RESEARCH 2024; 252:119052. [PMID: 38697596 DOI: 10.1016/j.envres.2024.119052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/14/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Biochar has emerged as a versatile and efficient multi-functional material, serving as both an adsorbent and catalyst in removing emerging pollutants (EPs) from aquatic matrices. However, pristine biochar's catalytic and adsorption capabilities are hindered by its poor surface functionality and small pore size. Addressing these limitations involves the development of functionalized biochar, a strategic approach aimed at enhancing its physicochemical properties and improving adsorption and catalytic efficiencies. Despite a growing interest in this field, there is a notable gap in existing literature, with no review explicitly concentrating on the efficacy of biochar-based functional materials (BCFMs) for removing EPs in aquatic environments. This comprehensive review aims to fill this void by delving into the engineering considerations essential for designing BCFMs with enhanced physiochemical properties. The focus extends to understanding the treatment efficiency of EPs through mechanisms such as adsorption or catalytic degradation. The review systematically outlines the underlying mechanisms involved in the adsorption and catalytic degradation of EPs by BCFMs. By shedding light on the prospects of BCFMs as a promising multi-functional material, the review underscores the imperative for sustained research efforts. It emphasizes the need for continued exploration into the practical implications of BCFMs, especially under environmentally relevant pollutant concentrations. This holistic approach seeks to contribute to advancing knowledge and applying biochar-based solutions in addressing the challenges posed by emerging pollutants in aquatic ecosystems.
Collapse
Affiliation(s)
- Lei Wang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Jian Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Dongle Cheng
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, 266590, China.
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS, 2007, Australia
| | - Xiaoqiang Cao
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Jianliang Xue
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Muhammad Haris
- UNSW Center for Transformational Environmental Technologies, Yixing, 214200, China
| | - Yuanyao Ye
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, China
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS, 2007, Australia.
| |
Collapse
|
9
|
Zhao Z, Li P, Zhang M, Feng W, Tang H, Zhang Z. Unlocking the potential of Chinese herbal medicine residue-derived biochar as an efficient adsorbent for high-performance tetracycline removal. ENVIRONMENTAL RESEARCH 2024; 252:118425. [PMID: 38325789 DOI: 10.1016/j.envres.2024.118425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/30/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
This study employed hydrothermal carbonization (HTC) in conjunction with ZnCl2 activation and pyrolysis to produce biochar from one traditional Chinese medicine astragali radix (AR) residue. The resultant biochar was evaluated as a sustainable adsorbent for tetracycline (TC) elimination from water. The adsorption performance of TC on two micropore-rich AR biochars, AR@ZnCl2 (1370 m2 g-1) and HAR@ZnCl2 (1896 m2 g-1), was comprehensively evaluated using adsorption isotherms, kinetics, and thermodynamics. By virtue of pore diffusion, π-π interaction, electrostatic attraction, and hydrogen bonding, the prepared AR biochar showed exceptional adsorption properties for TC. Notably, the maximum adsorption capacity (930.3 mg g-1) of TC on HAR@ZnCl2 can be achieved when the adsorbent dosage is 0.5 g L-1 and C0 is 500 mg L-1 at 323 K. The TC adsorption on HAR@ZnCl2 took place spontaneously. Furthermore, the impact of competitive ions behavior is insignificant when coexisting ion concentrations fall within the 10-100 mg L-1 range. Additionally, the produced biochar illustrated good economic benefits, with a payback of 701 $ t-1. More importantly, even after ten cycles, HAR@ZnCl2 still presented great TC removal efficiency (above 77%), suggesting a good application prosperity. In summary, the effectiveness and sustainability of AR biochar, a biowaste-derived product, were demonstrated in its ability to remove antibiotics from water, showing great potential in wastewater treatment application.
Collapse
Affiliation(s)
- Ziheng Zhao
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Pengwei Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Miaomiao Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Weisheng Feng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| | - Hanxiao Tang
- College of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Zhijuan Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; Institute of Mass Spectrometer and Atmospheric Environment, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
10
|
Umare S, Thawait AK, Dhawane SH. Remediation of arsenic and fluoride from groundwater: a critical review on bioadsorption, mechanism, future application, and challenges for water purification. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:37877-37906. [PMID: 38771540 DOI: 10.1007/s11356-024-33679-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 05/10/2024] [Indexed: 05/22/2024]
Abstract
In the past few decades, the excessive and inadequate use of technological advances has led to groundwater contamination, mainly caused by organic and inorganic pollutants, which are highly harmful to human health, agriculture, water bodies, and aquaculture. Among all toxic pollutants, As and F- play a significant role in groundwater contamination due to their excellent reactivity with other elements. To mitigate the prevalence of arsenic and fluoride within the water system, the use of biochar gives an attractive strategy for removing them mainly because of the substantial surface area, pore size, pH, aromatic structure, and functional groups inherent in biochar, which are primarily dependent upon its raw material and pyrolysis temperature. Researcher develops different methods like physiochemical and electrochemical for treating arsenic and fluoride contamination. Among all removal methods, bioadsorption using agricultural waste residues shows effective/feasible removal of As and F- due to its low cost, ecofriendly nature, readily available, and efficient reuse compared with several other harmful synthetic materials that demand costly design specifications. This study discusses current developments in bioadsorption methods for As and F- that use agricultural-based biomaterials and describes the prevailing state of arsenic and fluoride removal strategies that use biomaterials precisely.
Collapse
Affiliation(s)
- Shubhangi Umare
- Department of Civil Engineering, Maulana Azad National Institute of Technology, Bhopal, 462003, India
| | - Ajay K Thawait
- Department of Civil Engineering, Maulana Azad National Institute of Technology, Bhopal, 462003, India
| | - Sumit H Dhawane
- Department of Chemical Engineering, Maulana Azad National Institute of Technology, Bhopal, 462003, India.
| |
Collapse
|
11
|
Hamdi S, Mosbahi M, Issaoui M, Barreiro A, Cela-Dablanca R, Brahmi J, Tlili A, Jamoussi F, J Fernández-Sanjurjo M, Núñez-Delgado A, Álvarez-Rodríguez E, Gharbi-Khelifi H. Experimental data and modeling of sulfadiazine adsorption onto raw and modified clays from Tunisia. ENVIRONMENTAL RESEARCH 2024; 248:118309. [PMID: 38301763 DOI: 10.1016/j.envres.2024.118309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/03/2024]
Abstract
In recent years, the increasing detection of emerging pollutants (particularly antibiotics, such as sulfonamides) in agricultural soils and water bodies has raised growing concern about related environmental and health problems. In the current research, sulfadiazine (SDZ) adsorption was studied for three raw and chemically modified clays. The experiments were carried out for increasing doses of the antibiotic (0, 1, 5, 10, 20, and 40 μmol L-1) at ambient temperature and natural pH with a contact time of 24 h. The eventual fitting to Freundlich, Langmuir and Linear adsorption models, as well as residual concentrations of antibiotics after adsorption, was assessed. The results obtained showed that one of the clays (HJ1) adsorbed more SDZ (reaching 99.9 % when 40 μmol L-1 of SDZ were added) than the other clay materials, followed by the acid-activated AM clay (which reached 99.4 % for the same SDZ concentration added). The adsorption of SDZ followed a linear adsorption isotherm, suggesting that hydrophobic interactions, rather than cation exchange, played a significant role in SDZ retention. Concerning the adsorption data, the best adjustment corresponded to the Freundlich model. The highest Freundlich KF scores were obtained for the AM acid-treated and raw HJ1 clays (606.051 and 312.969 Ln μmol1-n kg-1, respectively). The Freundlich n parameter ranged between 0.047 and 1.506. Regarding desorption, the highest value corresponded to the AM clay, being generally <10 % for raw clays, <8 % for base-activated clays, and <6 % for acid-activated clays. Chemical modifications contributed to improve the adsorption capacity of the AM clay, especially when the highest concentrations of the antibiotic were added. The results of this research can be considered relevant as regard environmental and public health assessment since they estimate the feasibility of three Tunisian clays in SDZ removal from aqueous solutions.
Collapse
Affiliation(s)
- Samiha Hamdi
- Department of Biotechnology, Faculty of Science and Technology of Sidi Bouzid, University of Kairouan, 9100, Sidi Bouzid, Tunisia; Department Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002 Lugo, Spain; Laboratory of Nutrition - Functional Foods and Health (NAFS)-LR12ES05, Faculty of Medicine, University of Monastir, Avenue Avicenne, 5019, Monastir, Tunisia; Laboratory of Transmissible Diseases and Biologically Active Substances LR99ES27 Faculty of Pharmacy of Monastir, University of Monastir, Avenue Avicenne, 5019, Monastir, Tunisia.
| | - Mohamed Mosbahi
- Dpartment of Geology, GEOGLOB Research Unit, Faculty of Science and Technology of Sfax, Sokra Street 3038 Sfax, Tunisia
| | - Manel Issaoui
- Department of Biotechnology, Faculty of Science and Technology of Sidi Bouzid, University of Kairouan, 9100, Sidi Bouzid, Tunisia; Laboratory of Nutrition - Functional Foods and Health (NAFS)-LR12ES05, Faculty of Medicine, University of Monastir, Avenue Avicenne, 5019, Monastir, Tunisia
| | - Ana Barreiro
- Department Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002 Lugo, Spain
| | - Raquel Cela-Dablanca
- Department Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002 Lugo, Spain
| | - Jihen Brahmi
- Department of Biotechnology, Faculty of Science and Technology of Sidi Bouzid, University of Kairouan, 9100, Sidi Bouzid, Tunisia
| | - Ali Tlili
- Dpartment of Geology, GEOGLOB Research Unit, Faculty of Science and Technology of Sfax, Sokra Street 3038 Sfax, Tunisia
| | - Faker Jamoussi
- Georesources Laboratory, CERTE, Borj Cedria, Bp 273, 8020, Solimen, Tunisia
| | - María J Fernández-Sanjurjo
- Department Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002 Lugo, Spain
| | - Avelino Núñez-Delgado
- Department Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002 Lugo, Spain
| | - Esperanza Álvarez-Rodríguez
- Department Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002 Lugo, Spain
| | - Hakima Gharbi-Khelifi
- Department of Biotechnology, Faculty of Science and Technology of Sidi Bouzid, University of Kairouan, 9100, Sidi Bouzid, Tunisia; Laboratory of Transmissible Diseases and Biologically Active Substances LR99ES27 Faculty of Pharmacy of Monastir, University of Monastir, Avenue Avicenne, 5019, Monastir, Tunisia
| |
Collapse
|
12
|
Tomczyk A, Vitková J, Botková N, Siryk O, Kondracki B, Szewczuk-Karpisz K. Ammonia hydroxide and citric acid modified wheat straw-biochars: Preparation, characterization, and environmental applications. CHEMOSPHERE 2024; 356:141916. [PMID: 38583536 DOI: 10.1016/j.chemosphere.2024.141916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 03/20/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
This study presents an assessment of inorganic and organic modification of biochar on physicochemical properties, dissolved organic carbon (DOC) release, sorption efficiency towards enrofloxacin (E) and silver nanoparticles (Ag-NPs), as well as an evaluation of addition of prepared materials on hydro-physical properties and adsorption capacity of montmorillonite (M). The biochar was derived from wheat straw at 650 °C. An inorganic modification was performed using ammonia hydroxide, whereas an organic modification, using citric acid. The ammonia hydroxide and citric acid changed the biochar nature and surface chemistry by introducing amino and ester groups. The lowest DOC release was from ammonia-biochar (BCN) and the highest, from citric acid-biochar (BCC). The adsorption data were better described by pseudo-II order equation and Marczewski-Jaroniec isotherm. Results showed that BCN exhibited the highest efficiency in adsorption of E and Ag-NPs. It also improved the adsorptive abilities and saturated hydraulic conductivity of M. This provides the chemically modified biochars have an excellent potential to improve pollution removal from aqueous media and hydro-physical/sorption properties of soil sorption complex. They can be used with advantageous in environmental applications.
Collapse
Affiliation(s)
- Agnieszka Tomczyk
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin, Poland.
| | - Justína Vitková
- Institute of Hydrology, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04, Bratislava, Slovakia
| | - Natália Botková
- Institute of Hydrology, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04, Bratislava, Slovakia; Institute of Landscape Engineering, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Hospodárska 7, 949 76, Nitra, Slovakia
| | - Olena Siryk
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin, Poland
| | - Bartosz Kondracki
- Chair and Department of Cardiology, Medical University in Lublin, Jaczewskiego 8 (SPSK Nr 4), 20-954, Lublin, Poland
| | | |
Collapse
|
13
|
Li P, Zhao Z, Zhang M, Su H, Zhao T, Feng W, Zhang Z. Exploring the Potential of Biochar Derived from Chinese Herbal Medicine Residue for Efficient Removal of Norfloxacin. Molecules 2024; 29:2063. [PMID: 38731553 PMCID: PMC11085230 DOI: 10.3390/molecules29092063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
One-step carbonization was explored to prepare biochar using the residue of a traditional Chinese herbal medicine, Atropa belladonna L. (ABL), as the raw material. The resulting biochar, known as ABLB4, was evaluated for its potential as a sustainable material for norfloxacin (NOR) adsorption in water. Subsequently, a comprehensive analysis of adsorption isotherms, kinetics, and thermodynamics was conducted through batch adsorption experiments. The maximum calculated NOR adsorption capacity was 252.0 mg/g at 298 K, and the spontaneous and exothermic adsorption of NOR on ABLB4 could be better suited to a pseudo-first-order kinetic model and Langmuir model. The adsorption process observed is influenced by pore diffusion, π-π interaction, electrostatic interaction, and hydrogen bonding between ABLB4 and NOR molecules. Moreover, the utilization of response surface modeling (RSM) facilitated the optimization of the removal efficiency of NOR, yielding a maximum removal rate of 97.4% at a temperature of 304.8 K, an initial concentration of 67.1 mg/L, and a pH of 7.4. Furthermore, the biochar demonstrated favorable economic advantages, with a payback of 852.5 USD/t. More importantly, even after undergoing five cycles, ABLB4 exhibited a consistently high NOR removal rate, indicating its significant potential for application in NOR adsorption.
Collapse
Affiliation(s)
- Pengwei Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (P.L.); (Z.Z.); (M.Z.); (H.S.); (T.Z.); (W.F.)
| | - Ziheng Zhao
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (P.L.); (Z.Z.); (M.Z.); (H.S.); (T.Z.); (W.F.)
| | - Miaomiao Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (P.L.); (Z.Z.); (M.Z.); (H.S.); (T.Z.); (W.F.)
| | - Hang Su
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (P.L.); (Z.Z.); (M.Z.); (H.S.); (T.Z.); (W.F.)
| | - Ting Zhao
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (P.L.); (Z.Z.); (M.Z.); (H.S.); (T.Z.); (W.F.)
| | - Weisheng Feng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (P.L.); (Z.Z.); (M.Z.); (H.S.); (T.Z.); (W.F.)
| | - Zhijuan Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (P.L.); (Z.Z.); (M.Z.); (H.S.); (T.Z.); (W.F.)
- Institute of Mass Spectrometer and Atmospheric Environment, Jinan University, Guangzhou 510632, China
| |
Collapse
|
14
|
Khan P, Saha R, Halder G. Towards sorptive eradication of pharmaceutical micro-pollutant ciprofloxacin from aquatic environment: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170723. [PMID: 38340867 DOI: 10.1016/j.scitotenv.2024.170723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/15/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024]
Abstract
Antibiotics are widely prioritized pharmaceuticals frequently adopted in medication for addressing numerous ailments of humans and animals. However, the non-judicious disposal of ciprofloxacin (CIP) with concentration levels exceeding threshold limit in an aqueous environment has been the matter of growing concern nowadays. CIP is found in various waterways with appreciable mobility due to its limited decay in solidified form. Hence, the effective eradication strategy of this non-steroidal anti-inflammatory antibiotic from aqueous media is pivotal for preventing the users and the biosphere from their hazardous impacts. Reportedly several customary techniques like reverse osmosis, precipitation, cross-filtration, nano-filtration, ion exchange, microbial remediation, and adsorption have been employed to eliminate CIP from water. Out of them, adsorption is ascertained to be a potential method because of lesser preliminary investment costs, ease of operation, greater efficiency, less energy usage, reduced chemical and biological slurry production, and ready availability of precursor materials. Towards remediation of ciprofloxacin-laden water, plenty of researchers have used different adsorbents. However, the present-day challenge is opting the promising sorbent and its application towards industrial scale-up which is vital to get reviewed. In this article, adsorbents of diverse origins are reviewed in terms of their performances in CIP removal. The review stresses the impact of various factors on sorptive assimilation of CIP, adsorption kinetics, isotherms, mechanism of ionic interaction, contrivances for CIP detection, cost estimation and reusability assessments of adsorbents also that may endorse the next-generation investigators to decide the efficacious, environmental appealing and cost-competitive adsorbents for effective riddance of CIP from wastewater.
Collapse
Affiliation(s)
- Priyanka Khan
- Centre for Research on Environment and Water, National Institute of Technology Durgapur, Durgapur 713209, West Bengal, India; Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur 713209, West Bengal, India; Department of Chemistry, National Institute of Technology Durgapur, Durgapur 713209, West Bengal, India
| | - Rajnarayan Saha
- Centre for Research on Environment and Water, National Institute of Technology Durgapur, Durgapur 713209, West Bengal, India; Department of Chemistry, National Institute of Technology Durgapur, Durgapur 713209, West Bengal, India
| | - Gopinath Halder
- Centre for Research on Environment and Water, National Institute of Technology Durgapur, Durgapur 713209, West Bengal, India; Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur 713209, West Bengal, India.
| |
Collapse
|
15
|
Singh AK, Bhardwaj K. Mechanistic understanding of green synthesized cerium nanoparticles for the photocatalytic degradation of dyes and antibiotics from aqueous media and antimicrobial efficacy: A review. ENVIRONMENTAL RESEARCH 2024; 246:118001. [PMID: 38145730 DOI: 10.1016/j.envres.2023.118001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 12/10/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
In recent years, extensive research endeavors are being undertaken for synthesis of an efficient, economic and eco-friendly cerium oxide nanoparticles (CeO2 NPs) using plant extract mediated greener approach. A number of medicinal plants and their specific parts (flowers, bark, seeds, fruits, seeds and leaves) have been found to be capable of synthesizing CeO2 NPs. The specific key phytochemical constituents of plants such as alkaloids, terpenoids, phenolic acids, flavones and tannins can play significant role as a reducing, stabilizing and capping agents in the synthesis of CeO2 NPs from their respective precursor solution of metal ions. The CeO2 NPs are frequently using in diverse fields of science and technology including photocatalytic degradation of dyes, antibiotics as well as antimicrobial applications. In this review, the mechanism behind the green synthesis CeO2 NPs using plant entities are summarized along with discussion of analytical results from characterization techniques. An overview of CeO2 NPs for water remediation application via photocatalytic degradation of dyes and antibiotics are discussed. In addition, the mechanisms of antimicrobial efficacy of CeO2 NPs and current challenges for their sustainable application at large scale in real environmental conditions are discussed.
Collapse
Affiliation(s)
- Arun K Singh
- Department of Chemistry, M. M. Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, Haryana, 133207, India.
| | - Kajal Bhardwaj
- Department of Chemistry, M. M. Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, Haryana, 133207, India
| |
Collapse
|
16
|
Li R, Zhang C, Hui J, Shen T, Zhang Y. The application of P-modified biochar in wastewater remediation: A state-of-the-art review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170198. [PMID: 38278277 DOI: 10.1016/j.scitotenv.2024.170198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/24/2023] [Accepted: 01/14/2024] [Indexed: 01/28/2024]
Abstract
Phosphorus modified biochar (P-BC) is an effective adsorbent for wastewater remediation, which has attracted widespread attention due to its low cost, vast source, unique surface structure, and abundant functional groups. However, there is currently no comprehensive analysis and review of P-BC in wastewater remediation. In this study, a detailed introduction is given to the synthesis method of P-BC, as well as the effects of pyrolysis temperature and residence time on physical and chemical properties and adsorption performance of the material. Meanwhile, a comprehensive investigation and evaluation were conducted on the different biomass types and phosphorus sources used to synthesize P-BC. This article also systematically compared the adsorption efficiency differences between P-BC and raw biochar, and summarized the adsorption mechanism of P-BC in removing pollutants from wastewater. In addition, the effects of P-BC composite with other materials (element co-doping, polysaccharide stabilizers, microbial loading, etc.) on physical and chemical properties and pollutant adsorption capacity of the materials were investigated. Some emerging applications of P-BC were also introduced, including supercapacitors, CO2 adsorbents, carbon sequestration, soil heavy metal remediation, and soil fertility improvement. Finally, some valuable suggestions and prospects were proposed for the future research direction of P-BC to achieve the goal of multiple utilization.
Collapse
Affiliation(s)
- Ruizhen Li
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Congyu Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Jing Hui
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Tieheng Shen
- Heilongjiang Agricultural Technology Promotion Station, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
17
|
Wang Y, Yu S, Yuan H, Zhang L. Constructing N,S co-doped network biochar confined CoFe 2O 4 magnetic nanoparticles adsorbent: Insights into the synergistic and competitive adsorption of Pb 2+ and ciprofloxacin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123178. [PMID: 38103717 DOI: 10.1016/j.envpol.2023.123178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/19/2023]
Abstract
To solve the problem of biochar lack of adsorption sites for heavy metal ions and the difficulty of recycling, CoFe2O4 magnetic nanoparticles confined in nitrogen, sulfur co-doped 3D network biochar matrix (C-CoFe2O4/N,S-BC) was designed and fabricated successfully. The obtained C-CoFe2O4/N,S-BC displays remarkable adsorption performance for both Pb2+ and ciprofloxacin (CIP) removal at the single or binary system due to the role of N,S as metal ion anchoring compared to the N,S-free sample (CoFe2O4/BC). N,S co-doped BC not only participates in adsorption reaction but also effectively inhibites the agglomeration of CoFe2O4 nanoparticles and increases the active sites as a carrier at the same time. In the single system, CoFe2O4/N,S-BC demonstrates a fast adsorption rate (equilibrium time: 30 min) and high adsorption capacity (224.77 mg g-1 for Pb2+, 400.11 mg g-1 for CIP) towards Pb2+ and CIP. The adsorption process is befitted pseudo-second-order model, and the equilibrium data are in great pertinence with Langmuir model. In the binary system, the maximum adsorption capacity of CoFe2O4/N,S-BC for Pb2+ and CIP is 244.80 mg g-1 (CIP: 10.00 mg L-1) and 418.42 mg g-1 (Pb2+: 10.00 mg L-1), respectively. The adsorption mechanism is discussed based on the experimental results. Moreover, C-CoFe2O4/N,S-BC shows good practical water treatment capacity, anti-interference ability and stable reusability (the removal efficiency>80% after eight cycles). The rapid, multifunctional, reusable, and easily separable adsorption properties make C-CoFe2O4/N,S-BC promising for efficient environmental remediation. This study also offers a viable method for the construction of adsorption material for complex wastewater treatment.
Collapse
Affiliation(s)
- Yang Wang
- College of Chemistry, Liaoning University, Shenyang 110036, PR China; School of Pharmaceutical Science, Liaoning University, Shenyang 110036, PR China
| | - Shuang Yu
- College of Chemistry, Liaoning University, Shenyang 110036, PR China
| | - Hongwei Yuan
- College of Chemistry, Liaoning University, Shenyang 110036, PR China
| | - Lei Zhang
- College of Chemistry, Liaoning University, Shenyang 110036, PR China.
| |
Collapse
|
18
|
El-Gamal EH, Rashad M, Saleh ME, Zaki S, Eltarahony M. Potential bioremediation of lead and phenol by sunflower seed husk and rice straw-based biochar hybridized with bacterial consortium: a kinetic study. Sci Rep 2023; 13:21901. [PMID: 38081934 PMCID: PMC10713633 DOI: 10.1038/s41598-023-49036-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/03/2023] [Indexed: 12/18/2023] Open
Abstract
Environmental pollution is a global phenomenon and troublesome fact that poses a grave risk to all living entities. Via coupling carbonaceous feedstocks with outstanding microbial activity, kinetic experiments were established using the consortium of Proteus mirabilis and Raoultella planticola, biochar-derived sunflower seed husk (SHB) and rice straw (RSB), and their composites, which investigated at 30 °C (150 rpm) to eliminate 700 mg L-1 lead (120 h) and phenol (168 h) from synthetic wastewater. The derived biochars physicochemical properties of were studied. According to adsorption capacity (qe), consortium-SHB composites and consortium-RSB composites removed lead completely (70 mg g-1) within 48 h and 66 h, respectively. Besides, phenol was remediated entirely after 42 h and 48 h by both composite systems (69.90 mg g-1), respectively, comparing with bacterial consortium only or parent SHB and RSB. Moreover, four kinetic models were studied to describe the bioremediation process. Fractional power and Elovich models could be recommended for describing the adsorption kinetics for lead and phenol removal by the studied biomaterials with high correlation coefficient (R2 ≥ 0.91 for Pb2+ and ≥ 0.93 for phenol) and lower residual root mean square error (RMSE) and chi-square (X2). Overall, bacterial consortium-biochar composites exhibited greater remediation of lead and phenol than the sum of each single bacterial consortium and biochar systems; reflecting synergistic interaction of adsorptive capability of biochar and metabolic performance of bacterial consortium, as denoted by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). The current study addressed the successful design of employing functional remediating consortium immobilized on waste biomass-derived biochar as a conducive alternative eco-sorbent and economic platform to detoxify organic and inorganic pollutants.
Collapse
Affiliation(s)
- Eman H El-Gamal
- Land and Water Technologies Department, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934, Alexandria, Egypt.
| | - Mohamed Rashad
- Land and Water Technologies Department, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934, Alexandria, Egypt
| | - Maher E Saleh
- Department of Soils and Water Sciences, Faculty of Agriculture, Alexandria University, El-Shatby, 21545, Alexandria, Egypt
| | - Sahar Zaki
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934, Alexandria, Egypt
| | - Marwa Eltarahony
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934, Alexandria, Egypt.
| |
Collapse
|
19
|
Waghmare C, Ghodmare S, Ansari K, Dehghani MH, Amir Khan M, Hasan MA, Islam S, Khan NA, Zahmatkesh S. Experimental investigation of H 3PO 4 activated papaya peels for methylene blue dye removal from aqueous solution: Evaluation on optimization, kinetics, isotherm, thermodynamics, and reusability studies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118815. [PMID: 37633104 DOI: 10.1016/j.jenvman.2023.118815] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/28/2023]
Abstract
This investigation is centered on the effectiveness of methylene blue (MB), a cationic dye, adsorbed from an aqueous media by H3PO4 activated papaya skin/peels (PSPAC), with initial pH (2-10), contact time (30-180 min), MB dye concentration (varying from 10 to 50 mg/L), and MB dose (0.1-0.5 gm). The findings show that the best optimal conditions for MB dye removal occur at a 6 pH, 0.3 gm dose of PSPAC adsorbent for 10 mg/L MB dye concentration, with 90 min of contact time. To optimize and validate the extraction efficiency of MB dye, a response surface methodology (RSM) study was conducted using a central composite design (CCD) with a regression model showing R2 = 0.9940. FT-IR spectroscopy shows, CO, and O-H stretching functional groups while FE-SEM is assessed to supervise morphological features of the PSPAC adsorbent. The peak adsorption capacity with 46.95 mg/g for the Langmuir isotherm model conveniently satisfies the adsorption process with R2 = 0.9984 while with R2 = 0.999, a kinetic model, pseudo-second-order, confirms MB dye adsorption by PSPAC adsorbent. Moreover, thermodynamic parameters including ΔGᵒ, ΔH°, and ΔS° were computed and found to be spontaneous and exothermic. Furthermore, regeneration studies employed with NaOH (0.1 M) and HCl (0.1 M) solution media show an acceptable MB removal efficiency consecutive up to three cycles. The study highlights that H3PO4 papaya skin/peel (PSPAC) is an effectual, sustainable, reasonably available biosorbent to remove industrial cationic dyes disposal.
Collapse
Affiliation(s)
- Charuta Waghmare
- Department of Civil Engineering, Yeshwantrao Chavan College of Engineering, 441110, Nagpur, India; Department of Civil Engineering, School of Engineering and Technology, G. H. Raisoni Amravati University, 444701, Amravati, India.
| | - Sujesh Ghodmare
- Department of Civil Engineering, School of Engineering and Technology, G. H. Raisoni Amravati University, 444701, Amravati, India.
| | - Khalid Ansari
- Department of Civil Engineering, Yeshwantrao Chavan College of Engineering, 441110, Nagpur, India.
| | - Mohammad Hadi Dehghani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Center for Solid Waste Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Amir Khan
- Department of Civil Engineering, Galgotias College of Engineering and Technology, Greater Noida-201310, India.
| | - Mohd Abul Hasan
- Civil Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia.
| | - Saiful Islam
- Civil Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia.
| | - Nadeem A Khan
- Interdisciplinary Research Center for Membranes and Water Security (IRC-MWS), King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.
| | - Sasan Zahmatkesh
- Tecnologico de Monterrey, Escuela de Ingenieríay Ciencias, Puebla, Mexico.
| |
Collapse
|
20
|
Zhang X, Cai T, Zhang S, Hou J, Cheng L, Chen W, Zhang Q. Contamination distribution and non-biological removal pathways of typical tetracycline antibiotics in the environment: A review. JOURNAL OF HAZARDOUS MATERIALS 2023; 463:132862. [PMID: 39492100 DOI: 10.1016/j.jhazmat.2023.132862] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/05/2024]
Abstract
While the occurrence and removal technologies of tetracyclines in the environment have been reported, a comprehensive systematic summary and analysis remain limited, especially for new generations compounds such as doxycycline. In this review, the latest information regarding the distribution of various tetracyclines in different countries over the past seven years (2017-2023) reveals a notable absence of research reports in North America and Oceania. With China as the representative country, the investigation indicates that the maximum concentrations of TCs exceed 5 µg/L. The maximum concentration of tetracyclines in feces (26.22 µg/L) can reach one order of magnitude higher than that in other media. Furthermore, advanced oxidation technologies, such as Fenton processes, electrochemical oxidation, photolysis, ozonation, etc., were also examined, and the median degradation rate achieved 91.9-97.67%. Reactions such as methylation, demethylation, hydroxylation, dehydration, ring cleavage, and oxidation were observed during degradation. The most common intermediate product was identified as m/z = 461 (C22H25N2O9). This review indicates that future efforts should emphasize understanding the occurrence and fate of new-generation tetracyclines in the environment.
Collapse
Affiliation(s)
- Xiaotong Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China
| | - Tong Cai
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China
| | - Shudong Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China
| | - Jinju Hou
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Lei Cheng
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China
| | - Wenjie Chen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China
| | - Qiuzhuo Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China; Institute of Eco-Chongming (IEC), 3663 N. Zhongshan Rd., Shanghai 200062, China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N. Zhongshan Road, Shanghai 200062, China.
| |
Collapse
|
21
|
Son Tran V, Hao Ngo H, Guo W, Ha Nguyen T, Mai Ly Luong T, Huan Nguyen X, Lan Anh Phan T, Trong Le V, Phuong Nguyen M, Khai Nguyen M. New chitosan-biochar composite derived from agricultural waste for removing sulfamethoxazole antibiotics in water. BIORESOURCE TECHNOLOGY 2023:129384. [PMID: 37355142 DOI: 10.1016/j.biortech.2023.129384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 06/26/2023]
Abstract
This study aims to develop a new chitosan-biochar composite derived from agricultural waste for removing sulfamethoxazole (SMX) antibiotics in water. Biochar was prepared from orange peel (OB) and spent coffee grounds (SCB). To fabricate chitosan-biochar composites, chitosan and biochar were crosslinked with glutaraldehyde. Results showed that pH, adsorbent dosage, time, temperature, and initial concentrations have a significant impact on the SMX adsorption. The adsorption data was better described by Langmuir (with good regression) than Freundlich model. The highest adsorption capacity (Qmax) of SMX on OB, SCB, CTS-OB, and CTS-SCB were 3.49, 7.65, 7.24, and 14.73 mg/g, respectively. The Freundlich constant (KF) values for adsorption capacity were 1.66, 1.91, 2.57, and 5.57 (mg1-nLn/g), respectively, for OB, SCB, CTS-OB, and CTS-SCB. Ion exchange, π bonding, hydrogen bonding and pore filling, were proposed as dominant mechanisms of SMX removal process.
Collapse
Affiliation(s)
- Van Son Tran
- Faculty of Environmental Sciences, University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai Road, Thanh Xuan District, Hanoi, Viet Nam
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007, Australia.
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007, Australia
| | - Thanh Ha Nguyen
- Faculty of Environmental Sciences, University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai Road, Thanh Xuan District, Hanoi, Viet Nam
| | - Thi Mai Ly Luong
- Faculty of Environmental Sciences, University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai Road, Thanh Xuan District, Hanoi, Viet Nam
| | - Xuan Huan Nguyen
- Faculty of Environmental Sciences, University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai Road, Thanh Xuan District, Hanoi, Viet Nam
| | - Thi Lan Anh Phan
- VNU Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi, Viet Nam; Research Centre for Environmental Technology and Sustainable Development, University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai Road, Thanh Xuan District, Hanoi, Viet Nam
| | - Van Trong Le
- Faculty of Environmental Sciences, University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai Road, Thanh Xuan District, Hanoi, Viet Nam; Food Industries Research Institute, Ministry of Industry and Trade, Viet Nam
| | - Minh Phuong Nguyen
- Faculty of Environmental Sciences, University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai Road, Thanh Xuan District, Hanoi, Viet Nam
| | - Manh Khai Nguyen
- Faculty of Environmental Sciences, University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai Road, Thanh Xuan District, Hanoi, Viet Nam
| |
Collapse
|
22
|
Chen B, Yu F, Wang S, Liu Y, Li D, Chen Y, Dao G, Xu Z, Pan X. Structuring alginate/dopamine powder into macroscopic aerogel microsphere for exceptional removal of tetracycline from water: Performance and mechanisms. Int J Biol Macromol 2023:124994. [PMID: 37236556 DOI: 10.1016/j.ijbiomac.2023.124994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/26/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
Aerogel was selected as one of IUPAC Top Ten Emerging Technologies in Chemistry in 2022, and has attracted tremendous concerns of scientists in removal of emerging contaminants. In this work a novel Fe3+ cross-linked alginate aerogel (SA/DA-Fe3+) with multiple sorption sites were facilely fabricated and applied for highly efficient removal of tetracycline (TC) from water. Results showed that Fe3+ and DA cooperatively improve adsorption of TC and TC was efficiently removed over a broad pH range of 4-8. The kinetics process can be better described by a chemisorption controlled pseudo-second-order kinetics model and Langmuir isotherm equation with characteristics of monolayer coverage. The fitted qmax value of TC at ambient temperature was 804.6 mg g-1 higher than those of other reported adsorbents. Multiple interactions including π-π EDA, complexation, hydrogen bonding, electrostatic attraction, etc. were involved in adsorption process. Moreover, SA/DA-Fe3+ aerogel exhibited satisfactory stability, reusability, and recyclability for consecutive applications. Most importantly, after consecutively running for >1000 h with dynamic sorption capacity over 500 mg g-1, the packed-column was still not saturated, manifesting its great potentials for treating actual wastewaters. Thus, above superiorities make SA/DA-Fe3+ a promising candidate adsorbent for treating TC-containing wastewater.
Collapse
Affiliation(s)
- Bo Chen
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Fengling Yu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Sha Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Yang Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Dehong Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Yuning Chen
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Guohua Dao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Zhixiang Xu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Xuejun Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China.
| |
Collapse
|
23
|
Niu Y, Gao P, Ju S, Li F, Wang S, Xu Z, Lin J, Yang J, Peng H. Hydrogen Peroxide/Phosphoric Acid Modification of Hydrochars for Sulfamethoxazole and Carbamazepine Adsorption: The Role of Oxygen-Containing Functional Groups. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5679-5688. [PMID: 37040602 DOI: 10.1021/acs.langmuir.2c03353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Emerging pollutants, such as sulfonamide antibiotics and pharmaceuticals, have been widely detected in water and soils, posing serious environmental and human health concerns. Thus, it is urgent and necessary to develop a technology for removing them. In this work, a hydrothermal carbonization method was used to prepare the hydrochars (HCs) by pine sawdust with different temperatures. To improve the physicochemical properties of HCs, phosphoric acid (H3PO4) and hydrogen peroxide (H2O2) were used to modify these HCs, and they were referred to as PHCs and HHCs, respectively. The adsorption of sulfamethoxazole (SMX) and carbamazepine (CBZ) by pristine and modified HCs was investigated systematically. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) results indicated that the H2O2/H3PO4 modification led to the formation of a disordered carbon structure and abundant pores. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopy results suggested that carboxyl (-COOH) and hydroxyl (-OH) functional groups of HCs increased after modification, which is the main reason for the higher sorption of SMX and CBZ on H3PO4/H2O2-modified HCs when compared with pristine HCs. In addition, the positive correlation between -COOH/C=O and logKd of these two chemicals also suggested that oxygen-containing functional groups played a crucial role in the sorption of SMX and CBZ. The strong hydrophobic interaction and π-π interaction between CBZ and pristine/modified HCs resulted in its higher adsorption when compared with SMX. The results of this study provide a novel perspective on the investigation of adsorption mechanisms and environmental behaviors for organic contaminants by pristine and modified HCs.
Collapse
Affiliation(s)
- Yifan Niu
- Faculty of Modern Agricultural Engineering, Kunming University of Science & Technology, Kunming, Yunnan 650500, China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
| | - Peng Gao
- City College, Kunming University of Science & Technology, Kunming, Yunnan 650051, China
| | - Shaohua Ju
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
| | - Fangfang Li
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, Yunnan 650500, China
| | - Siyao Wang
- Faculty of Modern Agricultural Engineering, Kunming University of Science & Technology, Kunming, Yunnan 650500, China
| | - Zhimin Xu
- Faculty of Modern Agricultural Engineering, Kunming University of Science & Technology, Kunming, Yunnan 650500, China
| | - Junjian Lin
- Faculty of Modern Agricultural Engineering, Kunming University of Science & Technology, Kunming, Yunnan 650500, China
| | - Jun Yang
- Faculty of Modern Agricultural Engineering, Kunming University of Science & Technology, Kunming, Yunnan 650500, China
| | - Hongbo Peng
- Faculty of Modern Agricultural Engineering, Kunming University of Science & Technology, Kunming, Yunnan 650500, China
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, Yunnan 650500, China
| |
Collapse
|