1
|
Wang Y, Zeng W, Wan X, Lei M, Chen T. Potential in treating arsenic-contaminated water of the biochars produced from hyperaccumulator Pteris vittata and its environmental safety. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124320. [PMID: 38844037 DOI: 10.1016/j.envpol.2024.124320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
In this study, biochar derived from pyrolyzed aboveground parts of Pteris vittata (P. vittata) was modified with iron(Fe) and applied to aqueous solutions containing arsenite (As[III]) or arsenate (As[V]) for remediation purposes. The adsorption efficiency, biochar characteristics pre- and post-adsorption, microscopic As distribution, and As morphology were analyzed. Additionally, the potential and leaching safety of P. vittata biochar for As-contaminated water remediation were evaluated. Results indicated that P. vittata biochar contained oxygen-containing functional groups and aromatic structures. Modification with Fe increased specific surface area and total pore volume. Unmodified P. vittata biochar displayed low adsorption of As(III) and As(V), while Fe modification significantly enhanced As adsorption capacity and reduced As leaching by 69%-89%. Maximum adsorption capacities of Fe-modified P. vittata biochar for As(III) and As(V) were 7.64 and 10.2 mg/g, respectively, as determined by Langmuir fitting. The superior adsorption efficiency of As(V) over As(III) by Fe-modified biochar was attributed to better electrostatic interaction with the adsorbent. Analysis revealed similar As species in P. vittata biochar before and after adsorption, with a significant presence of As(III). Remarkably, As in P. vittata remained highly stable during pyrolysis and adsorption, possibly due to strong Fe-As binding. Fe-modified P. vittata biochar shows promise for application, but further pretreatment may be necessary to achieve optimal results.
Collapse
Affiliation(s)
- Yuluo Wang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weibin Zeng
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoming Wan
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Mei Lei
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tongbin Chen
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Hou D, Cui X, Liu M, Qie H, Tang Y, Xu R, Zhao P, Leng W, Luo N, Luo H, Lin A, Wei W, Yang W, Zheng T. The effects of iron-based nanomaterials (Fe NMs) on plants under stressful environments: Machine learning-assisted meta-analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120406. [PMID: 38373376 DOI: 10.1016/j.jenvman.2024.120406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/28/2024] [Accepted: 02/14/2024] [Indexed: 02/21/2024]
Abstract
Mitigating the adverse effects of stressful environments on crops and promoting plant recovery in contaminated sites are critical to agricultural development and environmental remediation. Iron-based nanomaterials (Fe NMs) can be used as environmentally friendly nano-fertilizer and as a means of ecological remediation. A meta-analysis was conducted on 58 independent studies from around the world to evaluate the effects of Fe NMs on plant development and antioxidant defense systems in stressful environments. The application of Fe NMs significantly enhanced plant biomass (mean = 25%, CI = 20%-30%), while promoting antioxidant enzyme activity (mean = 14%, CI = 10%-18%) and increasing antioxidant metabolite content (mean = 10%, CI = 6%-14%), reducing plant oxidative stress (mean = -15%, CI = -20%∼-10%), and alleviating the toxic effects of stressful environments. The observed response was dependent on a number of factors, which were ranked in terms of a Random Forest Importance Analysis. Plant species was the most significant factor, followed by Fe NM particle size, duration of application, dose level, and Fe NM type. The meta-analysis has demonstrated the potential of Fe NMs in achieving sustainable agriculture and the future development of phytoremediation.
Collapse
Affiliation(s)
- Daibing Hou
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Xuedan Cui
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Meng Liu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Hantong Qie
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Yiming Tang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Ruiqing Xu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Pengjie Zhao
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Wenpeng Leng
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100095, PR China
| | - Nan Luo
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100095, PR China
| | - Huilong Luo
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100095, PR China
| | - Aijun Lin
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Wenxia Wei
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100095, PR China.
| | - Wenjie Yang
- Chinese Academy of Environmental Planning, Beijing, 100012, PR China.
| | - Tianwen Zheng
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100095, PR China.
| |
Collapse
|
3
|
Cao R, Kang G, Zhang W, Zhou J, Xie W, Liu Z, Xu L, Hu F, Li Z, Li H. Biochar loaded with ferrihydrite and Bacillus pseudomycoides enhances remediation of co-existed Cd(II) and As(III) in solution. BIORESOURCE TECHNOLOGY 2024; 395:130323. [PMID: 38228221 DOI: 10.1016/j.biortech.2024.130323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/18/2024]
Abstract
Bioremediation is one of the effective ways for heavy metal remediation. Iron-modified biochar (F@BC) loaded with Bacillus pseudomycoides (BF@BC) was synthesized to remove the coexistence of cadmium (Cd) and arsenic (As) in solutions. The results showed that B. pseudomycoides significantly increased the removal rate of Cd(II) by enhancing the specific surface area and Si-containing functional groups of biochar (BC). The surface of F@BC was enriched with Fe-containing functional groups, significantly improving As(III) adsorption. The combination of ferrihydrite and strains on BF@BC enhanced the removal of Cd(II) and As(III). It also promoted the oxidation of As(III) by producing an abundance of hydroxyl radicals (·OH). The maximum saturated adsorption capacity of BF@BC for Cd(II) and As(III) increased by 52.47% and 2.99 folds compared with BC, respectively. This study suggests that biochar loaded with Fe and bacteria could be sustainable for the remediation of the coexistence of Cd(II) and As(III) in solutions.
Collapse
Affiliation(s)
- Rui Cao
- Laboratory of Soil Ecology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Guodong Kang
- Ministry of Ecology and Environment, Nanjing Institute of Environmental Sciences, Nanjing, Jiangsu, 210042, China
| | - Weiwen Zhang
- Laboratory of Soil Ecology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Jihai Zhou
- Provincial Collaborative Innovation Center for Restoration and Reconstruction of Degraded Ecosystems in Wanjiang Basin, College of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Wangliang Xie
- Laboratory of Soil Ecology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Zhenzhen Liu
- Laboratory of Soil Ecology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Li Xu
- Laboratory of Soil Ecology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China; Sanya Institute of Nanjing Agricultural University, Sanya, Hainan, 572000, China
| | - Feng Hu
- Laboratory of Soil Ecology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, Jiangsu, 210095, China
| | - Zhen Li
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu, Sichuan, 610059, China.
| | - Huixin Li
- Laboratory of Soil Ecology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, Jiangsu, 210095, China.
| |
Collapse
|