1
|
Fang W, Zhang R, Yang W, Spanjers H, Zhang P. A novel strategy for waste activated sludge treatment: Recovery of structural extracellular polymeric substances and fermentative production of volatile fatty acids. WATER RESEARCH 2024; 266:122421. [PMID: 39260197 DOI: 10.1016/j.watres.2024.122421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/21/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Structural extracellular polymeric substances (SEPS) as valuable biopolymers, can be extracted from waste activated sludge (WAS). However, the extraction yield is typically low, and detailed information on SEPS characterizations, as well as proper treatment of the sludge after SEPS extraction, remains limited. This study aimed to optimize the conditions of heating-Na2CO3 extraction process to increase the yield of SEPS extracted from WAS. Subsequently, SEPS were characterized, and, for the first time, insights into their protein composition were uncovered by using proteomics. A maximum SEPS yield of 209 mg g-1 volatile solid (VS) was obtained under optimal conditions: temperature of 90 °C, heating time of 60 min, Na+ dosage of 8.0 mmol/g VS, and pH required to precipitation of 4.0, which was comparable to that from the aerobic granular sludge reported in literature. Proteomics analysis unveiled that the proteins in SEPS primarily originated from microorganisms involved in nitrogen fixation and organic matter degradation, including their intracellular and membrane-associated regions. These proteins exhibited various catalytic activities and played crucial roles in aggregation processes. Besides, the process of SEPS extraction significantly enhanced volatile fatty acid (VFA) production during the anaerobic fermentation of residual WAS after SEPS extraction. A maximum VFA yield of 420 ± 14 mg COD/g VSadded was observed in anaerobic fermentation of 10 d, which was 77.2 ± 0.1 % higher than that from raw sludge. Mechanism analysis revealed that SEPS extraction not only improved WAS disintegration and solubilization but also reduced the relative activity of methanogens during anaerobic fermentation. Moreover, SEPS extraction shifted the microbial population during anaerobic fermentation in the direction towards hydrolysis and acidification such as Fermentimonas sp. and Soehngenia sp. This study proposed a novel strategy based on SEPS extraction and VFA production for sludge treatment, offering potential benefits for resource recovery and improved process efficiency.
Collapse
Affiliation(s)
- Wei Fang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China.
| | - Ru Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China
| | - Wenjing Yang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China
| | - Henri Spanjers
- Department of Water Management, Section Sanitary Engineering, Delft University of Technology, PO Box 5048, 2600 GA Delft, the Netherlands.
| | - Panyue Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China.
| |
Collapse
|
2
|
Lv Z, You H, Xu M, Leng H, Li W, Zhao Y, Li Z, Zhu J, Zhang G. Synergetic sludge conditioning by US enhanced Fe 2+ activated sodium persulfate: Physicochemical properties and mechanisms. CHEMOSPHERE 2024; 362:142727. [PMID: 38964722 DOI: 10.1016/j.chemosphere.2024.142727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
Efficient dewatering of sewage sludge is an energy- and carbon-saving procedure for sludge treatment in wastewater treatment facilities. The ultrasound-coupled divalent iron ion activated persulfate process can effectively promote sludge dewatering and improve organic substance content. Under the action of ultrasound (US 50 w/L), divalent iron ions (Fe2+) 200 mg/g (TS), and persulfate (PDS) 200 mg/g (TS) for 60 min, the capillary suction time (CST) was reduced by 79.74%, and the moisture content of the dewatered sludge cake reached 56.51 wt%. The organic carbon content of treated sludge was also four times higher than the original sludge and types were richer in short-chain volatile species in US/Fe2+/PDS. Moreover, the correlation analysis found that the relationship of between CST and SV30, Zeta and lactate dehydrogenase (LDH) were positive correlation, and the relationship of SCOD and TC were positively correlated with the PN (SB-EPS). Mechanistic studies showed that the US/Fe2+/PDS system could produce oxygen activators by US coupling Fe2+ to strengthen the effect of activated PDS strongly, while the sulfate radicals (SO4·-) radical was a dominant role. The cracking mechanism is divided into two pathways effectively degraded the macromolecule EPS into a small-molecule acid and further reduced the water-holding interfacial affinity as follow: (1) the radical path dominated by hydroxyl radicals (·OH), SO4·-, and superoxide radical (O2·-); (2) the non-radicals dominated by monoclinic oxygen (1O2). Afterwards, the electrostatic force and interfacial free energy were reduced, resulting in enhanced self-flocculation and mobility to enhanced dewaterability. These findings demonstrated the US/Fe2+/PDS system had significant advantages in sludge cracking and provided theoretical support for its practical application.
Collapse
Affiliation(s)
- Zhiying Lv
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Hong You
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin, 150090, China; School of Marine Science and Technology, Harbin Institute of Technology, Weihai, 264209, China
| | - Mingze Xu
- Weihai Science and Technology Innovation Development Center, Weihai, 264499, China
| | - Haoran Leng
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Weirun Li
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yihan Zhao
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, 264209, China
| | - Zhipeng Li
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin, 150090, China; School of Marine Science and Technology, Harbin Institute of Technology, Weihai, 264209, China
| | - Jing Zhu
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin, 150090, China; School of Marine Science and Technology, Harbin Institute of Technology, Weihai, 264209, China.
| | - Guoyu Zhang
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin, 150090, China; School of Marine Science and Technology, Harbin Institute of Technology, Weihai, 264209, China.
| |
Collapse
|
3
|
Liu F, Cheng W, Xu J, Wan T, Wang M, Ren J, Ning M, Zhang H, Zhou X. Enhancing short-chain fatty acids production via acidogenic fermentation of municipal sewage sludge: Effect of sludge characteristics and peroxydisulfate pre-oxidation. Biotechnol J 2024; 19:e2300540. [PMID: 38472098 DOI: 10.1002/biot.202300540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 03/14/2024]
Abstract
This study first employed a combined pretreatment of low-dose peroxy-disulfate (PDS) and initial pH 10 to promote short-chain fatty acids (SCFAs) production via acidogenic fermentation using different types of sewage sludge as substrates. The experimental results showed that the yield of maximal SCFAs and acetate proportion after the combined pretreatment were 1513.82 ± 28.25 mg chemical oxygen demand (COD)/L and 53.64%, and promoted by 1.28 and 1.56 times higher, respectively, compared to the sole initial pH 10 pretreatment. Furthermore, in terms of the disintegration degree of sewage sludge, it increased by more than 18% with the combined pretreatment compared to the pretreatment of sole initial pH 10. Waste-activated sludge (WAS) from A2/O and Bardenpho processes were more biodegradable, explained by the 1.47- and 1.35-times higher disintegration rate than those from oxidation ditch and they favored acetate dominant fermentation. Correlation analysis revealed a strong correlation (p ≤ 0.01) between SCFAs production and soluble COD, total proteins, proteins in soluble-extracellular polymeric substances (SEPS), total polysaccharides, and polysaccharides in SEPS. Mechanism explorations showed that preoxidation with PDS enhanced the solubilization and biodegradability of complex substrates, and altered the microbial community structure during the fermentation process. Firmicutes and Tetrasphaera were proven to play a key role in improving SCFA production, especially in promoting acetate production by converting additional SCFAs into acetate. Additionally, the addition of PDS greatly promoted sulfur and iron-related metabolic activities. Finally, the combined pretreatment was estimated to be a cost-effective solution for reutilizing and treating Fe-sludge.
Collapse
Affiliation(s)
- Faxin Liu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shaanxi, China
| | - Wen Cheng
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shaanxi, China
| | - Jianping Xu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shaanxi, China
| | - Tian Wan
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shaanxi, China
| | - Min Wang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shaanxi, China
| | - Jiehui Ren
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shaanxi, China
| | - Maomao Ning
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shaanxi, China
| | - Hui Zhang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shaanxi, China
| | - Xiaoping Zhou
- Power China Northeast Engineering Corporation Limited, Xi'an, Shaanxi, China
| |
Collapse
|
4
|
Ding W, Fan X, Zhou X, Liu R, Chen C, Jin W, Sun J, Li X, Jiang G, Liu H. Performance and mechanisms of zero valent iron enhancing short-chain fatty acids production during thermophilic anaerobic fermentation of waste activated sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169025. [PMID: 38056647 DOI: 10.1016/j.scitotenv.2023.169025] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
This work first explored the feasibility and possible mechanisms of zero valent iron (ZVI) pretreatment on the generation of short-chain fatty acids (SCFAs) during thermophilic anaerobic fermentation of waste activated sludge (WAS). Results showed that ZVI enhanced the quantity of SCFAs. On Day 6, the SCFAs production reached 455.84 ± 47.88 mg COD/g VSS at 5 g/L of ZVI addition, which increased by 63.80 % relative to control. The presence of ZVI can effectively promote butyric-based fermentation. ZVI accelerated the destruction of extracellular polymeric substances (EPS) and interior sludge cells, as well as improved biodegradation of soluble organics. Also, ZVI enhanced key enzyme activities (i.e., BK and CoA-), thus promoting degradation rates of acidogenesis (6.30 ± 0.84 mg/(gVSS·h) in glucose) and acetogenesis (74.63 ± 0.29 mg/(gVSS·h) in butyrate). Compared to Fe(III), the contribution of Fe(II) was higher among the decomposition products of ZVI. Besides, ZVI favored Proteobacteria and Actinobacteria, which enhanced acetate formation and organic compounds disassimilation of the process, respectively. The abundance of Tepidiphilus, Thermobrachium and Tepidimicrobium was increased, indicating promoting the system stability of SCFAs production in thermophilic anaerobic fermentation.
Collapse
Affiliation(s)
- Wanqing Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Xiumin Fan
- Shenzhen Ecological and Environmental Intelligent Management and Control Center, Shenzhen 518034, China
| | - Xu Zhou
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China.
| | - Ruining Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Wenbiao Jin
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Jing Sun
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xuan Li
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Guangming Jiang
- School of Civil, Mining and Environmental Engineering, University of Wollongong, NSW 2522, Wollongong, Australia
| | - Huan Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
5
|
You F, Tang M, Zhang J, Wang D, Fu Q, Zheng J, Ye B, Zhou Y, Li X, Yang Q, Liu X, Duan A, Liu J. Benzethonium chloride affects short chain fatty acids produced from anaerobic fermentation of waste activated sludge: Performance, biodegradation and mechanisms. WATER RESEARCH 2024; 250:121024. [PMID: 38113597 DOI: 10.1016/j.watres.2023.121024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/17/2023] [Accepted: 12/14/2023] [Indexed: 12/21/2023]
Abstract
Benzethonium chloride (BZC) is viewed as a promising disinfectant and widely applied in daily life. While studies related to its effect on waste activated sludge (WAS) anaerobic fermentation (AF) were seldom mentioned before. To understand how BZC affects AF of WAS, production of short chain fatty acids (SCFAs), characteristics of WAS as well as microbial community were evaluated during AF. Results manifested a dose-specific relationship of dosages between BZC and SCFAs and the optimum yield arrived at 2441.01 mg COD/L with the addition of 0.030 g/g TSS BZC. Spectral results and protein secondary structure variation indicated that BZC denatured proteins in the solid phase into smaller proteins or amino acids with unstable structures. It was also found that BZC could stimulate the extracellular polymeric substances secretion and reduce the surface tension of WAS, leading to the enhancement of solubilization. Beside, BZC promoted the hydrolysis stage (increased by 7.09 % to 0.030 g/g TSS BZC), but inhibited acetogenesis and methanogenesis stages (decreased by 6.85 % and 14.75 % to 0.030 g/g TSS BZC). The microbial community was also regulated by BZC to facilitate the enrichment of hydrolytic and acidizing microorganisms (i.e. Firmicutes). All these variations caused by BZC were conducive to the accumulation of SCFAs. The findings contributed to investigating the effect of BZC on AF of WAS and provided a new idea for the future study of AF mechanism.
Collapse
Affiliation(s)
- Fengyuan You
- Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), College of Environmental Science and Engineering, Ministry of Education, Changsha 410082, PR China
| | - Mengge Tang
- Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), College of Environmental Science and Engineering, Ministry of Education, Changsha 410082, PR China
| | - Jiamin Zhang
- Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), College of Environmental Science and Engineering, Ministry of Education, Changsha 410082, PR China
| | - Dongbo Wang
- Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), College of Environmental Science and Engineering, Ministry of Education, Changsha 410082, PR China
| | - Qizi Fu
- Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), College of Environmental Science and Engineering, Ministry of Education, Changsha 410082, PR China
| | - Jiangfu Zheng
- Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), College of Environmental Science and Engineering, Ministry of Education, Changsha 410082, PR China
| | - Boqun Ye
- Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), College of Environmental Science and Engineering, Ministry of Education, Changsha 410082, PR China
| | - Yintong Zhou
- Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), College of Environmental Science and Engineering, Ministry of Education, Changsha 410082, PR China
| | - Xiaoming Li
- Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), College of Environmental Science and Engineering, Ministry of Education, Changsha 410082, PR China.
| | - Qi Yang
- Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), College of Environmental Science and Engineering, Ministry of Education, Changsha 410082, PR China
| | - Xuran Liu
- Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), College of Environmental Science and Engineering, Ministry of Education, Changsha 410082, PR China
| | - Abing Duan
- Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), College of Environmental Science and Engineering, Ministry of Education, Changsha 410082, PR China
| | - Junwu Liu
- Hunan Engineering Research Center of Mining Site Pollution Remediation, Changsha 410082, PR China
| |
Collapse
|
6
|
Ye B, Zhang J, Zhou Y, Tang M, You F, Li X, Yang Q, Wang D, Liu X, Duan A, Liu J. Pretreatment of free nitrous acid combined with calcium hypochlorite for enhancement of hydrogen production in waste activated sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165774. [PMID: 37499831 DOI: 10.1016/j.scitotenv.2023.165774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/22/2023] [Accepted: 07/23/2023] [Indexed: 07/29/2023]
Abstract
A variety of variables limit the recovery of resources from anaerobic fermentation of waste activated sludge (WAS), hence pretreatment strategies are necessary to be investigated to increase its efficiency. A combination of free nitrous acid (FNA) and calcium hypochlorite [Ca(ClO)2] was employed in this investigation to significantly improve sludge fermentation performance. The yields of cumulative hydrogen for the blank and FNA treatment group were 1.09 ± 0.16 and 7.36 ± 0.21 mL/g VSS, respectively, and 6.59 ± 0.24 [0.03 g Ca(ClO)2/g TSS], 7.75 ± 0.20 (0.06), and 8.58 ± 0.22 (0.09) mL/g VSS for the Ca(ClO)2 groups. The co-treatment greatly boosted hydrogen generation, ranging from 39.97 ± 2.26 to 76.20 ± 4.78 % as compared to the solo treatment. Mechanism analysis demonstrated that the combined treatment disturbed sludge structure and cell membrane permeability even more, which released more organic substrates and enhanced biodegradability of fermentation broth. This paper describes a unique strategy to sludge pretreatment that expands the use of Ca(ClO)2 and FNA in anaerobic fermentation, with implications for sludge disposal and energy recovery.
Collapse
Affiliation(s)
- Boqun Ye
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jiamin Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yintong Zhou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Mengge Tang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Fengyuan You
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xiaoming Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Qi Yang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xuran Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Abing Duan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Junwu Liu
- Hunan Engineering Research Center of Mining Site Pollution Remediation, Changsha 410082, PR China
| |
Collapse
|
7
|
Zhang Q, Cao W, Liu Z, Liu Y, Zhang H, Meng H, Meng G, Zheng J. Performance and mechanisms of urea exposure for enhancement of biotransformation of sewage sludge into volatile fatty acids. BIORESOURCE TECHNOLOGY 2023; 388:129776. [PMID: 37709152 DOI: 10.1016/j.biortech.2023.129776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/22/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Herein, a cost-effective method for improving the anaerobic fermentation performance of sewage sludge (SS) is proposed. The highest volatile fatty acids (VFAs) reached up to 5550 mg COD/L with the supplementation of 0.2 g urea/g total suspended solids (TSS). Intensive exploration showed that SS decomposition was profoundly triggered by urea and the free ammonia generated due to the hydrolysis of urea, providing adequately bioaccessible substrates for acidogenic reactions and thus contributing to VFAs formation. Microbial composition analysis indicated that functional bacteria (i.e., Tissierella and Clostridium) associated with VFAs generation were enriched. Moreover, the metabolic activities of functional flora (i.e., membrane transport and fatty acid synthesis) were up-regulated due to the stimulation of urea. In general, the increase in bioavailable organic matter and functional microbes, and thus the increased microbial metabolic activities, improved the efficient production of VFAs. This study could provide a cost-effective approach for resource recovery from SS.
Collapse
Affiliation(s)
- Qin Zhang
- School of Energy and Environment, Anhui University of Technology, Ma'anshan 243000, China
| | - Wangbei Cao
- College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Zailiang Liu
- School of Energy and Environment, Anhui University of Technology, Ma'anshan 243000, China
| | - Yiyun Liu
- School of Energy and Environment, Anhui University of Technology, Ma'anshan 243000, China
| | - Huijuang Zhang
- School of Energy and Environment, Anhui University of Technology, Ma'anshan 243000, China
| | - Hailing Meng
- School of Energy and Environment, Anhui University of Technology, Ma'anshan 243000, China
| | - Guanhua Meng
- School of Energy and Environment, Anhui University of Technology, Ma'anshan 243000, China
| | - Jun Zheng
- School of Energy and Environment, Anhui University of Technology, Ma'anshan 243000, China.
| |
Collapse
|