1
|
Lu M, Hao Y, Lin B, Huang Z, Zhang Y, Chen L, Li K, Li J. The bioaugmentation effect of microbial inoculants on humic acid formation during co-composting of bagasse and cow manure. ENVIRONMENTAL RESEARCH 2024; 252:118604. [PMID: 38548254 DOI: 10.1016/j.envres.2024.118604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 06/07/2024]
Abstract
The effective degradation of recalcitrant lignocellulose has emerged as a bottleneck for the humification of compost, and strategies are required to improve the efficiency of bagasse composting. Bioaugmentation is a promising method for promoting compost maturation and improving the quality of final compost. In this study, the bioaugmentation effects of microbial inoculants on humic acid (HA) formation during lignocellulosic composting were explored. In the inoculated group, the maximum temperature was increased to 72.5 °C, and the phenol-protein condensation and Maillard humification pathways were enhanced, thus increasing the HA content by 43.85%. After inoculation, the intensity of the microbial community interactions increased, particularly for fungi (1.4-fold). Macrogenomic analysis revealed that inoculation enriched thermophilic bacteria and lignocellulose-degrading fungi and increased the activity of carbohydrate-active enzymes and related metabolic functions, which effectively disrupted the recalcitrant structure of lignocellulose to achieve a high humification degree. Spearman correlation analysis indicated that Stappia of the Proteobacteria phylum, Ilumatobacter of the Actinomycetes phylum, and eleven genera of Ascomycota were the main HA producers. This study provides new ideas for bagasse treatment and recycling and realizing the comprehensive use of resources.
Collapse
Affiliation(s)
- Mengling Lu
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, Guangxi, China
| | - Yuhao Hao
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, Guangxi, China
| | - Binfeng Lin
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, Guangxi, China
| | - Zhi Huang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, Guangxi, China
| | - Yu Zhang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, Guangxi, China
| | - Liang Chen
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, Guangxi, China
| | - Kai Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, Guangxi, China
| | - Jianbin Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, Guangxi, China; Academy of Sugarcane and Sugar Industry, Guangxi University, Nanning 530004, Guangxi, China.
| |
Collapse
|
2
|
Dong W, Zhou R, Li X, Yan H, Zheng J, Peng N, Zhao S. Effect of simplified inoculum agent on performance and microbiome during cow manure-composting at industrial-scale. BIORESOURCE TECHNOLOGY 2024; 393:130097. [PMID: 38013035 DOI: 10.1016/j.biortech.2023.130097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 11/29/2023]
Abstract
A simplified inoculum agent, only comprising Bacillus subtilis and Aspergillus niger, was utilized for industrial-scale cow-manure composting to investigate its impact on composting performance and microbiome. Inoculants elevated the average and peak temperatures by up to 7 and 10 °C, respectively, during the thermophilic stage, reduced organic matter content, and raised germination index. Inoculation also extended the period of composting above 50 °C from 12 to 26 days. Sequencing unveiled significant shifts in microbial diversity, composition, and function. Aspergillus thrived during the mesophilic phase, potentially initiating composting, whereas Bacillus, Lysinibacillus, and Clostridium were enriched during the thermophilic stage. Metagenomic sequencing revealed an increased abundance of carbohydrate-active enzymes and glycometabolism-related genes responsible for lignocellulose degradation and heat generation after inoculation. These enriched microbes and functional genes contributed to organic matter degradation and temperature maintenance during thermophilic stage, expediting composting. This suggests the effectiveness of this simplified inoculum in industrial-level cow-manure composting.
Collapse
Affiliation(s)
- Weiwei Dong
- National Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; College of Life Sciences, Hubei Normal University, Huangshi 435002, China
| | - Rui Zhou
- National Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; BGI Genomics, Shenzhen 518083, China; Clin Lab, BGI Genomics, Wuhan 430074, China
| | - Xudong Li
- National Key Laboratory of Agricultural Microbiology, Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hua Yan
- Jiangsu Sweeper Biotechnology, Nanjing 211800, China
| | - Jinshui Zheng
- National Key Laboratory of Agricultural Microbiology, Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Nan Peng
- National Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shumiao Zhao
- National Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
3
|
Wang S, Long H, Hu X, Wang H, Wang Y, Guo J, Zheng X, Ye Y, Shao R, Yang Q. The co-inoculation of Trichoderma viridis and Bacillus subtilis improved the aerobic composting efficiency and degradation of lignocellulose. BIORESOURCE TECHNOLOGY 2024; 394:130285. [PMID: 38184087 DOI: 10.1016/j.biortech.2023.130285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/30/2023] [Accepted: 12/30/2023] [Indexed: 01/08/2024]
Abstract
The aim of this study was to reveal the mechanism by which co-inoculation with both Trichoderma viridis and Bacillus subtilis improved the efficiency of composting and degradation of lignocellulose in agricultural waste. The results showed that co-inoculation with Trichoderma and Bacillus increased abundance of Bacteroidota to promote the maturation 7 days in advance. Galbibacter may be a potential marker of co-inoculation composting efficiency compost. The compost became dark brown, odorless, and had a carbon to nitrogen ratio of 16.40 and a pH of 8.2. Moreover, Actinobacteriota and Firmicutes still dominated the degradation of lignocellulose following inoculation with Trichoderma or Bacillus 35 days after composting. Bacterial function prediction analysis showed that carbohydrate metabolism was the primary metabolic pathway. In conclusion, co-inoculation with Trichoderma and Bacillus shortened the composting cycle and accelerated the degradation of lignocellulose. These findings provide new strategies for the efficient use of agricultural waste to produce organic fertilizers.
Collapse
Affiliation(s)
- Shancong Wang
- Henan Engineering Research Center of Crop Chemical Control, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; College of Agronomy, State Key laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, 450046, China
| | - Haochi Long
- Henan Engineering Research Center of Crop Chemical Control, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; College of Agronomy, State Key laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xinru Hu
- Henan Engineering Research Center of Crop Chemical Control, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; College of Agronomy, State Key laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, 450046, China
| | - Hao Wang
- Henan Engineering Research Center of Crop Chemical Control, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; College of Agronomy, State Key laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yongchao Wang
- Henan Engineering Research Center of Crop Chemical Control, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; College of Agronomy, State Key laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, 450046, China
| | - Jiameng Guo
- Henan Engineering Research Center of Crop Chemical Control, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; College of Agronomy, State Key laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xianfu Zheng
- College of Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Youliang Ye
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China
| | - Ruixin Shao
- Henan Engineering Research Center of Crop Chemical Control, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; College of Agronomy, State Key laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Qinghua Yang
- Henan Engineering Research Center of Crop Chemical Control, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; College of Agronomy, State Key laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, 450046, China
| |
Collapse
|
4
|
Huang W, Shi H, Weng Q, Ding S, Lou L. Disparities and mechanisms of carbon and nitrogen conversion during food waste composting with different bulking agents. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119629. [PMID: 38043303 DOI: 10.1016/j.jenvman.2023.119629] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/31/2023] [Accepted: 11/15/2023] [Indexed: 12/05/2023]
Abstract
The low C/N ratio, high moisture content, and low porosity of food waste require the addition of bulking agents for adjustment during the composting process. However, the effect and mechanism of different bulking agents on the reduction of carbon and nitrogen losses are unclear. Therefore, this study conducted experiments to evaluate and clarify the differences in carbon and nitrogen transformation between sawdust, rice husk and wheat bran in food waste composting. The results showed that the addition of bulking agents promoted the conversion of carbon and nitrogen into total organic carbon (TOC) and total organic nitrogen (TON) rather than CO2 and NH3. The carbon and nitrogen losses were reduced by 16.00-25.71% and 11.56-29.54%, respectively. Notably, the Sawdust group exhibited the highest carbon retention, whereas the Wheat_bran group demonstrated superior nitrogen retention. The succession of bacterial communities showed that sawdust enhanced the cellulolysis and xylanolysis functions while wheat bran promoted nitrogen fixation. Correlation analysis was further employed to speculate on potential interactions among carbon and nitrogen components. The incorporation of sawdust and rice husk improved humification partly due to the addition of lignocellulose and the accumulation of total dissolved nitrogen (DTN) in the substrate, respectively. In the process of ammonia assimilation, the addition of wheat bran promoted the accumulation of dissolved organic carbon (DOC), contributing to the synthesis of TON to a degree. These findings offer cost-effective strategies for conserving carbon and nitrogen from loss in food waste composting by selecting suitable bulking agents, ultimately producing high-quality fertilizer.
Collapse
Affiliation(s)
- Wuji Huang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310029, PR China; Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, Hangzhou, 310020, PR China
| | - Hongyu Shi
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310029, PR China; Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, Hangzhou, 310020, PR China
| | - Qin Weng
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, 27705, North Carolina, United States
| | - Shang Ding
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310029, PR China; Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, Hangzhou, 310020, PR China
| | - Liping Lou
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310029, PR China; Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, Hangzhou, 310020, PR China.
| |
Collapse
|