1
|
Zhao X, Wang J, Zhu G, Zhang S, Wei C, Liu C, Cao L, Zhao S, Zhang S. Efficient removal of high concentration dyes from water by functionalized in-situ N-doped porous biochar derived from waste antibiotic fermentation residue. CHEMOSPHERE 2024; 364:143215. [PMID: 39214407 DOI: 10.1016/j.chemosphere.2024.143215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Using biochar for dye wastewater treatment is attracting interest due to its excellent adsorption properties and low costs. In this work, a novel biochar derived from oxytetracycline fermentation residue (functionalized OFR biochar, FOBC) was investigated as a efficient adsorbent for typical dyes removal. At 25 °C, the maximum adsorption capacity calculated by Langmuir model of FOBC-3-600 for methylene blue (MB), malachite green (MG), and methyl orange (MO) reached 643.97, 617.89, and 521.03 mg/g, respectively. The kinetics and isotherm model fitting showed that the chemisorption and physisorption both occurred during the adsorption process. Dyes were efficiently adsorbed through pore filling, electrostatic attraction, π-π interactions, and surface complexation. And the cycling experiment and environmental risk assessment indicated that the FOBC-3-600 had excellent recyclability and utilization safety. Overall, this study provides a practical method to simultaneously treat the dyeing wastewater and utilize the antibiotic fermentation residue.
Collapse
Affiliation(s)
- Xinyu Zhao
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China; Miami College, Henan University, Kaifeng, 475004, China
| | - Jieni Wang
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China; Miami College, Henan University, Kaifeng, 475004, China
| | - Guokai Zhu
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China; Miami College, Henan University, Kaifeng, 475004, China
| | - Shuqin Zhang
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China; Miami College, Henan University, Kaifeng, 475004, China
| | - Chenlin Wei
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China; Miami College, Henan University, Kaifeng, 475004, China
| | - Chenxiao Liu
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China; Miami College, Henan University, Kaifeng, 475004, China
| | - Leichang Cao
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China; Miami College, Henan University, Kaifeng, 475004, China; Huaxia Besince Environmental Technology Co., Ltd., Zhengzhou, 450018, China.
| | - Shuguang Zhao
- Huaxia Besince Environmental Technology Co., Ltd., Zhengzhou, 450018, China
| | - Shicheng Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| |
Collapse
|
2
|
Zhao X, Zhu G, Liu J, Wang J, Zhang S, Wei C, Cao L, Zhao S, Zhang S. Efficient Removal of Tetracycline from Water by One-Step Pyrolytic Porous Biochar Derived from Antibiotic Fermentation Residue. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1377. [PMID: 39269039 PMCID: PMC11397281 DOI: 10.3390/nano14171377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024]
Abstract
The disposal and treatment of antibiotic residues is a recognized challenge due to the huge production, high moisture content, high processing costs, and residual antibiotics, which caused environmental pollution. Antibiotic residues contained valuable components and could be recycled. Using a one-step controllable pyrolysis technique in a tubular furnace, biochar (OSOBs) was produced without the preliminary carbonization step, which was innovative and time- and cost-saving compared to traditional methods. The main aim of this study was to explore the adsorption and removal efficiency of tetracycline (TC) in water using porous biochar prepared from oxytetracycline fermentation residues in one step. A series of characterizations were conducted on the prepared biochar materials, and the effects of biochar dosage, initial tetracycline concentration, reaction time, and reaction temperature on the adsorption capacity were studied. The experimental results showed that at 298 K, the maximum adsorption capacity of OSOB-3-700 calculated by the Langmuir model reached 1096.871 mg/g. The adsorption kinetics fitting results indicated that the adsorption of tetracycline on biochar was more consistent with the pseudo-second-order kinetic model, which was a chemical adsorption. The adsorption isotherm fitting results showed that the Langmuir model better described the adsorption process of tetracycline on biochar, indicating that tetracycline was adsorbed in a monolayer on specific homogeneous active sites through chemical adsorption, consistent with the kinetic conclusions. The adsorption process occurred on the surface of the biochar containing rich active sites, and the chemical actions such as electron exchange promoted the adsorption process.
Collapse
Affiliation(s)
- Xinyu Zhao
- Miami College, Henan University, Kaifeng 475004, China
| | - Guokai Zhu
- Miami College, Henan University, Kaifeng 475004, China
| | - Jiangtao Liu
- Miami College, Henan University, Kaifeng 475004, China
| | - Jieni Wang
- Miami College, Henan University, Kaifeng 475004, China
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Shuqin Zhang
- Miami College, Henan University, Kaifeng 475004, China
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Chenlin Wei
- Miami College, Henan University, Kaifeng 475004, China
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Leichang Cao
- Miami College, Henan University, Kaifeng 475004, China
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Shuguang Zhao
- Huaxia Besince Environmental Technology Co., Ltd., Zhengzhou 450018, China
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| |
Collapse
|
3
|
Fan L, Yuan Q, Lu Q, Zheng C, Su R, Liu N, Wu J. Remediation of cadmium contaminated soil using electrokinetic-phytoremediation system with rotary switching electrodes. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:375. [PMID: 39167250 DOI: 10.1007/s10653-024-02162-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024]
Abstract
Considering both electrokinetic remediation and phytoremediation have limitations, an electrokinetic phytoremediation (EP) system was constructed to obtain efficient and environmentally friendly remediation results. This study indicates that the electric field can promote the absorption of Cd by ryegrass with little impact on soil physicochemical properties under the condition of rotary switching electrodes, and the accumulation of Cd in the aboveground and underground parts of ryegrass increased by 145.2% and 93.7%, respectively. The DC electric field combined with ryegrass under rotary switching electrode mode proved to be the optimal condition for the remediation of Cd contaminated soil with a remediation efficiency of 66.7%. Moreover, the rotary switching of the electrodes alleviated the suppression of the growth of ryegrass by the DC electric field. During the EP remediation process, the electric field promoted the transformation of the residue state of Cd to the other forms, which accelerated the desorption rate of Cd from the soil and facilitated the migration of Cd into plants. In conclusion, EP is a green and efficient remediation technology for heavy metal contaminated soil with good application prospects.
Collapse
Affiliation(s)
- Li Fan
- School of Resource and Environmental Engineering, Shanghai Polytechnic University, Shanghai, 201209, China.
| | - Qin Yuan
- School of Resource and Environmental Engineering, Shanghai Polytechnic University, Shanghai, 201209, China
| | - Qiuyuan Lu
- School of Resource and Environmental Engineering, Shanghai Polytechnic University, Shanghai, 201209, China
| | - Chunli Zheng
- School of Resource and Environmental Engineering, Shanghai Polytechnic University, Shanghai, 201209, China
| | - Ruijing Su
- School of Resource and Environmental Engineering, Shanghai Polytechnic University, Shanghai, 201209, China
| | - Nuo Liu
- School of Resource and Environmental Engineering, Shanghai Polytechnic University, Shanghai, 201209, China
| | - Jun Wu
- School of Resource and Environmental Engineering, Shanghai Polytechnic University, Shanghai, 201209, China
| |
Collapse
|
4
|
Niu L, Lei Q, Zhao T, Tang Z, Cai Y, Hou D, Zhang S, Fang M, Hou G, Zhao X, Wu F. In situ N-doping engineered biochar catalysts for oxidation degradation of sulfadiazine via nonradical pathways: Singlet oxygen and electron transfer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 939:173206. [PMID: 38761925 DOI: 10.1016/j.scitotenv.2024.173206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/30/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024]
Abstract
Understanding the structure of non-metallic heteroatom-doped carbon catalysts and the subsequent degradation of new pollutants is crucial for designing more efficient carbon catalysts. Environmentally friendly in situ N-doped biochar catalysts were prepared for peroxymonosulfate (PMS) activation and sulfadiazine (SDZ) degradation. The acid washing process and calcination temperature of catalyst increased π-π* shake up, graphitic N percentage, specific surface area and defects, promoting the transformation of pollutant degradation mechanism from radical pathway to non-radical pathway. 100 % of the SDZ with the initial concentration of 10 mg/L was quickly degraded within 60 min using 0.2 g/L catalysts and 0.5 mM PMS. Excellent catalytic performance was attributed to singlet oxygen and electron transfer-dominated non-radical pathways. The four potential degradation pathways of SDZ were proposed, and toxicity predication indicated that overall biotoxicity of the intermediates during SDZ degradation was decreased. This research deepens our understanding of the mechanisms of non-radical pathways and guides the synthesis of carbon-based catalysts.
Collapse
Affiliation(s)
- Lin Niu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Qitao Lei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; School of Environment & Ecology, Jiangnan University, Wuxi 214122, PR China
| | - Tianhui Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Zhi Tang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Yaqi Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Siyuan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Mengyuan Fang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Guoqing Hou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| |
Collapse
|
5
|
Wang BY, Li B, Xu HY. Machine learning screening of biomass precursors to prepare biomass carbon for organic wastewater purification: A review. CHEMOSPHERE 2024; 362:142597. [PMID: 38889873 DOI: 10.1016/j.chemosphere.2024.142597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/18/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
In the past decades, the amount of biomass waste has continuously increased in human living environments, and it has attracted more and more attention. Biomass is regarded as the most high-quality and cost-effective precursor material for the preparation carbon of adsorbents and catalysts. The application of biomass carbon has extensively explored. The efficient application of biomass carbon in organic wastewater purification were reviewed. With briefly introducing biomass types, the latest progress of Machine learning in guiding the preparation and application of biomass carbon was emphasized. The key factors in constructing efficient biomass carbon for adsorption and catalytic applications were discussed. Based on the functional groups, rich pore structure and active site of biomass carbon, it exhibits high efficiency in water purification performance in the fields of adsorption and catalysis. In addition, out of a firm belief in the enormous potential of biomass carbon, the remaining challenges and future research directions were discussed.
Collapse
Affiliation(s)
- Bao-Ying Wang
- Heilongjiang Provincial Key Laboratory of CO(2) Resource Utilization and Energy Catalytic Materials, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, PR China
| | - Bo Li
- Heilongjiang Provincial Key Laboratory of CO(2) Resource Utilization and Energy Catalytic Materials, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, PR China
| | - Huan-Yan Xu
- Heilongjiang Provincial Key Laboratory of CO(2) Resource Utilization and Energy Catalytic Materials, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, PR China.
| |
Collapse
|
6
|
Wu X, Quan W, Chen Q, Gong W, Wang A. Efficient Adsorption of Nitrogen and Phosphorus in Wastewater by Biochar. Molecules 2024; 29:1005. [PMID: 38474517 PMCID: PMC10935008 DOI: 10.3390/molecules29051005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/15/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
Nitrogen and phosphorus play essential roles in ecosystems and organisms. However, with the development of industry and agriculture in recent years, excessive N and P have flowed into water bodies, leading to eutrophication, algal proliferation, and red tides, which are harmful to aquatic organisms. Biochar has a high specific surface area, abundant functional groups, and porous structure, which can effectively adsorb nitrogen and phosphorus in water, thus reducing environmental pollution, achieving the reusability of elements. This article provides an overview of the preparation of biochar, modification methods of biochar, advancements in the adsorption of nitrogen and phosphorus by biochar, factors influencing the adsorption of nitrogen and phosphorus in water by biochar, as well as reusability and adsorption mechanisms. Furthermore, the difficulties encountered and future research directions regarding the adsorption of nitrogen and phosphorus by biochar were proposed, providing references for the future application of biochar in nitrogen and phosphorus adsorption.
Collapse
Affiliation(s)
- Xichang Wu
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550025, China;
| | - Wenxuan Quan
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550025, China;
| | - Qi Chen
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 550025, China; (Q.C.); (W.G.)
| | - Wei Gong
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 550025, China; (Q.C.); (W.G.)
| | - Anping Wang
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550025, China;
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 550025, China; (Q.C.); (W.G.)
| |
Collapse
|
7
|
Deng S, Ren B, Hou B, Deng X, Deng R, Zhu G, Cheng S. Adsorption of Sb(III) and Pb(II) in wastewater by magnetic γ-Fe 2O 3-loaded sludge biochar: Performance and mechanisms. CHEMOSPHERE 2024; 349:140914. [PMID: 38092173 DOI: 10.1016/j.chemosphere.2023.140914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/15/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024]
Abstract
Magnetically modified carbon-based adsorbent (BC@γ-Fe2O3) was prepared through facile route using activated sludge biomass and evaluated for the simultaneous removal of Sb(III) and Pb(II). BC@γ-Fe2O3 exhibited outstanding Sb(III) and Pb(II) adsorption capacity when 200 mg of adsorbent was employed at pH 5.0 for 240 min, with the removal efficiency higher than 90%. The experiments demonstrated the excellent reusability and the potent anti-interference properties of the prepared absorbent. Freundlich and pseudo-second-order kinetic were prior to describe the adsorption process. The adsorption of Sb(III) and Pb(II) onto BC@γ-Fe2O3 was spontaneous and endothermic. BC@γ-Fe2O3 with high specific surface area revealed the exceptional competence to absorb Sb(III) and Pb(II) through pore filling, electrostatic adsorption and complexation. The adsorption mechanisms of Sb(III) and Pb(II) showed similarities with slight disparities. The removal of Sb(III) involved the Fe-O-Sb bond and π-π bond, while the adsorption of Pb(II) was closely related to ion exchange. Moreover, Sb(III) was oxidized to Sb(V) in a minor part during adsorption. The Fe-O-Cl active sites on BC allowed for the binding of γ-Fe2O3, guaranteeing the abundant adsorption sites and stability. BC@γ-Fe2O3 provides an efficient and green insight into the simultaneous removal of complex heavy metals with promising application in wastewater treatment.
Collapse
Affiliation(s)
- Songyun Deng
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Bozhi Ren
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Baolin Hou
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Xinping Deng
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China; Hunan Geological Disaster Monitoring, Early Warning and Emergency Rescue Engineering Technology Research Center, Changsha, 410004, China
| | - Renjian Deng
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Guocheng Zhu
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Shuangchan Cheng
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| |
Collapse
|
8
|
Wang Y, Meng X, Wang S, Mo Y, Xu W, Liu Y, Shi W. Efficient adsorption of Cu 2+ and Cd 2+ from groundwater by MgO-modified sludge biochar in single and binary systems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:9237-9250. [PMID: 38191722 DOI: 10.1007/s11356-023-31795-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/27/2023] [Indexed: 01/10/2024]
Abstract
In this study, MgO-modified sludge biochar (1MBC) prepared from sewage sludge was successfully used as an efficient adsorbent to remove heavy metals from groundwater. The adsorption performance and mechanism of 1MBC on Cu2+ and Cd2+ were investigated in single and binary systems, and the contribution of different mechanisms was quantified. Adsorption kinetics and isotherms analysis revealed that the adsorption processes of Cu2+ and Cd2+ by 1MBC followed the pseudo-second-order kinetic and Langmuir isotherm model in both systems, indicating that Cu2+ and Cd2+ were mainly controlled by chemisorption, and their theoretical maximum adsorption capacities were 240.36 and 219.06 mg·g-1, respectively. The results of the binary system showed that due to the competitive adsorption, the adsorption capacity of 1MBC for both heavy metals was lower than that of the single system, and the selective adsorption of Cu2+ was higher. The influencing variable experiments revealed that the adsorption of Cu2+ and Cd2+ by 1MBC had a wide pH adaption range and strong anti-interference ability to coexisting organics and ions. The adsorption mechanisms involved ion exchange (Cu: 47.39%, Cd: 53.17%), mineral precipitation (Cu: 35.31%, Cd: 24.18%), functional group complexation (Cu: 10.44%, Cd: 14.53%), and other possible mechanisms (Cu: 6.87%, Cd: 8.12%). Furthermore, 1MBC demonstrated excellent regeneration potential after five cycle times. Overall, the results have significant reference value for the practical application of removing heavy metals.
Collapse
Affiliation(s)
- Yan Wang
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
- Postdoctoral Innovation Practice Base of Jiangsu Province, Suzhou Institute of Environmental Science, Suzhou, 215009, China
| | - Xianrong Meng
- Postdoctoral Innovation Practice Base of Jiangsu Province, Suzhou Institute of Environmental Science, Suzhou, 215009, China
| | - Shanhu Wang
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
- Postdoctoral Innovation Practice Base of Jiangsu Province, Suzhou Institute of Environmental Science, Suzhou, 215009, China
| | - Yuanye Mo
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
- Postdoctoral Innovation Practice Base of Jiangsu Province, Suzhou Institute of Environmental Science, Suzhou, 215009, China
| | - Wei Xu
- Postdoctoral Innovation Practice Base of Jiangsu Province, Suzhou Institute of Environmental Science, Suzhou, 215009, China
| | - Yang Liu
- Suzhou Yifante Environmental Remediation Co. Ltd., Suzhou, 215100, China
| | - Weilin Shi
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|