1
|
Zeng W, Wang H, Chen J, Hu M, Wang X, Chen J, Zhou J. Engineering Escherichia coli for Efficient De Novo Synthesis of Salidroside. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:28369-28377. [PMID: 39666864 DOI: 10.1021/acs.jafc.4c10247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Salidroside is a high-value plant-derived glycoside with diverse biological activities, but the main industrial salidroside production method, extraction from Rhodiola plants, is insufficient to meet the growing market demand. The biosynthetic route via microbial fermentation is a sustainable and eco-friendly alternative method. De novo synthesis of the precursor tyrosol was established by introducing the ARO10 and ADH6 genes. Systematic metabolic engineering resulted in 3.0 g/L tyrosol, but accumulated tyrosol inhibited cell growth. Adaptive evolution produced an evolved strain with a 10.0% higher OD600 and a 3.3 g/L tyrosol titer. Introducing glucosyltransferase AtUGT85A1, and overexpressing phosphoglucose mutase pgm and UDP-glucose pyrophosphorylase galU, achieved de novo synthesis of salidroside. Furthermore, AtUGT85A1 was semirationally engineered, resulting in the A21G mutation, which enhanced salidroside production by 31.2%. The optimally engineered strain produced 16.8 g/L salidroside with 0.4 g/(L h) productivity in a 5 L bioreactor. This study laid a foundation for future industrial production of salidroside and provided important guidance for efficient biosynthesis of other tyrosol derivatives.
Collapse
Affiliation(s)
- Weizhu Zeng
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Huijing Wang
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jianbin Chen
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Minglong Hu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Xinru Wang
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jian Chen
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
2
|
Zhang R, Luo X, Li D, Gao Y, Chen X, Xi Z, Zheng Z. Increased thermal stability and catalytic efficiency of 3-ketosteroid Δ 1-dehydrogenase5 from Arthrobacter simplex significantly reduces enzyme dosage in prednisone acetate biosynthesis. Int J Biol Macromol 2024; 283:137855. [PMID: 39566767 DOI: 10.1016/j.ijbiomac.2024.137855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/06/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024]
Abstract
The 3-ketosteroid-Δ1-dehydrogenase5 (KsdD5) from Arthrobacter simplex converts cortisone acetate to prednisone acetate, an important step in steroid catabolism. To achieve sustainable and efficient enzyme production, we employed computer-aided screening, structural analysis, and combinatorial experiments to identify engineered KsdD5 variants (M1 and M3) with dual advantages of stability and active sites. M1 had a 8.2-fold longer half-life (19.6 h at 30 °C) than KsdD5-WT, an 11.8 °C higher half-inactivation temperature (T5015min), and a 10.6 °C higher melting temperature (Tm). M3 had 3.82-fold higher catalytic activity than WT, a 3.9-fold longer half-life at 30 °C, and higher T5015min and Tm by 14 °C and 6.9 °C, respectively. Furthermore, kinetic and microscale thermophoresis analyses revealed M3 exhibited higher catalytic efficiency due to its larger enzymatic channel. Molecular dynamics simulations showed M1 promoted tighter secondary structure packing, reduced residue flexibility, and increased hydrogen bond formation, ensuring enzyme stability and activity at elevated temperatures. Under industrial conditions, M1 converted >96 % cortisone acetate within 12 h at 30 °C with a 60 g·L-1 substrate dosage and 6 g·L-1 cell mass, whereas the M3 conversion rate was 95 %. This study demonstrates a robust strategy for developing efficient enzyme mutants, facilitating sustainable industrial production of prednisone acetate with a minimal enzyme dosage.
Collapse
Affiliation(s)
- Rong Zhang
- College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Xinran Luo
- College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Danni Li
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yating Gao
- College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Xizi Chen
- College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Zubin Xi
- Hubei Goto Biopharm Co., Ltd., 33th Floor of Building #1, IFC, South jiangshan Rd, Wolong Ave, Fancheng District, Xiangyang, Hubei 441057, China
| | - Zhongliang Zheng
- College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
3
|
Chen L, Lai J, Luo Y, Shu T, Lv B, Li C. Efficient glycyrrhetinic acid biomanufacturing through protein engineering and dual-GUS combination strategy with novel β-glucuronidase from Aspergillus calidoustus CLH-22. BIORESOURCE TECHNOLOGY 2024; 413:131436. [PMID: 39245064 DOI: 10.1016/j.biortech.2024.131436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/02/2024] [Accepted: 09/02/2024] [Indexed: 09/10/2024]
Abstract
Glycyrrhetinicacid (GA) is a high-value pentacyclic triterpenoid with broad applications. However, the industrial production of GA is hindered by low yield and the accumulation of the intermediate product GlycyrrhetinicAcid3-O-Mono-β-D-Glucuronide (GAMG). This study first identified a novel β-glucuronidase (AcGUS) from Aspergillus calidoustus CLH-22 through transcriptomic analysis, demonstrating a substrate preference for GAMG. Subsequently, mutant AcGUS3G461C/Q462H/I575K with significantly improved activity (kcat/Km of 11.02-fold) was obtained via computer-aided engineering. Furthermore, the dual-GUS combination strategy was employed for the first timeto construct engineered Pichia pastoris for GA production, offering multiple advantages of enhanced conversion efficiency and reduced fermentation viscosity. Finally, under systematically optimized conditions and employing Glycyrrhizin (GL) as the substrate, the final concentration of GA was 48.73 g/L with a conversion of 97.26 % in a 1000-L fermenter, representing the optimal biocatalytic performance reported to date. This study provides new ideas and insights for industrial GA production.
Collapse
Affiliation(s)
- Linhao Chen
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Junjie Lai
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Yan Luo
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Tao Shu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Bo Lv
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China.
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China; Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
4
|
Lin SK, Zhou J, Lu Y, Guo L, Huang JJ, Lin JF. Computer-Guided Engineered Endo- and Exocleaving Glycosidase for Significantly Improving Production of Ginsenoside F1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:26294-26304. [PMID: 39535231 DOI: 10.1021/acs.jafc.4c07387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Ginsenoside F1, a particularly rare and valuable compound known for its health benefits, requires precise deglycosylation due to the extensive glycosylation of ginsenosides in Panax notoginseng. Here, we identified that the β-d-glucosidase BglSK exhibits both endo- and exocleaving glycosidase activities with multi-6-O-glycosides, thereby facilitating the specific production of Ginsenoside F1. The variant BglSKT137A/L508A, obtained through protein engineering, displayed kcat/KM values for the reactions of ginsenoside Rg1 and notoginsenoside R1 that were increased by 13.88-fold and 108.56-fold, respectively, compared with the BglSKWT. The reduced steric hindrance and the overall increase in loop stability show a higher tendency to adopt a closed conformation and facilitate the prereaction state, which may explain the enhanced catalytic efficiency of the engineered enzyme. These beneficial mutants will deepen our understanding of mechanisms for improving glycosidase activity and provide tools for producing high-value P. notoginseng products.
Collapse
Affiliation(s)
- Shi-Kun Lin
- College of Food Science, South China Agricultural University, Guangzhou 510640, China
| | - Jinlin Zhou
- Golden Health Biotechnology Co., Ltd., Foshan 528225, China
| | - Yujing Lu
- School of Chemical Engineering and Light Industry, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Liqiong Guo
- College of Food Science, South China Agricultural University, Guangzhou 510640, China
| | - Jia-Jun Huang
- Golden Health Biotechnology Co., Ltd., Foshan 528225, China
- TF BioSyn Biotechnology Co., Ltd., Foshan 528225, China
| | - Jun-Fang Lin
- College of Food Science, South China Agricultural University, Guangzhou 510640, China
| |
Collapse
|
5
|
Mao XA, Zhang P, Gong JS, Marshall GL, Su C, Qin ZQ, Li H, Xu GQ, Xu ZH, Shi JS. Protein Engineering of Nicotinamide Riboside Kinase Based on a Combinatorial Semirational Design Strategy for Efficient Biocatalytic Synthesis of Nicotinamide Mononucleotides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25210-25218. [PMID: 39481026 DOI: 10.1021/acs.jafc.4c05520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Industrial biosynthesis of β-nicotinamide mononucleotide (β-NMN) lacks a highly active nicotinamide riboside kinase for the phosphorylation process. Cumbersome preprocessing steps and excessive ATP addition contribute to its increased cost. To tackle these challenges, a docking combination simulation (DCS) semirational mutagenesis strategy was designed in this study, combining various modification strategies to obtain a mutant NRK-TRA with 2.9-fold higher enzyme activity. Molecular dynamics simulations and structural analysis demonstrate the enhancement of its structural stability. High-density fermentation was achieved through a 5 L fermentation tank, with a titer reaching 208.3 U/mL, the highest in the current report. An ATP-cycling whole-cell catalytic system was employed and optimized by introducing a polyphosphate kinase 2 (PPK2) recombinant strain, and 15.16 g/L β-NMN was obtained through a series of batch transformation experiments. This study provides a new strategy for the efficient screening of highly active enzyme variants and offers a green and promising biotransformation system for NMN production.
Collapse
Affiliation(s)
- Xin-An Mao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Peng Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Jin-Song Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
- Institute of Future Food Technology, JITRI, Yixing 214200, PR China
| | - George Luo Marshall
- Seragon Biosciences, Inc., 400 Spectrum Center Drive, 16th Floor, Irvine, California 92618, United States
| | - Chang Su
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
- Institute of Future Food Technology, JITRI, Yixing 214200, PR China
| | - Zheng-Qiang Qin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Heng Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Guo-Qiang Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
- Institute of Future Food Technology, JITRI, Yixing 214200, PR China
| | - Zheng-Hong Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
- Institute of Future Food Technology, JITRI, Yixing 214200, PR China
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
- Institute of Future Food Technology, JITRI, Yixing 214200, PR China
| |
Collapse
|
6
|
Li Y, Fu Y, Chen X, Fan S, Cao Z, Xu F. A Dual-Focus Workflow for Simultaneously Engineering High Activity and Thermal Stability in Methyl Parathion Hydrolase. Angew Chem Int Ed Engl 2024; 63:e202410881. [PMID: 39126280 DOI: 10.1002/anie.202410881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/20/2024] [Accepted: 08/08/2024] [Indexed: 08/12/2024]
Abstract
Industrial fermentation applications typically require enzymes that exhibit high stability and activity at high temperatures. However, efforts to simultaneously improve these properties are usually limited by a trade-off between stability and activity. This report describes a computational strategy to enhance both activity and thermal stability of the mesophilic organophosphate-degrading enzyme, methyl parathion hydrolase (MPH). To predict hotspot mutation sites, we assembled a library of features associated with the target properties for each residue and then prioritized candidate sites by hierarchical clustering. Subsequent in silico screening with multiple algorithms to simulate selective pressures yielded a subset of 23 candidate mutations. Iterative parallel screening of mutations that improved thermal stability and activity yielded, MPHase-m5b, which exhibited 13.3 °C higher Tm and 4.2 times higher catalytic activity than wild-type (WT) MPH over a wide temperature range. Systematic analysis of crystal structures, molecular dynamics (MD) simulations, and quantum mechanics/molecular mechanics (QM/MM) calculations revealed a wider entrance to the active site that increased substrate access with an extensive network of interactions outside the active site that reinforced αβ/βα sandwich architecture to improve thermal stability. This study thus provides an advanced, rational design framework to improve efficiency in engineering highly active, thermostable biocatalysts for industrial applications.
Collapse
Affiliation(s)
- Yingnan Li
- Ministry of Education Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Yuzhuang Fu
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, P. R. China
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Xiling Chen
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Shilong Fan
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Zexing Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Fei Xu
- Ministry of Education Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| |
Collapse
|
7
|
Fu X, Wang L, Liu C, Liu Y, Li X, Yao T, Jiao J, Shu R, Li J, Zhang Y, Wang F, Gao J. Integrated Analysis of Metabolome and Transcriptome Reveals the Effect of Burdock Fructooligosaccharide on the Quality of Chinese Cabbage ( Brassica rapa L. ssp. Pekinensis). Int J Mol Sci 2024; 25:11459. [PMID: 39519013 PMCID: PMC11546758 DOI: 10.3390/ijms252111459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Burdock fructooligosaccharide (BFO) is fructose with a low polymerization degree, which could improve the immunity to pathogens, quality, and stress resistance of vegetables. Still, there are no studies on applying BFO in Chinese cabbage. In this study, the effects of exogenous BFO sprayed with different concentrations (0, 5, 10, 20, 30 g·L-1) on the growth and soluble sugar content of Chinese cabbage seedlings were determined. The result showed that 10 g·L-1 was the appropriate spraying concentration. Based on metabolome analysis, a total of 220 differentially accumulated metabolites (DAMs) were found, among which flavonoid metabolites, glucosinolate metabolites, and soluble sugar-related metabolites were the key metabolites involved in improving the quality of Chinese cabbage caused by BFO. Further combination analysis with transcriptome, trans-cinnamate 4-monooxygenase (CYP73A5), and chalcone synthase 1 (CHS1) were more closely associated with the DAMs of flavonoid biosynthesis. Sulfotransferases 18 (SOT18), Branched-chain amino acid amino transferases 6 (BCAT6), and cytochrome P450 monooxygenase (CYP83A1) were the key genes in glucosinolate biosynthesis. Hexokinase (HxK1), beta-glucosidase 8 (BGL08), invertase 3 (INV3), beta-glucosidase 3B (BGL3B), and sucrose phosphate synthase 1 (SPS1) were significantly upregulated, potentially playing crucial roles in the soluble sugar metabolism. In conclusion, these results provided an understanding of the effects of BFO on the expression of genes and the accumulation of metabolites related to quality formation in Chinese cabbage.
Collapse
Affiliation(s)
- Xin Fu
- Shandong Key Laboratory of Bulk Open-Field Vegetable Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (X.F.); (L.W.); (C.L.); (X.L.); (T.Y.); (J.J.); (R.S.); (J.L.); (Y.Z.)
| | - Lixia Wang
- Shandong Key Laboratory of Bulk Open-Field Vegetable Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (X.F.); (L.W.); (C.L.); (X.L.); (T.Y.); (J.J.); (R.S.); (J.L.); (Y.Z.)
| | - Chenwen Liu
- Shandong Key Laboratory of Bulk Open-Field Vegetable Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (X.F.); (L.W.); (C.L.); (X.L.); (T.Y.); (J.J.); (R.S.); (J.L.); (Y.Z.)
| | - Yuxiang Liu
- School of Biological Science and Technology, University of Jinan, Jinan 250100, China;
| | - Xiaolong Li
- Shandong Key Laboratory of Bulk Open-Field Vegetable Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (X.F.); (L.W.); (C.L.); (X.L.); (T.Y.); (J.J.); (R.S.); (J.L.); (Y.Z.)
| | - Tiantian Yao
- Shandong Key Laboratory of Bulk Open-Field Vegetable Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (X.F.); (L.W.); (C.L.); (X.L.); (T.Y.); (J.J.); (R.S.); (J.L.); (Y.Z.)
| | - Jian Jiao
- Shandong Key Laboratory of Bulk Open-Field Vegetable Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (X.F.); (L.W.); (C.L.); (X.L.); (T.Y.); (J.J.); (R.S.); (J.L.); (Y.Z.)
| | - Rui Shu
- Shandong Key Laboratory of Bulk Open-Field Vegetable Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (X.F.); (L.W.); (C.L.); (X.L.); (T.Y.); (J.J.); (R.S.); (J.L.); (Y.Z.)
| | - Jingjuan Li
- Shandong Key Laboratory of Bulk Open-Field Vegetable Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (X.F.); (L.W.); (C.L.); (X.L.); (T.Y.); (J.J.); (R.S.); (J.L.); (Y.Z.)
| | - Yihui Zhang
- Shandong Key Laboratory of Bulk Open-Field Vegetable Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (X.F.); (L.W.); (C.L.); (X.L.); (T.Y.); (J.J.); (R.S.); (J.L.); (Y.Z.)
| | - Fengde Wang
- Shandong Key Laboratory of Bulk Open-Field Vegetable Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (X.F.); (L.W.); (C.L.); (X.L.); (T.Y.); (J.J.); (R.S.); (J.L.); (Y.Z.)
| | - Jianwei Gao
- Shandong Key Laboratory of Bulk Open-Field Vegetable Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (X.F.); (L.W.); (C.L.); (X.L.); (T.Y.); (J.J.); (R.S.); (J.L.); (Y.Z.)
| |
Collapse
|
8
|
Wang Y, Du G, Zhang Y, Yu H, Liu S, Wang Z, Ma X, Wei X, Wen B, Li Z, Fan S, Xin F. Distinct Adjacent Substrate Binding Pocket Regulates the Activity of a Decameric Feruloyl Esterase from Bacteroides thetaiotaomicron. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23554-23566. [PMID: 39370616 DOI: 10.1021/acs.jafc.4c06286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Understanding how the human gut microbiota contribute to the metabolism of dietary carbohydrates is of great interest, particularly those with ferulic acid (FA) decorations that have manifold health benefits. Here, we report the crystal structure of a decameric feruloyl esterase (BtFae) from Bacteroides thetaiotaomicron in complex with methyl ferulate (MFA), revealing that MFA is situated in a noncatalytic substrate binding pocket adjacent to the catalytic pocket. Molecular docking and mutagenesis studies further demonstrated that the adjacent pocket affects substrate binding in the active site and negatively regulates the BtFae activity on both synthetic and natural xylan substrates. Additionally, quantum mechanics (QM) calculations were employed to investigate the catalytic process of BtFae from substrate binding to product release, and identified TS_2 in the acylation step is rate-limiting. Collectively, this study unmasks a novel regulatory mechanism of FAE activity, which may contribute to further investigation of FA-conjugated polysaccharides metabolism in the human gut.
Collapse
Affiliation(s)
- Yulu Wang
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Institute of Food Science Technology Nutrition and Health (Cangzhou), Chinese Academy of Agricultural Sciences, Cangzhou 061001, China
| | - Guoming Du
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuebin Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Haiyan Yu
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shujun Liu
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Institute of Food Science Technology Nutrition and Health (Cangzhou), Chinese Academy of Agricultural Sciences, Cangzhou 061001, China
| | - Zhaoxing Wang
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China
| | - Xiaochen Ma
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xue Wei
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Boting Wen
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Institute of Food Science Technology Nutrition and Health (Cangzhou), Chinese Academy of Agricultural Sciences, Cangzhou 061001, China
| | - Zhen Li
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Institute of Food Science Technology Nutrition and Health (Cangzhou), Chinese Academy of Agricultural Sciences, Cangzhou 061001, China
| | - Shilong Fan
- Key Laboratory of Ministry of Education for Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Fengjiao Xin
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Institute of Food Science Technology Nutrition and Health (Cangzhou), Chinese Academy of Agricultural Sciences, Cangzhou 061001, China
| |
Collapse
|
9
|
Magwaza B, Amobonye A, Pillai S. Microbial β-glucosidases: Recent advances and applications. Biochimie 2024; 225:49-67. [PMID: 38734124 DOI: 10.1016/j.biochi.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/05/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
The global β-glucosidase market is currently estimated at ∼400 million USD, and it is expected to double in the next six years; a trend that is mainly ascribed to the demand for the enzyme for biofuel processing. Microbial β-glucosidase, particularly, has thus garnered significant attention due to its ease of production, catalytic efficiency, and versatility, which have all facilitated its biotechnological potential across different industries. Hence, there are continued efforts to screen, produce, purify, characterize and evaluate the industrial applicability of β-glucosidase from actinomycetes, bacteria, fungi, and yeasts. With this rising demand for β-glucosidase, various cost-effective and efficient approaches are being explored to discover, redesign, and enhance their production and functional properties. Thus, this present review provides an up-to-date overview of advancements in the utilization of microbial β-glucosidases as "Emerging Green Tools" in 21st-century industries. In this regard, focus was placed on the use of recombinant technology, protein engineering, and immobilization techniques targeted at improving the industrial applicability of the enzyme. Furthermore, insights were given into the recent progress made in conventional β-glucosidase production, their industrial applications, as well as the current commercial status-with a focus on the patents.
Collapse
Affiliation(s)
- Buka Magwaza
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P. O. Box 1334, Durban, 4000, South Africa.
| | - Ayodeji Amobonye
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P. O. Box 1334, Durban, 4000, South Africa.
| | - Santhosh Pillai
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P. O. Box 1334, Durban, 4000, South Africa.
| |
Collapse
|
10
|
Wang J, Lu X, Zhuge B, Zong H. Enhancing the catalytic efficiency of M32 carboxypeptidase by semi-rational design and its applications in food taste improvement. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7375-7385. [PMID: 38666395 DOI: 10.1002/jsfa.13558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/02/2024] [Accepted: 04/26/2024] [Indexed: 05/09/2024]
Abstract
BACKGROUND Carboxypeptidase is an exopeptidase that hydrolyzes amino acids at the C-terminal end of the peptide chain and has a wide range of applications in food. However, in industrial applications, the relatively low catalytic efficiency of carboxypeptidases is one of the main limiting factors for industrialization. RESULTS The study has enhanced the catalytic efficiency of Bacillus megaterium M32 carboxypeptidase (BmeCPM32) through semi-rational design. Firstly, the specific activity of the optimal mutant, BmeCPM32-M2, obtained through single-site mutagenesis and combinatorial mutagenesis, was 2.2-fold higher than that of the wild type (187.9 versus 417.8 U mg-1), and the catalytic efficiency was 2.9-fold higher (110.14 versus 325.75 s-1 mmol-1). Secondly, compared to the wild type, BmeCPM32-M2 exhibited a 1.8-fold increase in half-life at 60 °C, with no significant changes in its enzymatic properties (optimal pH, optimal temperature). Finally, BmeCPM32-M2 significantly increased the umami intensity of soy protein isolate hydrolysate by 55% and reduced bitterness by 83%, indicating its potential in developing tasty protein components. CONCLUSION Our research has revealed that the strategy based on protein sequence evolution and computational residue mutation energy led to an improved catalytic efficiency of BmeCPM32. Molecular dynamics simulations have revealed that a smaller substrate binding pocket and increased enzyme-substrate affinity are the reasons for the enhanced catalytic efficiency. Furthermore the number of hydrogen bonds and solvent and surface area may contribute to the improvement of thermostability. Finally, the de-bittering effect of BmeCPM32-M2 in soy protein isolate hydrolysate suggests its potential in developing palatable protein components. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jinjiang Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xinyao Lu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Bin Zhuge
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Hong Zong
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
11
|
Wang Q, Lin W, Ni Y, Zhou J, Xu G, Han R. Engineering of Methionine Adenosyltransferase toward Mitigated Product Inhibition for Efficient Production of S-Adenosylmethionine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16900-16910. [PMID: 39016109 DOI: 10.1021/acs.jafc.4c03715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
S-Adenosylmethionine (SAM) is a crucial metabolic intermediate playing irreplaceable roles in organismal activities. However, the synthesis of SAM by methionine adenosyltransferase (MAT) is hindered by low conversion due to severe product inhibition. Herein structure-guided semirational engineering was conducted on MAT from Escherichia coli (EcMAT) to mitigate the product inhibitory effect. Compared with the wild-type EcMAT, the best variant E56Q/Q105R exhibited an 8.13-fold increase in half maximal inhibitory concentration and a 4.46-fold increase in conversion (150 mM ATP and l-methionine), leading to a SAM titer of 47.02 g/L. Another variant, E56N/Q105R, showed superior thermostability with an impressive 85.30-fold increase in half-life (50 °C) value. Furthermore, molecular dynamics (MD) simulation results demonstrate that the alleviation in product inhibitory effect could be attributed to facilitated product release. This study offers molecular insights into the mitigated product inhibition, and provides valuable guidance for engineering MAT toward enhanced catalytic performance.
Collapse
Affiliation(s)
- Qiangqiang Wang
- Key laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Weibin Lin
- Key laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Ye Ni
- Key laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jinghui Zhou
- National Engineering Research Center for Enzyme Technology in Medicine and Chemical Industry, Hunan Flag Bio-tech Co., Ltd., Changsha 410100, China
- National Research Center of Engineering and Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha 410128, China
| | - Gang Xu
- National Engineering Research Center for Enzyme Technology in Medicine and Chemical Industry, Hunan Flag Bio-tech Co., Ltd., Changsha 410100, China
| | - Ruizhi Han
- Key laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
12
|
Fan Z, Li X, Jiang R, Li J, Cao F, Sun M, Wang L. Molecular Dynamics Simulation Reveal the Structure-Activity Relationships of Kainoid Synthases. Mar Drugs 2024; 22:326. [PMID: 39057435 PMCID: PMC11277886 DOI: 10.3390/md22070326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Kainoid synthases are key enzymes in the biosynthesis of kainoids. Kainoids, as represented by DA and KA, are a class of naturally occurring non-protein amino acids with strong neurotransmitter activity in the mammalian central nervous system. Marine algae kainoid synthases include PnDabC from diatoms, which synthesizes domoic acid (DA), and DsKabC and GfKabC from red algae, which synthesize kainic acid (KA). Elucidation of the catalytic mechanism of kainoid synthases is of great significance for the rational design of better biocatalysts to promote the industrial production of kainoids for use in new drugs. Through modeling, molecular docking, and molecular dynamics simulations, we investigated the conformational dynamics of kainoid synthases. We found that the kainoid synthase complexes showed different stability in the simulation, and the binding and catalytic processes showed significant conformational transformations of kainoid synthase. The residues involved in specific interactions with the substrate contributed to the binding energy throughout the simulation process. Binding energy, the relaxed active pocket, electrostatic potential energy of the active pocket, the number and rotation of aromatic residues interacting with substrates during catalysis, and the number and frequency of hydrogen bonds between the individual functional groups revealed the structure-activity relationships and affected the degree of promiscuity of kainoid synthases. Our research enriches the understanding of the conformational dynamics of kainoid synthases and has potential guiding significance for their rational design.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lianghua Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai 200433, China; (Z.F.)
| |
Collapse
|
13
|
Xie T, Zhou L, Han L, You C, Liu Z, Cui W, Cheng Z, Guo J, Zhou Z. Engineering hyperthermophilic pullulanase to efficiently utilize corn starch for production of maltooligosaccharides and glucose. Food Chem 2024; 446:138652. [PMID: 38402758 DOI: 10.1016/j.foodchem.2024.138652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/19/2024] [Accepted: 01/31/2024] [Indexed: 02/27/2024]
Abstract
Pullulanase is a starch-debranching enzyme that hydrolyzes side chain of starch, oligosaccharides and pullulan. Nevertheless, the limited activities of pullulanases constrain their practical application. Herein, the hyperthermophilic type II pullulanase from Pyrococcus yayanosii CH1 (PulPY2) was evolved by synergistically engineering the substrate-binding pocket and active-site lids. The resulting mutant PulPY2-M2 exhibited 5-fold improvement in catalytic efficiency (kcat/Km) compared to that of PulPY2. PulPY2-M2 was utilized to develop a one-pot reaction system for efficient production of maltooligosaccharides. The maltooligosaccharides conversion rate of PulPY2-M2 reached 96.1%, which was increased by 5.4% compared to that of PulPY2. Furthermore, when employed for glucose production, the glucose productivity of PulPY2-M2 was 25.4% and 43.5% higher than that of PulPY2 and the traditional method, respectively. These significant improvements in maltooligosaccharides and glucose production and the efficient utilization of corn starch demonstrated the potential of the engineered PulPY2-M2 in starch sugar industry.
Collapse
Affiliation(s)
- Ting Xie
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Li Zhou
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Laichuang Han
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Cuiping You
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Zhongmei Liu
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Wenjing Cui
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Zhongyi Cheng
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Junling Guo
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Zhemin Zhou
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China.
| |
Collapse
|
14
|
Zhao Y, Chen K, Yang H, Wang Y, Liao X. Semirational Design Based on Consensus Sequences to Balance the Enzyme Activity-Stability Trade-Off. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6454-6462. [PMID: 38477968 DOI: 10.1021/acs.jafc.3c08620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
In this study, the phenomenon of the stability-activity trade-off, which is increasingly recognized in enzyme engineering, was explored. Typically, enhanced stability in enzymes correlates with diminished activity. Utilizing Rosa roxburghii copper-zinc superoxide dismutase (RrCuZnSOD) as a model, single-site mutations were introduced based on a semirational design derived from consensus sequences. The initial set of mutants was selected based on activity, followed by combinatorial mutation. This approach yielded two double-site mutants, D25/A115T (18,688 ± 206 U/mg) and A115T/S135P (18,095 ± 1556 U/mg), exhibiting superior enzymatic properties due to additive and synergistic effects. These mutants demonstrated increased half-lives (T1/2) at 80 °C by 1.2- and 1.6-fold, respectively, and their melting temperatures (Tm) rose by 3.4 and 2.5 °C, respectively, without any loss in activity relative to the wild type. Via an integration of structural analysis and molecular dynamics simulations, we elucidated the underlying mechanism facilitating the concurrent enhancement of both thermostability and enzymatic activity.
Collapse
Affiliation(s)
- Yang Zhao
- National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Sichuan Advanced Agricultural and Industrial Institute, China Agricultural University, Chengdu 611400, China
| | - Kun Chen
- National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Haixia Yang
- National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yongtao Wang
- National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiaojun Liao
- National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
15
|
Gu S, Zhu F, Zhang L, Wen J. Mid-Long Chain Dicarboxylic Acid Production via Systems Metabolic Engineering: Progress and Prospects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5555-5573. [PMID: 38442481 DOI: 10.1021/acs.jafc.4c00002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Mid-to-long-chain dicarboxylic acids (DCAi, i ≥ 6) are organic compounds in which two carboxylic acid functional groups are present at the terminal position of the carbon chain. These acids find important applications as structural components and intermediates across various industrial sectors, including organic compound synthesis, food production, pharmaceutical development, and agricultural manufacturing. However, conventional petroleum-based DCA production methods cause environmental pollution, making sustainable development challenging. Hence, the demand for eco-friendly processes and renewable raw materials for DCA production is rising. Owing to advances in systems metabolic engineering, new tools from systems biology, synthetic biology, and evolutionary engineering can now be used for the sustainable production of energy-dense biofuels. Here, we explore systems metabolic engineering strategies for DCA synthesis in various chassis via the conversion of different raw materials into mid-to-long-chain DCAs. Subsequently, we discuss the future challenges in this field and propose synthetic biology approaches for the efficient production and successful commercialization of these acids.
Collapse
Affiliation(s)
- Shanna Gu
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072,China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072,China
- SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd, Dalian 116045, China
| | - Fuzhou Zhu
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072,China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072,China
| | - Lin Zhang
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072,China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072,China
- SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd, Dalian 116045, China
| | - Jianping Wen
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072,China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072,China
| |
Collapse
|
16
|
Dai C, Tian JX, Chen YF, Ni YH, Cui L, Cao HX, Song LL, Xu SY, Wang YJ, Zheng YG. Computer-aided design to enhance the stability of aldo-keto reductase KdAKR. Biotechnol J 2024; 19:e2300637. [PMID: 38472092 DOI: 10.1002/biot.202300637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 03/14/2024]
Abstract
The aldo-keto reductase (AKR) KdAKR from Kluyvermyces dobzhanskii can reduce t-butyl 6-chloro-(5S)-hydroxy-3-oxohexanoate ((5S)-CHOH) to t-butyl 6-chloro-(3R,5S)-dihydroxyhexanoate ((3R,5S)-CDHH), which is the key chiral intermediate of rosuvastatin. Herein, a computer-aided design that combined the use of PROSS platform and consensus design was employed to improve the stability of a previously constructed mutant KdAKRM6 . Experimental verification revealed that S196C, T232A, V264I and V45L produced improved thermostability and activity. The "best" mutant KdAKRM10 (KdAKRM6 -S196C/T232A/V264I/V45L) was constructed by combining the four beneficial mutations, which displayed enhanced thermostability. Its T50 15 and Tm values were increased by 10.2 and 10.0°C, respectively, and half-life (t1/2 ) at 40°C was increased by 17.6 h. Additionally, KdAKRM10 demonstrated improved resistance to organic solvents compared to that of KdAKRM6 . Structural analysis revealed that the increased number of hydrogen bonds and stabilized hydrophobic core contributed to the rigidity of KdAKRM10 , thus improving its stability. The results validated the feasibility of the computer-aided design strategy in improving the stability of AKRs.
Collapse
Affiliation(s)
- Chen Dai
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Jia-Xin Tian
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Yu-Feng Chen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Yue-Han Ni
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Lei Cui
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Hai-Xing Cao
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Lin-Lin Song
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Shen-Yuan Xu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Ya-Jun Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| |
Collapse
|
17
|
Wei M, Gao X, Zhang W, Li C, Lu F, Guan L, Liu W, Wang J, Wang F, Qin HM. Enhanced Thermostability of an l-Rhamnose Isomerase for d-Allose Synthesis by Computation-Based Rational Redesign of Flexible Regions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15713-15722. [PMID: 37823838 DOI: 10.1021/acs.jafc.3c05736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
d-Allose is a low-calorie rare sugar with great application potential in the food and pharmaceutical industries. The production of d-allose has been accomplished using l-rhamnose isomerase (L-RI), but concomitantly increasing the enzyme's stability and activity remains challenging. Here, we rationally engineered an L-RI from Clostridium stercorarium to enhance its stability by comprehensive computation-aided redesign of its flexible regions, which were successively identified using molecular dynamics simulations. The resulting combinatorial mutant M2-4 exhibited a 5.7-fold increased half-life at 75 °C while also exhibiting improved catalytic efficiency. Especially, by combining structure modeling and multiple sequence alignment, we identified an α0 region that was universal in the L-RI family and likely acted as a "helix-breaker". Truncating this region is crucial for improving the thermostability of related enzymes. Our work provides a significantly stable biocatalyst with potential for the industrial production of d-allose.
Collapse
Affiliation(s)
- Meijing Wei
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, P. R. China
| | - Xin Gao
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, P. R. China
| | - Wei Zhang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, P. R. China
| | - Chao Li
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, P. R. China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, P. R. China
| | - Lijun Guan
- Institute of Food Processing, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, P. R. China
| | - Weidong Liu
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jianwen Wang
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Fenghua Wang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, P. R. China
| | - Hui-Min Qin
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, P. R. China
| |
Collapse
|
18
|
Ouyang B, Wang G, Zhang N, Zuo J, Huang Y, Zhao X. Recent Advances in β-Glucosidase Sequence and Structure Engineering: A Brief Review. Molecules 2023; 28:4990. [PMID: 37446652 DOI: 10.3390/molecules28134990] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
β-glucosidases (BGLs) play a crucial role in the degradation of lignocellulosic biomass as well as in industrial applications such as pharmaceuticals, foods, and flavors. However, the application of BGLs has been largely hindered by issues such as low enzyme activity, product inhibition, low stability, etc. Many approaches have been developed to engineer BGLs to improve these enzymatic characteristics to facilitate industrial production. In this article, we review the recent advances in BGL engineering in the field, including the efforts from our laboratory. We summarize and discuss the BGL engineering studies according to the targeted functions as well as the specific strategies used for BGL engineering.
Collapse
Affiliation(s)
- Bei Ouyang
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Guoping Wang
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Nian Zhang
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Jiali Zuo
- School of Computer and Information Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Yunhong Huang
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Xihua Zhao
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
19
|
Boukid F, Ganeshan S, Wang Y, Tülbek MÇ, Nickerson MT. Bioengineered Enzymes and Precision Fermentation in the Food Industry. Int J Mol Sci 2023; 24:10156. [PMID: 37373305 DOI: 10.3390/ijms241210156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/06/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Enzymes have been used in the food processing industry for many years. However, the use of native enzymes is not conducive to high activity, efficiency, range of substrates, and adaptability to harsh food processing conditions. The advent of enzyme engineering approaches such as rational design, directed evolution, and semi-rational design provided much-needed impetus for tailor-made enzymes with improved or novel catalytic properties. Production of designer enzymes became further refined with the emergence of synthetic biology and gene editing techniques and a plethora of other tools such as artificial intelligence, and computational and bioinformatics analyses which have paved the way for what is referred to as precision fermentation for the production of these designer enzymes more efficiently. With all the technologies available, the bottleneck is now in the scale-up production of these enzymes. There is generally a lack of accessibility thereof of large-scale capabilities and know-how. This review is aimed at highlighting these various enzyme-engineering strategies and the associated scale-up challenges, including safety concerns surrounding genetically modified microorganisms and the use of cell-free systems to circumvent this issue. The use of solid-state fermentation (SSF) is also addressed as a potentially low-cost production system, amenable to customization and employing inexpensive feedstocks as substrate.
Collapse
Affiliation(s)
- Fatma Boukid
- ClonBio Group Ltd., 6 Fitzwilliam Pl, D02 XE61 Dublin, Ireland
| | | | - Yingxin Wang
- Saskatchewan Food Industry Development Centre, Saskatoon, SK S7M 5V1, Canada
| | | | - Michael T Nickerson
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| |
Collapse
|
20
|
Cao X, Yang X, Xiao M, Jiang X. Molecular Dynamics Simulations Reveal the Conformational Transition of GH33 Sialidases. Int J Mol Sci 2023; 24:ijms24076830. [PMID: 37047800 PMCID: PMC10095477 DOI: 10.3390/ijms24076830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
Sialidases are increasingly used in the production of sialyloligosaccharides, a significant component of human milk oligosaccharides. Elucidating the catalytic mechanism of sialidases is critical for the rational design of better biocatalysts, thereby facilitating the industrial production of sialyloligosaccharides. Through comparative all-atom molecular dynamics simulations, we investigated the structural dynamics of sialidases in Glycoside Hydrolase family 33 (GH33). Interestingly, several sialidases displayed significant conformational transition and formed a new cleft in the simulations. The new cleft was adjacent to the innate active site of the enzyme, which serves to accommodate the glycosyl acceptor. Furthermore, the residues involved in the specific interactions with the substrate were evolutionarily conserved in the whole GH33 family, highlighting their key roles in the catalysis of GH33 sialidases. Our results enriched the catalytic mechanism of GH33 sialidases, with potential implications in the rational design of sialidases.
Collapse
Affiliation(s)
- Xueting Cao
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China
| | - Xiao Yang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Min Xiao
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xukai Jiang
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China
| |
Collapse
|