1
|
Yang M, You D, Liu G, Lu Y, Yang G, O'Brien T, Henshall DC, Hardiman O, Cai L, Liu M, Shen S. Polyethyleneimine facilitates the growth and electrophysiological characterization of iPSC-derived motor neurons. Sci Rep 2024; 14:26106. [PMID: 39478194 PMCID: PMC11525838 DOI: 10.1038/s41598-024-77710-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024] Open
Abstract
Induced pluripotent stem cell (iPSC) technology, in combination with electrophysiological characterization via multielectrode array (MEA), has facilitated the utilization of iPSC-derived motor neurons (iPSC-MNs) as highly valuable models for underpinning pathogenic mechanisms and developing novel therapeutic interventions for motor neuron diseases (MNDs). However, the challenge of MN adherence to the MEA plate and the heterogeneity presented in iPSC-derived cultures raise concerns about the reproducibility of the findings obtained from these cellular models. We discovered that one novel factor modulating the electrophysiological activity of iPSC-MNs is the extracellular matrix (ECM) used in the coating to support in vitro growth, differentiation and maturation of iPSC-MNs. The current study showed that two coating conditions, namely, Poly-L-ornithine/Matrigel (POM) and Polyethyleneimine (PEI) strongly promoted attachment of iPSC-MNs on MEA culture dishes compared to three other coating conditions, and both facilitated the maturation of iPSC-MNs as characterized by the detection of extensive electrophysiological activities from the MEA plates. POM coating accelerated the maturation of the iPSC-MNs for up to 5 weeks, which suits modeling of neurodevelopmental disorders. However, the application of PEI resulted in more even distribution of the MNs on the culture dish and reduced variability of electrophysiological signals from the iPSC-MNs in 7-week cultures, which permitted the detection of enhanced excitability in iPSC-MNs from patients with amyotrophic lateral sclerosis (ALS). This study provides a comprehensive comparison of five coating conditions and offers POM and PEI as favorable coatings for in vitro modeling of neurodevelopmental and neurodegenerative disorders, respectively.
Collapse
Affiliation(s)
- Meimei Yang
- Key Laboratory of Measurement and Evaluation in Exercise Bioinformation of Hebei Province, School of Physical Education, Hebei Normal University, Shijiazhuang, 050024, China.
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, H91 W2TY, Ireland.
- FutureNeuro SFI Research Centre for Chronic and Rare Neurological Diseases and Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland.
| | - Daofeng You
- Emergency Department, The First Hospital of Hebei Medical University, No. 89, Donggang Road, Shijiazhuang, China
| | - Gang Liu
- Department of Cardiology, Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study; Hebei Key Laboratory of Heart and Metabolism, Hebei Engineering Research Center of Intelligent Medical Clinical Application, Hebei International Joint Research Center for Structural Heart Disease, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yin Lu
- College of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Guangming Yang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
- Confucius Institute of Chinese and Regenerative Medicine, University of Galway, Galway, H91 W2TY, Ireland
| | - Timothy O'Brien
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, H91 W2TY, Ireland
- Confucius Institute of Chinese and Regenerative Medicine, University of Galway, Galway, H91 W2TY, Ireland
| | - David C Henshall
- FutureNeuro SFI Research Centre for Chronic and Rare Neurological Diseases and Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
- Department of Physiology and Medical Physics, RCSI University of Medicine & Health Sciences, Dublin, D02 YN77, Ireland
| | - Orla Hardiman
- FutureNeuro SFI Research Centre for Chronic and Rare Neurological Diseases and Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Li Cai
- Department of Ophthalmology, Shenzhen University General Hospital, Xueyuan Road 1098, Shenzhen, 518000, China.
| | - Min Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Sanbing Shen
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, H91 W2TY, Ireland.
- FutureNeuro SFI Research Centre for Chronic and Rare Neurological Diseases and Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland.
- Confucius Institute of Chinese and Regenerative Medicine, University of Galway, Galway, H91 W2TY, Ireland.
| |
Collapse
|
2
|
Fattahi N, Gorgannezhad L, Masoule SF, Babanejad N, Ramazani A, Raoufi M, Sharifikolouei E, Foroumadi A, Khoobi M. PEI-based functional materials: Fabrication techniques, properties, and biomedical applications. Adv Colloid Interface Sci 2024; 325:103119. [PMID: 38447243 DOI: 10.1016/j.cis.2024.103119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/15/2024] [Accepted: 02/22/2024] [Indexed: 03/08/2024]
Abstract
Cationic polymers have recently attracted considerable interest as research breakthroughs for various industrial and biomedical applications. They are particularly interesting due to their highly positive charges, acceptable physicochemical properties, and ability to undergo further modifications, making them attractive candidates for biomedical applications. Polyethyleneimines (PEIs), as the most extensively utilized polymers, are one of the valuable and prominent classes of polycations. Owing to their flexible polymeric chains, broad molecular weight (MW) distribution, and repetitive structural units, their customization for functional composites is more feasible. The specific beneficial attributes of PEIs could be introduced by purposeful functionalization or modification, long service life, biocompatibility, and distinct geometry. Therefore, PEIs have significant potential in biotechnology, medicine, and bioscience. In this review, we present the advances in PEI-based nanomaterials, their transfection efficiency, and their toxicity over the past few years. Furthermore, the potential and suitability of PEIs for various applications are highlighted and discussed in detail. This review aims to inspire readers to investigate innovative approaches for the design and development of next-generation PEI-based nanomaterials possessing cutting-edge functionalities and appealing characteristics.
Collapse
Affiliation(s)
- Nadia Fattahi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran; Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran
| | - Lena Gorgannezhad
- Queensland Micro- and Nanotechnology Centre, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane, QLD 4111, Australia
| | - Shabnam Farkhonde Masoule
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Niloofar Babanejad
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Ali Ramazani
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran.
| | - Mohammad Raoufi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13169-43551, Iran
| | - Elham Sharifikolouei
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129, Turin (TO), Italy
| | - Alireza Foroumadi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Mehdi Khoobi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran; Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Aydeger A, Aysit N, Baydas G, Cakici C, Erim UC, Arpa MD, Ozcicek I. Design of IKVAV peptide/gold nanoparticle decorated, micro/nano-channeled PCL/PLGA film scaffolds for neuronal differentiation and neurite outgrowth. BIOMATERIALS ADVANCES 2023; 152:213472. [PMID: 37301056 DOI: 10.1016/j.bioadv.2023.213472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/02/2023] [Accepted: 05/09/2023] [Indexed: 06/12/2023]
Abstract
In the field of neural tissue engineering, intensive efforts are being made to develop tissue scaffolds that can support an effective functional recovery and neural development by guiding damaged axons and neurites. Micro/nano-channeled conductive biomaterials are considered a promising approach for repairing the injured neural tissues. Many studies have demonstrated that the micro/nano-channels and aligned nanofibers could guide the neurites to extend along the direction of alignment. However, an ideal biocompatible scaffold containing conductive arrays that could promote effective neural stem cell differentiation and development, and also stimulate high neurite guidance has not been fully developed. In the current study, we aimed to fabricate micro/nano-channeled polycaprolactone (PCL)/Poly-d,l-lactic-co-glycolic acid (PLGA) hybrid film scaffolds, decorate their surfaces with IKVAV pentapeptide/gold nanoparticles (AuNPs), and investigate the behavior of PC12 cells and neural stem cells (NSCs) on the developed biomaterial under static/bioreactor conditions. Here we show that channeled groups decorated with AuNPs highly promote neurite outgrowth and neuronal differentiation along linear lines in the presence of electrical stimulation, compared with the polypyrrole (PPy) coating, which has been used traditionally for many years. Hopefully, this newly developed channeled scaffold structure (PCL/PLGA-AuNPs-IKVAV) could help to support long-distance axonal regeneration and neuronal development after different neural damages.
Collapse
Affiliation(s)
- Asel Aydeger
- Graduate School of Health Sciences, Istanbul Medipol University, Istanbul, Turkey
| | - Nese Aysit
- Department of Medical Biology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey; Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Gulsena Baydas
- Graduate School of Health Sciences, Istanbul Medipol University, Istanbul, Turkey; Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey; Department of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Cagri Cakici
- Department of Medical Biochemistry, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Umit Can Erim
- Department of Analytical Chemistry, School of Pharmacy, Istanbul Medipol University, Istanbul, Turkey
| | - Muhammet Davut Arpa
- Department of Pharmaceutical Technology, School of Pharmacy, Istanbul Medipol University, Istanbul, Turkey
| | - Ilyas Ozcicek
- Department of Medical Biology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey; Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey.
| |
Collapse
|
4
|
Clément JP, Al-Alwan L, Glasgow SD, Stolow A, Ding Y, Quevedo Melo T, Khayachi A, Liu Y, Hellmund M, Haag R, Milnerwood AJ, Grütter P, Kennedy TE. Dendritic Polyglycerol Amine: An Enhanced Substrate to Support Long-Term Neural Cell Culture. ASN Neuro 2022; 14:17590914211073276. [PMID: 35023760 PMCID: PMC8784910 DOI: 10.1177/17590914211073276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Long-term stable cell culture is a critical tool to better understand cell function. Most adherent cell culture models require a polymer substrate coating of poly-lysine or poly-ornithine for the cells to adhere and survive. However, polypeptide-based substrates are degraded by proteolysis and it remains a challenge to maintain healthy cell cultures for extended periods of time. Here, we report the development of an enhanced cell culture substrate based on a coating of dendritic polyglycerol amine (dPGA), a non-protein macromolecular biomimetic of poly-lysine, to promote the adhesion and survival of neurons in cell culture. We show that this new polymer coating provides enhanced survival, differentiation and long-term stability for cultures of primary neurons or neurons derived from human induced pluripotent stem cells (hiPSCs). Atomic force microscopy analysis provides evidence that greater nanoscale roughness contributes to the enhanced capacity of dPGA-coated surfaces to support cells in culture. We conclude that dPGA is a cytocompatible, functionally superior, easy to use, low cost and highly stable alternative to poly-cationic polymer cell culture substrate coatings such as poly-lysine and poly-ornithine.
Summary statement
Here, we describe a novel dendritic polyglycerol amine-based substrate coating, demonstrating superior performance compared to current polymer coatings for long-term culture of primary neurons and neurons derived from induced pluripotent stem cells.
Collapse
Affiliation(s)
- Jean-Pierre Clément
- Program in Neuroengineering, Montreal Neurological Institute, McGill University, Montreal, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, Montreal, Canada
| | - Laila Al-Alwan
- Program in Neuroengineering, Montreal Neurological Institute, McGill University, Montreal, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, Montreal, Canada
| | - Stephen D. Glasgow
- Program in Neuroengineering, Montreal Neurological Institute, McGill University, Montreal, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, Montreal, Canada
| | - Avya Stolow
- Department of Physics, McGill University, Montreal, Canada
| | - Yi Ding
- Department of Physics, McGill University, Montreal, Canada
| | - Thaiany Quevedo Melo
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, Montreal, Canada
| | - Anouar Khayachi
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, Montreal, Canada
| | - Yumin Liu
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, Montreal, Canada
| | - Markus Hellmund
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Austen J Milnerwood
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, Montreal, Canada
| | - Peter Grütter
- Department of Physics, McGill University, Montreal, Canada
| | - Timothy E. Kennedy
- Program in Neuroengineering, Montreal Neurological Institute, McGill University, Montreal, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, Montreal, Canada
| |
Collapse
|
5
|
Jiang H, Yang J, Wan K, Jiang D, Jin C. Miniaturized Paper-Supported 3D Cell-Based Electrochemical Sensor for Bacterial Lipopolysaccharide Detection. ACS Sens 2020; 5:1325-1335. [PMID: 32274922 DOI: 10.1021/acssensors.9b02508] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sensitive detection of lipopolysaccharides (LPSs), which are present on the outer wall of Gram-negative bacteria, is important to reflect the degree of bacterial contamination in food. For indirect assessment of the LPS content, a miniaturized electrochemical cell sensor consisting of a screen-printed paper electrode, a three-dimensional cells-in-gels-in-paper culture system, and a conductive jacket device was developed for in situ detection of nitric oxide released from LPS-treated mouse macrophage cells (Raw264.7). Nafion/polypyrrole/graphene oxide with excellent selectivity, high conductivity, and good biocompatibility functionalized on the working electrode via electrochemical polymerization could enhance sensing. Raw264.7 cells encapsulated in the alginate hydrogel were immobilized on a Nafion/polypyrrole/graphene oxide/screen-printed carbon electrode in paper fibers as a biorecognition element. Differential impulse voltammetry was employed to record the current signal as-influenced by LPS. Results indicated that LPS from Salmonella enterica serotype Enteritidis caused a significant increase in peak current, varying from 1 × 10-2 to 1 × 104 ng/mL, dose-dependently. This assay had a detection limit of 3.5 × 10-3 ng/mL with a linear detection range of 1 × 10-2 to 3 ng/mL. These results were confirmed by analysis of nitric oxide released from Raw264.7 via the Griess method. The miniaturized sensor was ultimately applied to detect LPSs in fruit juice samples. The results indicated that the method exhibited high recovery and relative standard deviation lower than 2.65% and LPSs in samples contaminated with 102-105 CFU/mL bacteria could be detected, which proved the practical value of the sensor. Thus, a novel, low-cost, and highly sensitive approach for LPS detection was developed, providing a method to assess Gram-negative bacteria contamination in food.
Collapse
Affiliation(s)
- Hui Jiang
- Nanjing Institute for Food and Drug Control, Nanjing, Jiangsu 210038, P. R. China
| | - Jun Yang
- Nanjing Institute for Food and Drug Control, Nanjing, Jiangsu 210038, P. R. China
| | - Kai Wan
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225127, P. R. China
| | - Donglei Jiang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, and Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, P. R. China
| | - Changhai Jin
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225127, P. R. China
| |
Collapse
|
6
|
Pramanik N, Dutta K, Basu RK, Kundu PP. Aromatic π-Conjugated Curcumin on Surface Modified Polyaniline/Polyhydroxyalkanoate Based 3D Porous Scaffolds for Tissue Engineering Applications. ACS Biomater Sci Eng 2016; 2:2365-2377. [DOI: 10.1021/acsbiomaterials.6b00595] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nilkamal Pramanik
- Advanced
Polymer Laboratory, Department of Polymer Science and Technology, University of Calcutta, 92, A.P.C. Road, Kolkata-700 009, India
| | - Kingshuk Dutta
- Advanced
Polymer Laboratory, Department of Polymer Science and Technology, University of Calcutta, 92, A.P.C. Road, Kolkata-700 009, India
| | - Ranjan K. Basu
- Department
of Chemical Engineering, University of Calcutta, 92, A.P.C. Road, Kolkata-700 009, India
| | - Patit P. Kundu
- Advanced
Polymer Laboratory, Department of Polymer Science and Technology, University of Calcutta, 92, A.P.C. Road, Kolkata-700 009, India
- Department
of Chemical Engineering, Indian Institute of Technology (IIT) Roorkee, Roorkee, Uttarakhand-247667, India
| |
Collapse
|
7
|
Metzler S, Zankovych S, Rauchfuß F, Dittmar Y, Jandt K, Jandt KD, Settmacher U, Scheuerlein H. In vitro analysis of biopolymer coating with glycidoxypropyltrimethoxysilane on hernia meshes. J Biomed Mater Res B Appl Biomater 2016; 105:1083-1090. [PMID: 26991137 DOI: 10.1002/jbm.b.33653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/22/2016] [Indexed: 01/25/2023]
Abstract
Certain coatings may improve the biocompatibility of hernia meshes. The coating with self-assembled monolayers, such as glycidoxypropyltrimethoxysilane (GOPS) can also improve the materials characteristics of implants. This approach was not yet explored in hernia meshes. It was the aim of this work to clarify if and how hernia meshes with their three-dimensional structure can be coated with GOPS and with which technique this coating can be best characterized. Commercially available meshes made from polypropylene (PP), polyester (PE), and expanded polytetrafluorethylene (ePTFE) have been coated with GOPS. The coatings were analyzed via X-ray photoelectron spectroscopy (XPS), confocal laser scanning microscopy (CLSM), and cell proliferation test (mouse fibroblasts). Cell viability and cytotoxicity were tested by MTT test. With the GOPS surface modification, the adherence of mouse fibroblasts on polyester meshes and the proliferation on ePTFE meshes were increased compared to noncoated meshes. Both XPS and CLSM are limited in their applicability and validity due to the three-dimensional mesh structure while CLSM was overall more suitable. In the MTT test, no negative effects of the GOPS coating on the cells were detected after 24 h. The present results show that GOPS coating of hernia meshes is feasible and effective. GOPS coating can be achieved in a fast and cost-efficient way. Further investigations are necessary with respect to coating quality and adverse effects before such a coating may be used in the clinical routine. In conclusion, GOPS is a promising material that warrants further research as coating of medical implants. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1083-1090, 2017.
Collapse
Affiliation(s)
- Steffen Metzler
- Department of Anesthesiology and Critical Care Medicine, Friedrich-Schiller-University of Jena, Jena, Germany
| | - Sergiy Zankovych
- Chair of Materials Science, Otto Schott Institute of Materials Research (OSIM), Friedrich-Schiller-University of Jena, Jena, Germany
| | - Falk Rauchfuß
- Department of General, Visceral and Vascular Surgery, Friedrich-Schiller-University of Jena, Jena, Germany
| | - Yves Dittmar
- Department of General, Visceral and Vascular Surgery, Friedrich-Schiller-University of Jena, Jena, Germany
| | - Karin Jandt
- Department of General, Visceral and Vascular Surgery, Friedrich-Schiller-University of Jena, Jena, Germany
| | - Klaus D Jandt
- Chair of Materials Science, Otto Schott Institute of Materials Research (OSIM), Friedrich-Schiller-University of Jena, Jena, Germany
| | - Utz Settmacher
- Department of General, Visceral and Vascular Surgery, Friedrich-Schiller-University of Jena, Jena, Germany
| | - Hubert Scheuerlein
- Department of General, Visceral and Vascular Surgery, Friedrich-Schiller-University of Jena, Jena, Germany
| |
Collapse
|
8
|
Xu D, Luo L, Ding Y, Xu P. Sensitive electrochemical detection of glucose based on electrospun La0.88Sr0.12MnO3 naonofibers modified electrode. Anal Biochem 2015; 489:38-43. [DOI: 10.1016/j.ab.2015.08.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 08/08/2015] [Accepted: 08/12/2015] [Indexed: 11/24/2022]
|
9
|
Hassarati RT, Marcal H, John L, Foster R, Green RA. Biofunctionalization of conductive hydrogel coatings to support olfactory ensheathing cells at implantable electrode interfaces. J Biomed Mater Res B Appl Biomater 2015; 104:712-22. [PMID: 26248597 DOI: 10.1002/jbm.b.33497] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 07/09/2015] [Accepted: 07/18/2015] [Indexed: 11/06/2022]
Abstract
Mechanical discrepancies between conventional platinum (Pt) electrodes and neural tissue often result in scar tissue encapsulation of implanted neural recording and stimulating devices. Olfactory ensheathing cells (OECs) are a supportive glial cell in the olfactory nervous system which can transition through glial scar tissue while supporting the outgrowth of neural processes. It has been proposed that this function can be used to reconnect implanted electrodes with the target neural pathways. Conductive hydrogel (CH) electrode coatings have been proposed as a substrate for supporting OEC survival and proliferation at the device interface. To determine an ideal CH to support OECs, this study explored eight CH variants, with differing biochemical composition, in comparison to a conventional Pt electrodes. All CH variants were based on a biosynthetic hydrogel, consisting of poly(vinyl alcohol) and heparin, through which the conductive polymer (CP) poly(3,4-ethylenedioxythiophene) was electropolymerized. The biochemical composition was varied through incorporation of gelatin and sericin, which were expected to provide cell adherence functionality, supporting attachment, and cell spreading. Combinations of these biomolecules varied from 1 to 3 wt %. The physical, electrical, and biological impact of these molecules on electrode performance was assessed. Cyclic voltammetry and electrochemical impedance spectroscopy demonstrated that the addition of these biological molecules had little significant effect on the coating's ability to safely transfer charge. Cell attachment studies, however, determined that the incorporation of 1 wt % gelatin in the hydrogel was sufficient to significantly increase the attachment of OECs compared to the nonfunctionalized CH.
Collapse
Affiliation(s)
- Rachelle T Hassarati
- Graduate School of Biomedical Engineering, UNSW Australia, Sydney, Australia.,Bio/polymers Research Group, School of Biotechnology and Biomolecular Sciences, UNSW Australia, Sydney, Australia
| | - Helder Marcal
- Topical Therapeutics Research Group, School of Medical Sciences, Faculty of Medicine, UNSW Australia, Sydney, Australia
| | - L John
- Bio/polymers Research Group, School of Biotechnology and Biomolecular Sciences, UNSW Australia, Sydney, Australia
| | - R Foster
- Bio/polymers Research Group, School of Biotechnology and Biomolecular Sciences, UNSW Australia, Sydney, Australia
| | - Rylie A Green
- Graduate School of Biomedical Engineering, UNSW Australia, Sydney, Australia
| |
Collapse
|
10
|
Trans-membrane electron transfer in red blood cells immobilized in a chitosan film on a glassy carbon electrode. Mikrochim Acta 2013. [DOI: 10.1007/s00604-013-1060-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
11
|
Preparation of cell-culturing glass surfaces that release branched polyethyleneimine triggered by thiol-disulfide exchange. Colloids Surf B Biointerfaces 2013; 103:360-5. [PMID: 23261556 DOI: 10.1016/j.colsurfb.2012.10.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 10/18/2012] [Accepted: 10/18/2012] [Indexed: 11/21/2022]
Abstract
To develop a chemical stimulus-responsive substrate for culturing cells, polyethyleneimine (PEI) having a pyridyl disulfide moiety was attached via disulfide linkages to a glass coverslip modified with a silane coupling agent having a thiol group. The surface modification was confirmed by X-ray photoelectron spectroscopy and zeta potential analysis. The obtained surface exhibited sufficiently high cell adhesiveness. Zeta potential measurements revealed that the PEI derivatives were released from the surface through thiol-disulfide exchange when the modified glass coverslip was immersed in a neutral pH buffer containing cysteine. The cell viability assay demonstrated that this chemical stimulus was substantially nontoxic to 293T cells. Because PEI is a widely used transfection reagent, this functional glass coverslip would be potentially useful as an experimental platform for reverse transfection.
Collapse
|
12
|
Zhang L, Meng S, Zhang Z. Electroactivity and Stability of Polylactide/Polypyrrole Composites. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 22:1931-46. [DOI: 10.1163/092050610x529164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Linli Zhang
- a Département de Chirurgie, Faculté de Médecine, Université Laval, Centre de Recherche Hôpital Saint-François d'Assise, CHUQ, 10 rue de l'Espinay, local E0-165, Québec, QC, Canada G1L 3L5
| | - Shiyun Meng
- b Département de Chirurgie, Faculté de Médecine, Université Laval, Centre de Recherche Hôpital Saint-François d'Assise, CHUQ, 10 rue de l'Espinay, local E0-165, Québec, QC, Canada G1L 3L5
| | - Ze Zhang
- c Département de Chirurgie, Faculté de Médecine, Université Laval, Centre de Recherche Hôpital Saint-François d'Assise, CHUQ, 10 rue de l'Espinay, local E0-165, Québec, QC, Canada G1L 3L5.
| |
Collapse
|
13
|
|
14
|
Saitakis M, Gizeli E. Acoustic sensors as a biophysical tool for probing cell attachment and cell/surface interactions. Cell Mol Life Sci 2012; 69:357-71. [PMID: 21997385 PMCID: PMC11114954 DOI: 10.1007/s00018-011-0854-8] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 09/29/2011] [Accepted: 09/29/2011] [Indexed: 01/09/2023]
Abstract
Acoustic biosensors offer the possibility to analyse cell attachment and spreading. This is due to the offered speed of detection, the real-time non-invasive approach and their high sensitivity not only to mass coupling, but also to viscoelastic changes occurring close to the sensor surface. Quartz crystal microbalance (QCM) and surface acoustic wave (Love-wave) systems have been used to monitor the adhesion of animal cells to various surfaces and record the behaviour of cell layers under various conditions. The sensors detect cells mostly via their sensitivity in viscoelasticity and mechanical properties. Particularly, the QCM sensor detects cytoskeletal rearrangements caused by specific drugs affecting either actin microfilaments or microtubules. The Love-wave sensor directly measures cell/substrate bonds via acoustic damping and provides 2D kinetic and affinity parameters. Other studies have applied the QCM sensor as a diagnostic tool for leukaemia and, potentially, for chemotherapeutic agents. Acoustic sensors have also been used in the evaluation of the cytocompatibility of artificial surfaces and, in general, they have the potential to become powerful tools for even more diverse cellular analysis.
Collapse
Affiliation(s)
- Michael Saitakis
- Department of Biology, University of Crete, Heraklion-Crete, Greece
- Institute of Molecular Biology and Biotechnology, FORTH, 100 N. Plastira Vassilika Vouton, 70013 Heraklion-Crete, Greece
| | - Electra Gizeli
- Department of Biology, University of Crete, Heraklion-Crete, Greece
- Institute of Molecular Biology and Biotechnology, FORTH, 100 N. Plastira Vassilika Vouton, 70013 Heraklion-Crete, Greece
| |
Collapse
|
15
|
Biocompatibilty of starch-based films from starch of Andean crops for biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2011. [DOI: 10.1016/j.msec.2011.08.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
16
|
Abidian MR, Corey JM, Kipke DR, Martin DC. Conducting-polymer nanotubes improve electrical properties, mechanical adhesion, neural attachment, and neurite outgrowth of neural electrodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2010; 6:421-9. [PMID: 20077424 PMCID: PMC3045566 DOI: 10.1002/smll.200901868] [Citation(s) in RCA: 240] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
An in vitro comparison of conducting-polymer nanotubes of poly(3,4-ethylenedioxythiophene) (PEDOT) and poly(pyrrole) (PPy) and to their film counterparts is reported. Impedance, charge-capacity density (CCD), tendency towards delamination, and neurite outgrowth are compared. For the same deposition charge density, PPy films and nanotubes grow relatively faster vertically, while PEDOT films and nanotubes grow more laterally. For the same deposition charge density (1.44 C cm(-2)), PPy nanotubes and PEDOT nanotubes have lower impedance (19.5 +/- 2.1 kOmega for PPy nanotubes and 2.5 +/- 1.4 kOmega for PEDOT nanotubes at 1 kHz) and higher CCD (184 +/- 5.3 mC cm(-2) for PPy nanotubes and 392 +/- 6.2 mC cm(-2) for PEDOT nanotubes) compared to their film counterparts. However, PEDOT nanotubes decrease the impedance of neural-electrode sites by about two orders of magnitude (bare iridium 468.8 +/- 13.3 kOmega at 1 kHz) and increase capacity of charge density by about three orders of magnitude (bare iridium 0.1 +/- 0.5 mC cm(-2)). During cyclic voltammetry measurements, both PPy and PEDOT nanotubes remain adherent on the surface of the silicon dioxide while PPy and PEDOT films delaminate. In experiments of primary neurons with conducting-polymer nanotubes, cultured dorsal root ganglion explants remain more intact and exhibit longer neurites (1400 +/- 95 microm for PPy nanotubes and 2100 +/- 150 microm for PEDOT nanotubes) than their film counterparts. These findings suggest that conducting-polymer nanotubes may improve the long-term function of neural microelectrodes.
Collapse
Affiliation(s)
- Mohammad Reza Abidian
- Department of Biomedical Engineering, The University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | |
Collapse
|
17
|
A Morphologic Study on Creation of Neural Network of Cultured Striatal Neurons in vitro Using Soft Lithography Techniques*. PROG BIOCHEM BIOPHYS 2009. [DOI: 10.3724/sp.j.1206.2008.00652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Kuo YC, Ku IN. Application of polyethyleneimine-modified scaffolds to the regeneration of cartilaginous tissue. Biotechnol Prog 2009; 25:1459-67. [DOI: 10.1002/btpr.232] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
19
|
Hejcl A, Lesný P, Prádný M, Sedý J, Zámecník J, Jendelová P, Michálek J, Syková E. Macroporous hydrogels based on 2-hydroxyethyl methacrylate. Part 6: 3D hydrogels with positive and negative surface charges and polyelectrolyte complexes in spinal cord injury repair. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2009; 20:1571-1577. [PMID: 19252968 DOI: 10.1007/s10856-009-3714-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Accepted: 02/09/2009] [Indexed: 05/27/2023]
Abstract
Macroporous hydrogels are artificial biomaterials commonly used in tissue engineering, including central nervous system (CNS) repair. Their physical properties may be modified to improve their adhesion properties and promote tissue regeneration. We implanted four types of hydrogels based on 2-hydroxyethyl methacrylate (HEMA) with different surface charges inside a spinal cord hemisection cavity at the Th8 level in rats. The spinal cords were processed 1 and 6 months after implantation and histologically evaluated. Connective tissue deposition was most abundant in the hydrogels with positively-charged functional groups. Axonal regeneration was promoted in hydrogels carrying charged functional groups; hydrogels with positively charged functional groups showed increased axonal ingrowth into the central parts of the implant. Few astrocytes grew into the hydrogels. Our study shows that HEMA-based hydrogels carrying charged functional groups improve axonal ingrowth inside the implants compared to implants without any charge. Further, positively charged functional groups promote connective tissue infiltration and extended axonal regeneration inside a hydrogel bridge.
Collapse
Affiliation(s)
- A Hejcl
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Vídenská 1083, 14220 Prague 4, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Electrochemical polymerization of 1,2-ethanedithiol as a new way to synthesize polyethylenedisulfide. POLYMER 2008. [DOI: 10.1016/j.polymer.2008.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Huang L, Zhuang X, Hu J, Lang L, Zhang P, Wang Y, Chen X, Wei Y, Jing X. Synthesis of Biodegradable and Electroactive Multiblock Polylactide and Aniline Pentamer Copolymer for Tissue Engineering Applications. Biomacromolecules 2008; 9:850-8. [DOI: 10.1021/bm7011828] [Citation(s) in RCA: 235] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lihong Huang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China, Graduate School of Chinese Academy of Sciences, Beijing 100039, China, and Department of Chemistry and School of Biomedical Engineering, Drexel University, Philadelphia, Pennsylvania 19104
| | - Xiuli Zhuang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China, Graduate School of Chinese Academy of Sciences, Beijing 100039, China, and Department of Chemistry and School of Biomedical Engineering, Drexel University, Philadelphia, Pennsylvania 19104
| | - Jun Hu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China, Graduate School of Chinese Academy of Sciences, Beijing 100039, China, and Department of Chemistry and School of Biomedical Engineering, Drexel University, Philadelphia, Pennsylvania 19104
| | - Le Lang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China, Graduate School of Chinese Academy of Sciences, Beijing 100039, China, and Department of Chemistry and School of Biomedical Engineering, Drexel University, Philadelphia, Pennsylvania 19104
| | - Peibiao Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China, Graduate School of Chinese Academy of Sciences, Beijing 100039, China, and Department of Chemistry and School of Biomedical Engineering, Drexel University, Philadelphia, Pennsylvania 19104
| | - Yu Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China, Graduate School of Chinese Academy of Sciences, Beijing 100039, China, and Department of Chemistry and School of Biomedical Engineering, Drexel University, Philadelphia, Pennsylvania 19104
| | - Xuesi Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China, Graduate School of Chinese Academy of Sciences, Beijing 100039, China, and Department of Chemistry and School of Biomedical Engineering, Drexel University, Philadelphia, Pennsylvania 19104
| | - Yen Wei
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China, Graduate School of Chinese Academy of Sciences, Beijing 100039, China, and Department of Chemistry and School of Biomedical Engineering, Drexel University, Philadelphia, Pennsylvania 19104
| | - Xiabin Jing
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China, Graduate School of Chinese Academy of Sciences, Beijing 100039, China, and Department of Chemistry and School of Biomedical Engineering, Drexel University, Philadelphia, Pennsylvania 19104
| |
Collapse
|
22
|
Olayo R, Ríos C, Salgado-Ceballos H, Cruz GJ, Morales J, Olayo MG, Alcaraz-Zubeldia M, Alvarez AL, Mondragon R, Morales A, Diaz-Ruiz A. Tissue spinal cord response in rats after implants of polypyrrole and polyethylene glycol obtained by plasma. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2008; 19:817-26. [PMID: 17665119 DOI: 10.1007/s10856-007-3080-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Accepted: 04/05/2007] [Indexed: 05/16/2023]
Abstract
Most of the biomaterials used nowadays for the reconstruction of the spinal cord (SC) tissue after an injury, tested in animals, have obtained modest results. This work presents a study about the compatibility of two novel, non-biodegradable, semi-conductive materials, obtained by plasma polymerization: iodine-doped pyrrole (PPy/I) and pyrrole-polyethylene glycol (PPy/PEG). Both polymers, separately, were implanted in the SC tissue of rats after a transection. Prior to implantation, the elemental composition and the physico-chemical properties of polymers were studied by electron scanning microscopy, IR Spectroscopy and thermogravimetric analysis. We used adult female Long Evans rats, subjected to SC transection. Animals were randomized to be allocated in one of the treatment groups and were killed four weeks after the lesion for histology study. Results showed that both implants were integrated to the SC tissue, as inflammatory and gliotic responses, similar to those observed in the control group, and rejection of the implant, were not evident. Moreover, the immediate effect of PPy/I or PPy/PEG in the injured SC prevented secondary tissue destruction, as compared to non-implanted control animals. In conclusion, implants of semi-conductive polymers were well-tolerated and integrated favorably to SC tissue after transection.
Collapse
Affiliation(s)
- Roberto Olayo
- Departamento de Física, Universidad Autónoma Metropolitana Iztapalapa, Mexico, Mexico
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Lakard S, Morrand-Villeneuve N, Lesniewska E, Lakard B, Michel G, Herlem G, Gharbi T, Fahys B. Synthesis of polymer materials for use as cell culture substrates. Electrochim Acta 2007. [DOI: 10.1016/j.electacta.2007.04.098] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Development of an artificial neuronal network with post-mitotic rat fetal hippocampal cells by polyethylenimine. Biosens Bioelectron 2007; 23:1221-8. [PMID: 18191562 DOI: 10.1016/j.bios.2007.11.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 10/15/2007] [Accepted: 11/06/2007] [Indexed: 11/21/2022]
Abstract
The selection of appropriate surface materials that promote cellular adhesion and growth is an important consideration when designing a simplified neuronal network in vitro. In the past, extracellular matrix proteins such as laminin (LN) or positively charged substances such as poly-l-lysine (PLL) have been used. In this study, we examined the ability of another positively charged polymer, polyethyleneimine (PEI), to promote neuronal adhesion, growth and the formation of a functional neuronal network in vitro. PEI, PLL and LN were used to produce grid-shape patterns on glass coverslips by micro-contact printing. Post-mitotic neurons from the rat fetal hippocampus were cultured on the different polymers and the viability and morphology of these neurons under serum-free culture conditions were observed using fluorescent microscopy and atomic force microscopy (AFM). We show that neurons cultured on the PEI- and PLL-coated surfaces adhered to and extended neurites along the grid-shape patterns, whereas neurons cultured on the LN-coated coverslips clustered into clumps of cells. In addition, we found that the neurons on the PEI and PLL-coated grids survived for more than 2 weeks in serum-free conditions, whereas most neurons cultured on the LN-coated grids died after 1 week. Using AFM, we observed some neurosynapse-like structures near the neuronal soma on PEI-coated coverslips. These findings indicate that PEI is a suitable surface for establishing a functional neuronal network in vitro.
Collapse
|
25
|
Segut O, Lakard B, Herlem G, Rauch JY, Jeannot JC, Robert L, Fahys B. Development of miniaturized pH biosensors based on electrosynthesized polymer films. Anal Chim Acta 2007; 597:313-21. [PMID: 17683745 DOI: 10.1016/j.aca.2007.06.053] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Revised: 06/21/2007] [Accepted: 06/25/2007] [Indexed: 11/17/2022]
Abstract
A new type of pH biosensor was developed for biological applications. This biosensor was fabricated using silicon microsystem technology and consists in two platinum microelectrodes. The first microelectrode was coated by an electrosynthesized polymer and acted as the pH sensitive electrode when the second one was coated by a silver layer and was used as the reference electrode. Then, this potentiometric pH miniaturized biosensor based on electrosynthesized polypyrrole or electrosynthesized linear polyethylenimine films was tested. The potentiometric responses appeared reversible and linear to pH changes in the range from pH 4 to 9. More, the responses were fast (less than 1 min for all sensors), they were stable in time since PPy/PEI films were stable during more than 30 days, and no interference was observed. The influence of the polymer thickness was also studied.
Collapse
Affiliation(s)
- Olivier Segut
- Institut UTINAM, CNRS-UMR 6213, Université de Franche-Comté, 16 route de Gray, Besançon Cedex 25030, France
| | | | | | | | | | | | | |
Collapse
|
26
|
A disposable impedance sensor for electrochemical study and monitoring of adhesion and proliferation of K562 leukaemia cells. Electrochem commun 2007. [DOI: 10.1016/j.elecom.2006.11.040] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
27
|
Ateh DD, Navsaria HA, Vadgama P. Polypyrrole-based conducting polymers and interactions with biological tissues. J R Soc Interface 2007; 3:741-52. [PMID: 17015302 PMCID: PMC1885362 DOI: 10.1098/rsif.2006.0141] [Citation(s) in RCA: 252] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Polypyrrole (PPy) is a conjugated polymer that displays particular electronic properties including conductivity. In biomedical applications, it is usually electrochemically generated with the incorporation of any anionic species including also negatively charged biological macromolecules such as proteins and polysaccharides to give composite materials. In biomedical research, it has mainly been assessed for its role as a reporting interface in biosensors. However, there is an increasing literature on the application of PPy as a potentially electrically addressable tissue/cell support substrate. Here, we review studies that have considered such PPy based conducting polymers in direct contact with biological tissues and conclude that due to its versatile functional properties, it could contribute to a new generation of biomaterials.
Collapse
Affiliation(s)
- D D Ateh
- IRC in Biomedical Materials, Queen Mary University of London, London E14NS, UK.
| | | | | |
Collapse
|
28
|
Lakard S, Lesniewska E, Michel G, Lakard B, Morrand-Villeneuve N, Versaux-Botteri C. In vitro induction of differentiation by retinoic acid in an immortalized olfactory neuronal cell line. Acta Histochem 2006; 109:111-21. [PMID: 17113633 DOI: 10.1016/j.acthis.2006.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Revised: 07/26/2006] [Accepted: 10/08/2006] [Indexed: 11/29/2022]
Abstract
In this study, we used a neuronal cell line generated by transfection of rat olfactory epithelium with immortalizing recombinant oncogene E1A of adenovirus-2. The resulting 13.S.1.24 line of transformed cells expressed an antigenic phenotype of olfactory neuronal progenitors. Time-dependency assessments over 1 week of treatment indicated that apoptosis and differentiation induced by retinoic acid (RA) were concomitant. Indeed, RA altered the cell proliferation rate, but it also stimulated differentiation of surviving 13.S.1.24 cells into bipolar olfactory marker protein-immunoreactive neurons. To characterize the nature of the cells we used immunocytochemistry, optical imaging, scanning electron microscopy and atomic force microscopy.
Collapse
Affiliation(s)
- Sophie Lakard
- Laboratory of Neurosciences, University of Franche-Comté, Besançon, France.
| | | | | | | | | | | |
Collapse
|
29
|
Liu BF, Ma J, Xu QY, Cui FZ. Regulation of charged groups and laminin patterns for selective neuronal adhesion. Colloids Surf B Biointerfaces 2006; 53:175-8. [PMID: 17046215 DOI: 10.1016/j.colsurfb.2006.08.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2006] [Accepted: 08/28/2006] [Indexed: 11/16/2022]
Abstract
Primary neuronal cultures on substrates patterned with extracellular matrix proteins such as laminin have yielded much information regarding the physiological characteristics of neuronal cells in vitro. Surface charge also influences neuronal adherence, and a positive charge can have stimulatory effects. The attraction between laminin patterns and polycation films are of interest in the study of neuronal adhesion. We cultured primary hippocampal neurons on poly(ethylenimine) (PEI) films with laminin grids and evaluated their viability and morphology by means of fluorescent microscopy after 5-7 days. The results showed that the neurons did not form networks on the laminin grids. It is inferred that the PEI films were more favourable for neuronal adhesion than the laminin grid.
Collapse
Affiliation(s)
- B F Liu
- Beijing Institute for Neuroscience, Capital Medical University, Beijing center for Neural Regeneration & Repair, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing 100069, PR China
| | | | | | | |
Collapse
|