1
|
Dong Z, He Q, Shen D, Gong Z, Zhang D, Zhang W, Ono T, Jiang Y. Microfabrication of functional polyimide films and microstructures for flexible MEMS applications. MICROSYSTEMS & NANOENGINEERING 2023; 9:31. [PMID: 36969964 PMCID: PMC10030833 DOI: 10.1038/s41378-023-00503-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/27/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Polyimides are widely used in the MEMS and flexible electronics fields due to their combined physicochemical properties, including high thermal stability, mechanical strength, and chemical resistance values. In the past decade, rapid progress has been made in the microfabrication of polyimides. However, enabling technologies, such as laser-induced graphene on polyimide, photosensitive polyimide micropatterning, and 3D polyimide microstructure assembly, have not been reviewed from the perspective of polyimide microfabrication. The aims of this review are to systematically discuss polyimide microfabrication techniques, which cover film formation, material conversion, micropatterning, 3D microfabrication, and their applications. With an emphasis on polyimide-based flexible MEMS devices, we discuss the remaining technological challenges in polyimide fabrication and possible technological innovations in this field.
Collapse
Affiliation(s)
- Zihao Dong
- Institute of Bionic and Micronano Systems, School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191 China
| | - Qipei He
- Institute of Bionic and Micronano Systems, School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191 China
| | - Dawei Shen
- Institute of Bionic and Micronano Systems, School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191 China
| | - Zheng Gong
- Institute of Bionic and Micronano Systems, School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191 China
| | - Deyuan Zhang
- Institute of Bionic and Micronano Systems, School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191 China
| | - Wenqiang Zhang
- College of Engineering, China Agricultural University, Beijing, 100083 China
| | - Takahito Ono
- Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki-Aza-Aoba, Aoba-ku, Sendai, 980-8579 Japan
| | - Yonggang Jiang
- Institute of Bionic and Micronano Systems, School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191 China
| |
Collapse
|
2
|
Effect of Spray Parameters on Electrical Characteristics of Printed Layer by Morphological Study. Processes (Basel) 2022. [DOI: 10.3390/pr10050999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Products are manufactured as printed electronics through electro-conductive ink having properties suitable for flexible substrates. As printing process conditions affect the quality of the electronic properties of the final devices, it is essential to understand how the parameters of each process affect print quality. Spray printing, one of several printing processes, suits flexible large-area substrates and continuous processes with a uniform layer for electro-conductive aqueous ink. This study adopted the spray printing process for cellulose nanofiber (CNF)/carbon nanotube (CNT) composite conductive printing. Five spray parameters (nozzle diameter, spray speed, amount of sprayed ink, distance of nozzle to substrate, and nozzle pressure) were chosen to investigate the effects between process parameters and electrical properties relating to the morphology of the printing products. This study observed the controlling morphology through parameter adjustment and confirmed how it affects the final electrical conductivity. It means that the quality of the electronic properties can be modified by adjusting several spray process parameters.
Collapse
|
3
|
Park W, Yiu C, Liu Y, Wong TH, Huang X, Zhou J, Li J, Yao K, Huang Y, Li H, Li J, Jiao Y, Shi R, Yu X. High Channel Temperature Mapping Electronics in a Thin, Soft, Wireless Format for Non-Invasive Body Thermal Analysis. BIOSENSORS 2021; 11:bios11110435. [PMID: 34821651 PMCID: PMC8615861 DOI: 10.3390/bios11110435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022]
Abstract
Hemodynamic status has been perceived as an important diagnostic value as fundamental physiological health conditions, including decisive signs of fatal diseases like arteriosclerosis, can be diagnosed by monitoring it. Currently, the conventional hemodynamic monitoring methods highly rely on imaging techniques requiring inconveniently large numbers of operation procedures and equipment for mapping and with a high risk of radiation exposure. Herein, an ultra-thin, noninvasive, and flexible electronic skin (e-skin) hemodynamic monitoring system based on the thermal properties of blood vessels underneath the epidermis that can be portably attached to the skin for operation is introduced. Through a series of thermal sensors, the temperatures of each subsection of the arrayed sensors are observed in real-time, and the measurements are transmitted and displayed on the screen of an external device wirelessly through a Bluetooth module using a graphical user interface (GUI). The degrees of the thermal property of subsections are indicated with a spectrum of colors that specify the hemodynamic status of the target vessel. In addition, as the sensors are installed on a soft substrate, they can operate under twisting and bending without any malfunction. These characteristics of e-skin sensors exhibit great potential in wearable and portable diagnostics including point-of-care (POC) devices.
Collapse
Affiliation(s)
- Wooyoung Park
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China; (W.P.); (C.Y.); (Y.L.); (T.H.W.); (X.H.); (J.Z.); (J.L.); (K.Y.); (Y.H.); (H.L.); (J.L.); (Y.J.); (R.S.)
| | - Chunki Yiu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China; (W.P.); (C.Y.); (Y.L.); (T.H.W.); (X.H.); (J.Z.); (J.L.); (K.Y.); (Y.H.); (H.L.); (J.L.); (Y.J.); (R.S.)
- Hong Kong Center for Cerebra-Cardiovascular Health Engineering, Hong Kong Science Park, New Territories, Hong Kong 999077, China
| | - Yiming Liu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China; (W.P.); (C.Y.); (Y.L.); (T.H.W.); (X.H.); (J.Z.); (J.L.); (K.Y.); (Y.H.); (H.L.); (J.L.); (Y.J.); (R.S.)
| | - Tsz Hung Wong
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China; (W.P.); (C.Y.); (Y.L.); (T.H.W.); (X.H.); (J.Z.); (J.L.); (K.Y.); (Y.H.); (H.L.); (J.L.); (Y.J.); (R.S.)
| | - Xingcan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China; (W.P.); (C.Y.); (Y.L.); (T.H.W.); (X.H.); (J.Z.); (J.L.); (K.Y.); (Y.H.); (H.L.); (J.L.); (Y.J.); (R.S.)
| | - Jingkun Zhou
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China; (W.P.); (C.Y.); (Y.L.); (T.H.W.); (X.H.); (J.Z.); (J.L.); (K.Y.); (Y.H.); (H.L.); (J.L.); (Y.J.); (R.S.)
- Hong Kong Center for Cerebra-Cardiovascular Health Engineering, Hong Kong Science Park, New Territories, Hong Kong 999077, China
| | - Jian Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China; (W.P.); (C.Y.); (Y.L.); (T.H.W.); (X.H.); (J.Z.); (J.L.); (K.Y.); (Y.H.); (H.L.); (J.L.); (Y.J.); (R.S.)
- Hong Kong Center for Cerebra-Cardiovascular Health Engineering, Hong Kong Science Park, New Territories, Hong Kong 999077, China
| | - Kuanming Yao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China; (W.P.); (C.Y.); (Y.L.); (T.H.W.); (X.H.); (J.Z.); (J.L.); (K.Y.); (Y.H.); (H.L.); (J.L.); (Y.J.); (R.S.)
| | - Ya Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China; (W.P.); (C.Y.); (Y.L.); (T.H.W.); (X.H.); (J.Z.); (J.L.); (K.Y.); (Y.H.); (H.L.); (J.L.); (Y.J.); (R.S.)
- Hong Kong Center for Cerebra-Cardiovascular Health Engineering, Hong Kong Science Park, New Territories, Hong Kong 999077, China
| | - Hu Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China; (W.P.); (C.Y.); (Y.L.); (T.H.W.); (X.H.); (J.Z.); (J.L.); (K.Y.); (Y.H.); (H.L.); (J.L.); (Y.J.); (R.S.)
| | - Jiyu Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China; (W.P.); (C.Y.); (Y.L.); (T.H.W.); (X.H.); (J.Z.); (J.L.); (K.Y.); (Y.H.); (H.L.); (J.L.); (Y.J.); (R.S.)
- Hong Kong Center for Cerebra-Cardiovascular Health Engineering, Hong Kong Science Park, New Territories, Hong Kong 999077, China
| | - Yanli Jiao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China; (W.P.); (C.Y.); (Y.L.); (T.H.W.); (X.H.); (J.Z.); (J.L.); (K.Y.); (Y.H.); (H.L.); (J.L.); (Y.J.); (R.S.)
| | - Rui Shi
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China; (W.P.); (C.Y.); (Y.L.); (T.H.W.); (X.H.); (J.Z.); (J.L.); (K.Y.); (Y.H.); (H.L.); (J.L.); (Y.J.); (R.S.)
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China; (W.P.); (C.Y.); (Y.L.); (T.H.W.); (X.H.); (J.Z.); (J.L.); (K.Y.); (Y.H.); (H.L.); (J.L.); (Y.J.); (R.S.)
- Hong Kong Center for Cerebra-Cardiovascular Health Engineering, Hong Kong Science Park, New Territories, Hong Kong 999077, China
- Correspondence:
| |
Collapse
|
4
|
Kang K, Lee H, Kim D. Effectiveness of high curvature segmentation on the curved flexible surface plasmon resonance. OPTICS EXPRESS 2021; 29:26955-26970. [PMID: 34615119 DOI: 10.1364/oe.434343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
In this report, we explore a segmentation-based approach for the calculation of surface plasmon resonance (SPR) on the curved surface with high curvature by modeling it as a contiguous array of finite segments. The approach would significantly facilitate the calculation with good accuracy because of the inherent nature that transfer matrix analysis can be used. Using the segmentation model, resonance characteristics at SPR were obtained as the curvature radius was varied. For validation of the segmentation, resonance wavelength (λSPR), reflectance at resonance (RSPR), and resonance width (δλSPR) were compared with the finite element method in the parallel and perpendicular light incidence. It was found that the results from the segmentation were in excellent agreement, λSPR in particular, while RSPR and δλSPR under parallel incidence showed disparity between the two models due to the short segmentation. Resonance of curved surface on the rigid and flexible substrate was compared and the overall trend was found to be almost identical. The segmentation is expected to provide a simple, fast, and efficient way for studying plasmonic devices with high curvature in flexible and wearable applications.
Collapse
|
5
|
Yu Y, Nyein HYY, Gao W, Javey A. Flexible Electrochemical Bioelectronics: The Rise of In Situ Bioanalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1902083. [PMID: 31432573 DOI: 10.1002/adma.201902083] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/30/2019] [Indexed: 05/21/2023]
Abstract
The amalgamation of flexible electronics in biological systems has shaped the way health and medicine are administered. The growing field of flexible electrochemical bioelectronics enables the in situ quantification of a variety of chemical constituents present in the human body and holds great promise for personalized health monitoring owing to its unique advantages such as inherent wearability, high sensitivity, high selectivity, and low cost. It represents a promising alternative to probe biomarkers in the human body in a simpler method compared to conventional instrumental analytical techniques. Various bioanalytical technologies are employed in flexible electrochemical bioelectronics, including ion-selective potentiometry, enzymatic amperometry, potential sweep voltammetry, field-effect transistors, affinity-based biosensing, as well as biofuel cells. Recent key innovations in flexible electrochemical bioelectronics from electrochemical sensing modalities, materials, systems, fabrication, to applications are summarized and highlighted. The challenges and opportunities in this field moving forward toward future preventive and personalized medicine devices are also discussed.
Collapse
Affiliation(s)
- You Yu
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Hnin Yin Yin Nyein
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, 94720, USA
- Berkeley Sensor and Actuator Center, University of California, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Wei Gao
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Ali Javey
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, 94720, USA
- Berkeley Sensor and Actuator Center, University of California, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
6
|
Tang L, Hong W, Wang X, Sun W, Yang B, Wei M, Pan J, Liu J. Ultraminiature and Flexible Sensor Based on Interior Corner Flow for Direct Pressure Sensing in Biofluids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900950. [PMID: 31402551 DOI: 10.1002/smll.201900950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/01/2019] [Indexed: 06/10/2023]
Abstract
Conventional pressure sensing devices are well developed for either indirect evaluation or internal measuring of fluid pressure over millimeter scale. Whereas, specialized pressure sensors that can directly work in various liquid environments at micrometer scale remain challenging and rarely explored, but are of great importance in many biomedical applications. Here, pressure sensor technology that utilizes capillary action to self-assemble the pressure-sensitive element is introduced. Sophisticated control of capillary flow, tunable sensitivity to liquid pressure in various mediums, and multiple transduction modes are realized in a polymer device, which is also flexible (thickness of 8 µm), ultraminiature (effective volume of 18 × 100 × 580 µm3 ), and transparent, enabling the sensor to work in some extreme situations, such as in narrow inner spaces (e.g., a microchannel of 220 µm in width and 100 µm in height), or on the surface of small objects (e.g., a 380 µm diameter needle). Potential applications of this sensor include disposables for in vivo and short-term measurements.
Collapse
Affiliation(s)
- Longjun Tang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication Laboratory, Department of Micro/Nano-electronics, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- Shanghai NeuroZing Co., Ltd, Shanghai, 201318, P. R. China
| | - Wen Hong
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication Laboratory, Department of Micro/Nano-electronics, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xiaolin Wang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication Laboratory, Department of Micro/Nano-electronics, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Wenxi Sun
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication Laboratory, Department of Micro/Nano-electronics, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Bin Yang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication Laboratory, Department of Micro/Nano-electronics, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Meng Wei
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Jingwei Pan
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Jingquan Liu
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication Laboratory, Department of Micro/Nano-electronics, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
7
|
Xu M, Obodo D, Yadavalli VK. The design, fabrication, and applications of flexible biosensing devices. Biosens Bioelectron 2019; 124-125:96-114. [PMID: 30343162 PMCID: PMC6310145 DOI: 10.1016/j.bios.2018.10.019] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/29/2018] [Accepted: 10/09/2018] [Indexed: 12/13/2022]
Abstract
Flexible biosensors form part of a rapidly growing research field that take advantage of a multidisciplinary approach involving materials, fabrication and design strategies to be able to function at biological interfaces that may be soft, intrinsically curvy, irregular, or elastic. Numerous exciting advancements are being proposed and developed each year towards applications in healthcare, fundamental biomedical research, food safety and environmental monitoring. In order to place these developments in perspective, this review is intended to present an overview on field of flexible biosensor development. We endeavor to show how this subset of the broader field of flexible and wearable devices presents unique characteristics inherent in their design. Initially, a discussion on the structure of flexible biosensors is presented to address the critical issues specific to their design. We then summarize the different materials as substrates that can resist mechanical deformation while retaining their function of the bioreceptors and active elements. Several examples of flexible biosensors are presented based on the different environments in which they may be deployed or on the basis of targeted biological analytes. Challenges and future perspectives pertinent to the current and future stages of development are presented. Through these summaries and discussion, this review is expected to provide insights towards a systematic and fundamental understanding for the fabrication and utilization of flexible biosensors, as well as inspire and improve designs for smart and effective devices in the future.
Collapse
Affiliation(s)
- Meng Xu
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 W Main Street, Richmond, VA 23284, USA
| | - Dora Obodo
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 W Main Street, Richmond, VA 23284, USA
| | - Vamsi K Yadavalli
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 W Main Street, Richmond, VA 23284, USA.
| |
Collapse
|
8
|
Ashammakhi N, Ahadian S, Darabi MA, El Tahchi M, Lee J, Suthiwanich K, Sheikhi A, Dokmeci MR, Oklu R, Khademhosseini A. Minimally Invasive and Regenerative Therapeutics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1804041. [PMID: 30565732 PMCID: PMC6709364 DOI: 10.1002/adma.201804041] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/20/2018] [Indexed: 05/03/2023]
Abstract
Advances in biomaterial synthesis and fabrication, stem cell biology, bioimaging, microsurgery procedures, and microscale technologies have made minimally invasive therapeutics a viable tool in regenerative medicine. Therapeutics, herein defined as cells, biomaterials, biomolecules, and their combinations, can be delivered in a minimally invasive way to regenerate different tissues in the body, such as bone, cartilage, pancreas, cardiac, skeletal muscle, liver, skin, and neural tissues. Sophisticated methods of tracking, sensing, and stimulation of therapeutics in vivo using nano-biomaterials and soft bioelectronic devices provide great opportunities to further develop minimally invasive and regenerative therapeutics (MIRET). In general, minimally invasive delivery methods offer high yield with low risk of complications and reduced costs compared to conventional delivery methods. Here, minimally invasive approaches for delivering regenerative therapeutics into the body are reviewed. The use of MIRET to treat different tissues and organs is described. Although some clinical trials have been performed using MIRET, it is hoped that such therapeutics find wider applications to treat patients. Finally, some future perspective and challenges for this emerging field are highlighted.
Collapse
Affiliation(s)
- Nureddin Ashammakhi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
- Division of Plastic Surgery, Department of Surgery, Oulu University, Oulu, Finland
| | - Samad Ahadian
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
| | - Mohammad Ali Darabi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
| | - Mario El Tahchi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
- LBMI, Department of Physics, Lebanese University - Faculty of Sciences 2, PO Box 90656, Jdeidet, Lebanon
| | - Junmin Lee
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
| | - Kasinan Suthiwanich
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Amir Sheikhi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
| | - Mehmet R. Dokmeci
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
| | - Rahmi Oklu
- Division of Interventional Radiology, Department of Radiology, Mayo Clinic, Scottsdale, USA
| | - Ali Khademhosseini
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
- Department of Radiological Sciences, University of California - Los Angeles, Los Angeles, California, USA
- Department of Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, California, USA
- Center of Nanotechnology, Department of Physics, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
9
|
Dong S, Wang Z, Asif M, Wang H, Yu Y, Hu Y, Liu H, Xiao F. Inkjet Printing Synthesis of Sandwiched Structured Ionic Liquid-Carbon Nanotube-Graphene Film: Toward Disposable Electrode for Sensitive Heavy Metal Detection in Environmental Water Samples. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.6b04251] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Shuang Dong
- Department of Chemistry
and Chemical Engineering, Hubei Key Laboratory of Material Chemistry
and Service Failure, Key Laboratory for Large-Format Battery Materials
and System, Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Zhengyun Wang
- Department of Chemistry
and Chemical Engineering, Hubei Key Laboratory of Material Chemistry
and Service Failure, Key Laboratory for Large-Format Battery Materials
and System, Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Muhammad Asif
- Department of Chemistry
and Chemical Engineering, Hubei Key Laboratory of Material Chemistry
and Service Failure, Key Laboratory for Large-Format Battery Materials
and System, Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Haitao Wang
- Department of Chemistry
and Chemical Engineering, Hubei Key Laboratory of Material Chemistry
and Service Failure, Key Laboratory for Large-Format Battery Materials
and System, Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Yang Yu
- Department of Chemistry
and Chemical Engineering, Hubei Key Laboratory of Material Chemistry
and Service Failure, Key Laboratory for Large-Format Battery Materials
and System, Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Yulong Hu
- College of Science, Naval University of Engineering, 717 Jiefang
Avenue, Wuhan 430033, China
| | - Hongfang Liu
- Department of Chemistry
and Chemical Engineering, Hubei Key Laboratory of Material Chemistry
and Service Failure, Key Laboratory for Large-Format Battery Materials
and System, Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Fei Xiao
- Department of Chemistry
and Chemical Engineering, Hubei Key Laboratory of Material Chemistry
and Service Failure, Key Laboratory for Large-Format Battery Materials
and System, Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, PR China
| |
Collapse
|
10
|
Du X, Li Y, Herman GS. A field effect glucose sensor with a nanostructured amorphous In-Ga-Zn-O network. NANOSCALE 2016; 8:18469-18475. [PMID: 27778013 DOI: 10.1039/c6nr05134k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Amorphous indium gallium zinc oxide (IGZO) field effect transistors (FETs) are a promising technology for a wide range of electronic applications. Herein, we fabricated and characterized FETs with a nanostructured IGZO network as a sensing transducer. The IGZO was patterned using colloidal lithography and electrohydrodynamic printing, where an 8 μm wide nanostructured close-packed hexagonal IGZO network was obtained. Electrical characterization of the nanostructured IGZO network FET demonstrated a drain-source current on-off ratio of 6.1 × 103 and effective electron mobilities of 3.6 cm2 V-1 s-1. The nanostructured IGZO network was functionalized by aminosilane groups with cross-linked glucose oxidase. The devices demonstrated a decrease in drain-source conductance and a more positive VON with increasing glucose concentration. These changes are ascribed to the acceptor-like surface states associated with positively charged aminosilane groups attached to the nanostructured IGZO surface. Continuous monitoring of the drain-source current indicates a stepwise and fully reversible response to glucose concentrations with a short response time. The specific catalytic reaction between the GOx enzyme and glucose eliminates interference from acetaminophen/ascorbic acid. We demonstrate that nanostructured IGZO FETs have improved sensitivity compared to non-nanostructured IGZO for sensing glucose and can be potentially extended to other biosensor technologies.
Collapse
Affiliation(s)
- Xiaosong Du
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon 97331, USA.
| | - Yajuan Li
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon 97331, USA. and College of Science, Civil Aviation University of China, Tianjin, 300300, China
| | - Gregory S Herman
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon 97331, USA.
| |
Collapse
|
11
|
Mostafalu P, Nezhad AS, Nikkhah M, Akbari M. Flexible Electronic Devices for Biomedical Applications. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/978-3-319-32180-6_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Development and application of a microfabricated multimodal neural catheter for neuroscience. Biomed Microdevices 2016; 18:8. [PMID: 26780443 DOI: 10.1007/s10544-016-0034-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We present a microfabricated neural catheter for real-time continuous monitoring of multiple physiological, biochemical and electrophysiological variables that are critical to the diagnosis and treatment of evolving brain injury. The first generation neural catheter was realized by polyimide-based micromachining and a spiral rolling packaging method. The mechanical design and electrical operation of the microsensors were optimized and tailored for multimodal monitoring in rat brain such that the potential thermal, chemical and electrical crosstalk among the microsensors as well as errors from micro-environmental fluctuations are minimized. In vitro cytotoxicity analyses suggest that the developed neural catheters are minimally toxic to rat cortical neuronal cultures. In addition, in vivo histopathology results showed neither acute nor chronic inflammation for 7 days post implantation. The performance of the neural catheter was assessed in an in vivo needle prick model as a translational replica of a "mini" traumatic brain injury. It successfully monitored the expected transient brain oxygen, temperature, regional cerebral blood flow, and DC potential changes during the passage of spreading depolarization waves. We envisage that the developed multimodal neural catheter can be used to decipher the causes and consequences of secondary brain injury processes with high spatial and temporal resolution while reducing the potential for iatrogenic injury inherent to current use of multiple invasive probes.
Collapse
|
13
|
Kokkinos C, Angelopoulou M, Economou A, Prodromidis M, Florou A, Haasnoot W, Petrou P, Kakabakos S. Lab-on-a-Membrane Foldable Devices for Duplex Drop-Volume Electrochemical Biosensing Using Quantum Dot Tags. Anal Chem 2016; 88:6897-904. [PMID: 27257985 DOI: 10.1021/acs.analchem.6b01625] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This work describes a new type of integrated lab-on-a-membrane foldable device suitable for on-site duplex electrochemical biosensing using drop-size sample volumes. The devices are fabricated entirely by screen-printing on a nylon membrane and feature two assay zones which are located symmetrically on either side of a three-electrode voltammetric cell with a bismuth citrate-loaded graphite working electrode. After the completion of two spatially separated drop-volume competitive immunoassays on the assay zones using biotinylated antibodies labeled with streptavidin-conjugated Pb- and Cd-based quantum dots (QDs), respectively, the QD labels are dissolved releasing Pb(II) and Cd(II) in the assay zones. Then, the two assay zones are folded over, and they are brought in contact with the voltammetric cell for simultaneous anodic stripping voltammetric (ASV) determination of Pb(II) and Cd(II) at the bismuth nanostructured layer formed on the working electrode by reduction of the bismuth citrate during the preconcentration step. The fabrication of the devices is discussed in detail, and their operational characteristics are exhaustively studied. In order to demonstrate their applicability to the analysis in complex matrices, duplex ASV-QDs-based determination of bovine casein and bovine immunoglobulin G is carried out in milk samples yielding limits of detection of 0.04 μg mL(-1) and 0.02 μg mL(-1), respectively. The potential of the devices to detect milk adulteration is further demonstrated. These new membrane devices enable duplex biosensing with distinct advantages over existing approaches in terms of cost, fabrication, and operational simplicity and rapidity, portability, sample size, disposability, sensitivity, and suitability for field analysis.
Collapse
Affiliation(s)
- Christos Kokkinos
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens , Athens, 157 71, Greece
| | - Michailia Angelopoulou
- Immunoassays/Immunosensors Lab, INRaSTES, NCSR "Demokritos", Aghia Paraskevi, 15310, Greece
| | - Anastasios Economou
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens , Athens, 157 71, Greece
| | - Mamas Prodromidis
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Ioannina , Ioannina, 45110, Greece
| | - Ageliki Florou
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Ioannina , Ioannina, 45110, Greece
| | - Willem Haasnoot
- RIKILT Wageningen UR, Akkermaalsbos 2, Wageningen, WB 6708, The Netherlands
| | - Panagiota Petrou
- Immunoassays/Immunosensors Lab, INRaSTES, NCSR "Demokritos", Aghia Paraskevi, 15310, Greece
| | - Sotirios Kakabakos
- Immunoassays/Immunosensors Lab, INRaSTES, NCSR "Demokritos", Aghia Paraskevi, 15310, Greece
| |
Collapse
|
14
|
Li C, Limnuson K, Wu Z, Amin A, Narayan A, Golanov EV, Ahn CH, Hartings JA, Narayan RK. Single probe for real-time simultaneous monitoring of neurochemistry and direct-current electrocorticography. Biosens Bioelectron 2016; 77:62-8. [DOI: 10.1016/j.bios.2015.09.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 09/09/2015] [Accepted: 09/10/2015] [Indexed: 01/25/2023]
|
15
|
Du X, Li Y, Motley JR, Stickle WF, Herman GS. Glucose Sensing Using Functionalized Amorphous In-Ga-Zn-O Field-Effect Transistors. ACS APPLIED MATERIALS & INTERFACES 2016; 8:7631-7. [PMID: 26953727 DOI: 10.1021/acsami.5b12058] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Recent advances in glucose sensing have focused on the integration of sensors into contact lenses to allow noninvasive continuous glucose monitoring. Current technologies focus primarily on enzyme-based electrochemical sensing which requires multiple nontransparent electrodes to be integrated. Herein, we leverage amorphous indium gallium zinc oxide (IGZO) field-effect transistors (FETs), which have found use in a wide range of display applications and can be made fully transparent. Bottom-gated IGZO-FETs can have significant changes in electrical characteristics when the back-channel is exposed to different environments. We have functionalized the back-channel of IGZO-FETs with aminosilane groups that are cross-linked to glucose oxidase and have demonstrated that these devices have high sensitivity to changes in glucose concentrations. Glucose sensing occurs through the decrease in pH during glucose oxidation, which modulates the positive charge of the aminosilane groups attached to the IGZO surface. The change in charge affects the number of acceptor-like surface states which can deplete electron density in the n-type IGZO semiconductor. Increasing glucose concentrations leads to an increase in acceptor states and a decrease in drain-source conductance due to a positive shift in the turn-on voltage. The functionalized IGZO-FET devices are effective in minimizing detection of interfering compounds including acetaminophen and ascorbic acid. These studies suggest that IGZO FETs can be effective for monitoring glucose concentrations in a variety of environments, including those where fully transparent sensing elements may be of interest.
Collapse
Affiliation(s)
- Xiaosong Du
- School of Chemical, Biological, and Environmental Engineering, Oregon State University , Corvallis, Oregon 97331, United States
| | - Yajuan Li
- School of Chemical, Biological, and Environmental Engineering, Oregon State University , Corvallis, Oregon 97331, United States
- College of Science, Civil Aviation University of China , Tianjin 300300, China
| | - Joshua R Motley
- School of Chemical, Biological, and Environmental Engineering, Oregon State University , Corvallis, Oregon 97331, United States
| | | | - Gregory S Herman
- School of Chemical, Biological, and Environmental Engineering, Oregon State University , Corvallis, Oregon 97331, United States
| |
Collapse
|
16
|
Kazimierczak B, Pijanowska D, Baraniecka A, Dawgul M, Kruk J, Torbicz W. Immunosensors for human cardiac troponins and CRP, in particular amperometric cTnI immunosensor. Biocybern Biomed Eng 2016. [DOI: 10.1016/j.bbe.2015.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
17
|
|
18
|
Ferrari AC, Bonaccorso F, Fal'ko V, Novoselov KS, Roche S, Bøggild P, Borini S, Koppens FHL, Palermo V, Pugno N, Garrido JA, Sordan R, Bianco A, Ballerini L, Prato M, Lidorikis E, Kivioja J, Marinelli C, Ryhänen T, Morpurgo A, Coleman JN, Nicolosi V, Colombo L, Fert A, Garcia-Hernandez M, Bachtold A, Schneider GF, Guinea F, Dekker C, Barbone M, Sun Z, Galiotis C, Grigorenko AN, Konstantatos G, Kis A, Katsnelson M, Vandersypen L, Loiseau A, Morandi V, Neumaier D, Treossi E, Pellegrini V, Polini M, Tredicucci A, Williams GM, Hong BH, Ahn JH, Kim JM, Zirath H, van Wees BJ, van der Zant H, Occhipinti L, Di Matteo A, Kinloch IA, Seyller T, Quesnel E, Feng X, Teo K, Rupesinghe N, Hakonen P, Neil SRT, Tannock Q, Löfwander T, Kinaret J. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. NANOSCALE 2015; 7:4598-810. [PMID: 25707682 DOI: 10.1039/c4nr01600a] [Citation(s) in RCA: 1000] [Impact Index Per Article: 111.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
We present the science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, targeting an evolution in technology, that might lead to impacts and benefits reaching into most areas of society. This roadmap was developed within the framework of the European Graphene Flagship and outlines the main targets and research areas as best understood at the start of this ambitious project. We provide an overview of the key aspects of graphene and related materials (GRMs), ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries. We also define an extensive list of acronyms in an effort to standardize the nomenclature in this emerging field.
Collapse
Affiliation(s)
- Andrea C Ferrari
- Cambridge Graphene Centre, University of Cambridge, Cambridge, CB3 0FA, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Du X, Durgan CJ, Matthews DJ, Motley JR, Tan X, Pholsena K, Árnadóttir L, Castle JR, Jacobs PG, Cargill RS, Ward WK, Conley JF, Herman GS. Fabrication of a Flexible Amperometric Glucose Sensor Using Additive Processes. ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY : JSS 2015; 4:P3069-P3074. [PMID: 26634186 PMCID: PMC4664458 DOI: 10.1149/2.0101504jss] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
This study details the use of printing and other additive processes to fabricate a novel amperometric glucose sensor. The sensor was fabricated using a Au coated 12.7 μm thick polyimide substrate as a starting material, where micro-contact printing, electrochemical plating, chloridization, electrohydrodynamic jet (e-jet) printing, and spin coating were used to pattern, deposit, chloridize, print, and coat functional materials, respectively. We have found that e-jet printing was effective for the deposition and patterning of glucose oxidase inks with lateral feature sizes between ~5 to 1000 μm in width, and that the glucose oxidase was still active after printing. The thickness of the permselective layer was optimized to obtain a linear response for glucose concentrations up to 32 mM and no response to acetaminophen, a common interfering compound, was observed. The use of such thin polyimide substrates allow wrapping of the sensors around catheters with high radius of curvature ~250 μm, where additive and microfabrication methods may allow significant cost reductions.
Collapse
Affiliation(s)
- Xiaosong Du
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon 97331, USA
| | - Christopher J. Durgan
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon 97331, USA
| | - David J. Matthews
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, Oregon 97331, USA
| | - Joshua R. Motley
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon 97331, USA
| | - Xuebin Tan
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, Oregon 97331, USA
| | - Kovit Pholsena
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon 97331, USA
| | - Líney Árnadóttir
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon 97331, USA
| | | | - Peter G. Jacobs
- Pacific Diabetes Technologies, Portland, Oregon 97201, USA
- Oregon Health & Science University, Portland, Oregon 97239, USA
| | | | | | - John F. Conley
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, Oregon 97331, USA
| | - Gregory S. Herman
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon 97331, USA
| |
Collapse
|
20
|
|
21
|
A comparison of polymer substrates for photolithographic processing of flexible bioelectronics. Biomed Microdevices 2014; 15:925-39. [PMID: 23852172 DOI: 10.1007/s10544-013-9782-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Flexible bioelectronics encompass a new generation of sensing devices, in which controlled interactions with tissue enhance understanding of biological processes in vivo. However, the fabrication of such thin film electronics with photolithographic processes remains a challenge for many biocompatible polymers. Recently, two shape memory polymer (SMP) systems, based on acrylate and thiol-ene/acrylate networks, were designed as substrates for softening neural interfaces with glass transitions above body temperature (37 °C) such that the materials are stiff for insertion into soft tissue and soften through low moisture absorption in physiological conditions. These two substrates, acrylate and thiol-ene/acrylate SMPs, are compared to polyethylene naphthalate, polycarbonate, polyimide, and polydimethylsiloxane, which have been widely used in flexible electronics research and industry. These six substrates are compared via dynamic mechanical analysis (DMA), thermogravimetric analysis (TGA), and swelling studies. The integrity of gold and chromium/gold thin films on SMP substrates are evaluated with optical profilometry and electrical measurements as a function of processing temperature above, below and through the glass transition temperature. The effects of crosslink density, adhesion and cure stress are shown to play a critical role in the stability of these thin film materials, and a guide for the future design of responsive polymeric materials suitable for neural interfaces is proposed. Finally, neural interfaces fabricated on thiol-ene/acrylate substrates demonstrate long-term fidelity through both in vitro impedance spectroscopy and the recording of driven local field potentials for 8 weeks in the auditory cortex of laboratory rats.
Collapse
|
22
|
Ngoepe M, Choonara YE, Tyagi C, Tomar LK, du Toit LC, Kumar P, Ndesendo VMK, Pillay V. Integration of biosensors and drug delivery technologies for early detection and chronic management of illness. SENSORS (BASEL, SWITZERLAND) 2013; 13:7680-713. [PMID: 23771157 PMCID: PMC3715220 DOI: 10.3390/s130607680] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 05/21/2013] [Accepted: 06/07/2013] [Indexed: 11/17/2022]
Abstract
Recent advances in biosensor design and sensing efficacy need to be amalgamated with research in responsive drug delivery systems for building superior health or illness regimes and ensuring good patient compliance. A variety of illnesses require continuous monitoring in order to have efficient illness intervention. Physicochemical changes in the body can signify the occurrence of an illness before it manifests. Even with the usage of sensors that allow diagnosis and prognosis of the illness, medical intervention still has its downfalls. Late detection of illness can reduce the efficacy of therapeutics. Furthermore, the conventional modes of treatment can cause side-effects such as tissue damage (chemotherapy and rhabdomyolysis) and induce other forms of illness (hepatotoxicity). The use of drug delivery systems enables the lowering of side-effects with subsequent improvement in patient compliance. Chronic illnesses require continuous monitoring and medical intervention for efficient treatment to be achieved. Therefore, designing a responsive system that will reciprocate to the physicochemical changes may offer superior therapeutic activity. In this respect, integration of biosensors and drug delivery is a proficient approach and requires designing an implantable system that has a closed loop system. This offers regulation of the changes by means of releasing a therapeutic agent whenever illness biomarkers prevail. Proper selection of biomarkers is vital as this is key for diagnosis and a stimulation factor for responsive drug delivery. By detecting an illness before it manifests by means of biomarkers levels, therapeutic dosing would relate to the severity of such changes. In this review various biosensors and drug delivery systems are discussed in order to assess the challenges and future perspectives of integrating biosensors and drug delivery systems for detection and management of chronic illness.
Collapse
Affiliation(s)
- Mpho Ngoepe
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, South Africa; E-Mails: (M.N.); (Y.E.C.); (L.C.D.); (P.K.); (C.T.) (L.K.T.)
| | - Yahya E. Choonara
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, South Africa; E-Mails: (M.N.); (Y.E.C.); (L.C.D.); (P.K.); (C.T.) (L.K.T.)
| | - Charu Tyagi
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, South Africa; E-Mails: (M.N.); (Y.E.C.); (L.C.D.); (P.K.); (C.T.) (L.K.T.)
| | - Lomas Kumar Tomar
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, South Africa; E-Mails: (M.N.); (Y.E.C.); (L.C.D.); (P.K.); (C.T.) (L.K.T.)
| | - Lisa C. du Toit
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, South Africa; E-Mails: (M.N.); (Y.E.C.); (L.C.D.); (P.K.); (C.T.) (L.K.T.)
| | - Pradeep Kumar
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, South Africa; E-Mails: (M.N.); (Y.E.C.); (L.C.D.); (P.K.); (C.T.) (L.K.T.)
| | - Valence M. K. Ndesendo
- School of Pharmacy and Pharmaceutical Sciences, St. John's University of Tanzania, Dodoma, Tanzania; E-Mail:
| | - Viness Pillay
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, South Africa; E-Mails: (M.N.); (Y.E.C.); (L.C.D.); (P.K.); (C.T.) (L.K.T.)
| |
Collapse
|
23
|
Impedimetric immunosensor based on gold nanoparticles modified graphene paper for label-free detection of Escherichia coli O157:H7. Biosens Bioelectron 2013; 49:492-8. [PMID: 23811484 DOI: 10.1016/j.bios.2013.05.061] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 05/27/2013] [Accepted: 05/31/2013] [Indexed: 01/14/2023]
Abstract
In this study, a low-cost and robust impedimetric immunosensor based on gold nanoparticles modified free-standing graphene paper electrode for rapid and sensitive detection of Escherichia coli O157:H7 (E. coli O157:H7) was developed. Graphene paper was prepared by chemical reduction of graphene oxide paper obtained from vacuum filtration method. Scanning electron microscope, Raman spectroscopy and X-ray diffraction techniques were employed to investigate the surface morphology and crystal structure of the prepared graphene paper. The gold nanoparticles were grown on the surface of graphene paper electrode by one-step electrodeposition technique. The immobilization of anti-E. coli O157:H7 antibodies on paper electrode were performed via biotin-streptavidin system. Electrochemical impedance spectroscopy was used to detect E. coli O157:H7 captured on the paper electrode. Results show that the developed paper immunosensor possesses greatly enhanced sensing performance, such as wide linear range (1.5 × 10(2)-1.5 × 10(7) cfu mL(-1)), low detection limit (1.5 × 10(2) cfu mL(-1)), and excellent specificity. Furthermore, flexible test demonstrate the graphene paper based sensing device has high tolerability to mechanical stress. The strategy of structurally integrating metal nanomaterials, graphene paper, and biorecognition molecules would provide new insight into design of flexible immunosensors for routine sensing applications.
Collapse
|
24
|
Xiao F, Li Y, Gao H, Ge S, Duan H. Growth of coral-like PtAu–MnO2 binary nanocomposites on free-standing graphene paper for flexible nonenzymatic glucose sensors. Biosens Bioelectron 2013; 41:417-23. [DOI: 10.1016/j.bios.2012.08.062] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Revised: 06/13/2012] [Accepted: 08/31/2012] [Indexed: 11/29/2022]
|
25
|
Vaddiraju S, Legassey A, Qiang L, Wang Y, Burgess DJ, Papadimitrakopoulos F. Enhancing the sensitivity of needle-implantable electrochemical glucose sensors via surface rebuilding. J Diabetes Sci Technol 2013; 7:441-51. [PMID: 23567003 PMCID: PMC3737646 DOI: 10.1177/193229681300700221] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Needle-implantable sensors have shown to provide reliable continuous glucose monitoring for diabetes management. In order to reduce tissue injury during sensor implantation, there is a constant need for device size reduction, which imposes challenges in terms of sensitivity and reliability, as part of decreasing signal-to-noise and increasing layer complexity. Herein, we report sensitivity enhancement via electrochemical surface rebuilding of the working electrode (WE), which creates a three-dimensional nanoporous configuration with increased surface area. METHODS The gold WE was electrochemically rebuilt to render its surface nanoporous followed by decoration with platinum nanoparticles. The efficacy of such process was studied using sensor sensitivity against hydrogen peroxide (H2O2). For glucose detection, the WE was further coated with five layers, namely, (1) polyphenol, (2) glucose oxidase, (3) polyurethane, (4) catalase, and (5) dexamethasone-releasing poly(vinyl alcohol)/poly(lactic-co-glycolic acid) composite. The amperometric response of the glucose sensor was noted in vitro and in vivo. RESULTS Scanning electron microscopy revealed that electrochemical rebuilding of the WE produced a nanoporous morphology that resulted in a 20-fold enhancement in H2O2 sensitivity, while retaining >98% selectivity. This afforded a 4-5-fold increase in overall glucose response of the glucose sensor when compared with a control sensor with no surface rebuilding and fittable only within an 18 G needle. The sensor was able to reproducibly track in vivo glycemic events, despite the large background currents typically encountered during animal testing. CONCLUSION Enhanced sensor performance in terms of sensitivity and large signal-to-noise ratio has been attained via electrochemical rebuilding of the WE. This approach also bypasses the need for conventional and nanostructured mediators currently employed to enhance sensor performance.
Collapse
Affiliation(s)
- Santhisagar Vaddiraju
- Biorasis Inc. Technology Incubation Program, University of Connecticut, Storrs, Connecticut
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut
| | - Allen Legassey
- Biorasis Inc. Technology Incubation Program, University of Connecticut, Storrs, Connecticut
| | - Liangliang Qiang
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut
| | - Yan Wang
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut
| | - Diane J. Burgess
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut
| | - Fotios Papadimitrakopoulos
- Biorasis Inc. Technology Incubation Program, University of Connecticut, Storrs, Connecticut
- Department of Chemistry, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
26
|
Hsu MS, Chen YL, Lee CY, Chiu HT. Gold nanostructures on flexible substrates as electrochemical dopamine sensors. ACS APPLIED MATERIALS & INTERFACES 2012; 4:5570-5575. [PMID: 23020235 DOI: 10.1021/am301452b] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In this study, we fabricated Au nanowires (NWs), nanoslices (NSs), and nanocorals (NCs) on flexible polyethylene terephthalate (PET) substrates via direct current electrochemical depositions. Without any surface modification, the Au nanostructures were used as the electrodes for dopamine (DA) sensing. Among them, the Au NW electrode performed exceptionally well. The determined linear range for DA detection was 0.2-600 μM (N = 3) and the sensitivity was 178 nA/μM cm(2), while the detection limit was 26 nM (S/N = 3). After 10 repeated measurements, 95% of the original anodic current values were maintained for the nanostructured electrodes. Sequential additions of citric acid (CA, 1 mM), uric acid (UA, saturated), and ascorbic acid (AA, 1 μM) did not interfere the amperometric response from the addition of DA (0.1 μM).
Collapse
Affiliation(s)
- Ming-Sheng Hsu
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan 30050, ROC
| | | | | | | |
Collapse
|
27
|
Bogie K, Powell HL, Ho CH. New concepts in the prevention of pressure sores. HANDBOOK OF CLINICAL NEUROLOGY 2012; 109:235-246. [PMID: 23098716 DOI: 10.1016/b978-0-444-52137-8.00014-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Pressure sores are a serious, and costly, complication for many patients with reduced mobility and sensation. Some populations, such as those with spinal cord injury (SCI), remain at high risk throughout their lifetime. Prevention is highly preferable and while the concept is readily definable, it is much more challenging to develop valid preventative measures. Subjective and objective approaches to risk factor assessment before pressure sores develop are reviewed, including risk status scales and emerging techniques to assess deep tissue injury. Devices to prevent pressure sores have traditionally focused on pressure-relieving cushions and mattresses. Technological advances being applied in the development of new pressure sore prevention devices are presented. Clinical evidence-based practice is integral to pressure sore prevention. Comprehensive assessment must include evaluation of systemic diseases, anatomical and physiological factors, together with environmental and psychosocial factors, which can all contribute to pressure sore development. Extrinsic factors need to be considered in conjunction with intrinsic tissue health factors and are reviewed together with an evaluation of currently available clinical practice guidelines. This chapter presents the broad diversity of factors associated with pressure sore development and highlights the need for an interdisciplinary team approach in order to maximize successful prevention of pressure sores.
Collapse
Affiliation(s)
- Kath Bogie
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA.
| | | | | |
Collapse
|
28
|
Tai YL, Yang ZG. Preparation of stable aqueous conductive ink with silver nanoflakes and its application on paper-based flexible electronics. SURF INTERFACE ANAL 2011. [DOI: 10.1002/sia.3839] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yan-Long Tai
- Department of Materials Science; Fudan University; Shanghai 200433 China
| | - Zhen-Guo Yang
- Department of Materials Science; Fudan University; Shanghai 200433 China
| |
Collapse
|
29
|
Li C, Wu PM, Wu Z, Ahn CH, LeDoux D, Shutter LA, Hartings JA, Narayan RK. Brain temperature measurement: A study of in vitro accuracy and stability of smart catheter temperature sensors. Biomed Microdevices 2011; 14:109-18. [DOI: 10.1007/s10544-011-9589-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Tai YL, Yang ZG. Fabrication of paper-based conductive patterns for flexible electronics by direct-writing. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c0jm03065a] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Vaddiraju S, Tomazos I, Burgess DJ, Jain FC, Papadimitrakopoulos F. Emerging synergy between nanotechnology and implantable biosensors: a review. Biosens Bioelectron 2010; 25:1553-65. [PMID: 20042326 PMCID: PMC2846767 DOI: 10.1016/j.bios.2009.12.001] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 11/13/2009] [Accepted: 12/02/2009] [Indexed: 12/13/2022]
Abstract
The development of implantable biosensors for continuous monitoring of metabolites is an area of sustained scientific and technological interests. On the other hand, nanotechnology, a discipline which deals with the properties of materials at the nanoscale, is developing as a potent tool to enhance the performance of these biosensors. This article reviews the current state of implantable biosensors, highlighting the synergy between nanotechnology and sensor performance. Emphasis is placed on the electrochemical method of detection in light of its widespread usage and substantial nanotechnology based improvements in various aspects of electrochemical biosensor performance. Finally, issues regarding toxicity and biocompatibility of nanomaterials, along with future prospects for the application of nanotechnology in implantable biosensors, are discussed.
Collapse
Affiliation(s)
- Santhisagar Vaddiraju
- Nanomaterials Optoelectronics Laboratory, Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06269
- Biorasis Inc., 23 Fellen Road, Storrs, CT 06268
| | | | - Diane J Burgess
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269
| | - Faquir C Jain
- Electrical and Computer Engineering, University of Connecticut, Storrs, CT 06269
| | - Fotios Papadimitrakopoulos
- Nanomaterials Optoelectronics Laboratory, Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06269
- Department of Chemistry, University of Connecticut, Storrs, CT 06269
| |
Collapse
|
32
|
Li C, Wu PM, Jung W, Ahn CH, Shutter LA, Narayan RK. A novel lab-on-a-tube for multimodality neuromonitoring of patients with traumatic brain injury (TBI). LAB ON A CHIP 2009; 9:1988-90. [PMID: 19568663 DOI: 10.1039/b900651f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A novel lab-on-a-tube integrated with spirally-rolled pressure, temperature, oxygen and glucose microsensors is described for multimodal neuromonitoring of patients with traumatic brain injury. In addition to measuring various crucial parameters in real-time continuous formats, the newly developed device also works as an intraventricular catheter to lower the elevated intracranial pressure by draining cerebrospinal fluid.
Collapse
Affiliation(s)
- Chunyan Li
- Department of Neurosurgery, University of Cincinnati (UC) Neuroscience Institute, Cincinnati, Ohio 45267, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Chu M, Kudo H, Shirai T, Miyajima K, Saito H, Morimoto N, Yano K, Iwasaki Y, Akiyoshi K, Mitsubayashi K. A soft and flexible biosensor using a phospholipid polymer for continuous glucose monitoring. Biomed Microdevices 2009; 11:837-42. [DOI: 10.1007/s10544-009-9300-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Ainslie KM, Desai TA. Microfabricated implants for applications in therapeutic delivery, tissue engineering, and biosensing. LAB ON A CHIP 2008; 8:1864-78. [PMID: 18941687 PMCID: PMC2970504 DOI: 10.1039/b806446f] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
By adapting microfabrication techniques originally developed in the microelectronics industry novel devices for drug delivery, tissue engineering and biosensing have been engineered for in vivo use. Implant microfabrication uses a broad range of techniques including photolithography, and micromachining to create devices with features ranging from 0.1 to hundreds of microns with high aspect ratios and precise features. Microfabrication offers device feature scale that is relevant to the tissues and cells to which they are applied, as well as offering ease of en masse fabrication, small device size, and facile incorporation of integrated circuit technology. Utilizing these methods, drug delivery applications have been developed for in vivo use through many delivery routes including intravenous, oral, and transdermal. Additionally, novel microfabricated tissue engineering approaches propose therapies for the cardiovascular, orthopedic, and ocular systems, among others. Biosensing devices have been designed to detect a variety of analytes and conditions in vivo through both enzymatic-electrochemical reactions and sensor displacement through mechanical loading. Overall, the impact of microfabricated devices has had an impact over a broad range of therapies and tissues. This review addresses many of these devices and highlights their fabrication as well as discusses materials relevant to microfabrication techniques.
Collapse
Affiliation(s)
- Kristy M. Ainslie
- Department of Bioengineering and Therapeutic Sciences; Department of Physiology University of California, San Francisco
| | - Tejal A. Desai
- Department of Bioengineering and Therapeutic Sciences; Department of Physiology University of California, San Francisco
| |
Collapse
|
35
|
Kagie A, Bishop D, Burdick J, La Belle J, Dymond R, Felder R, Wang J. Flexible Rolled Thick‐Film Miniaturized Flow‐Cell for Minimally Invasive Amperometric Sensing. ELECTROANAL 2008. [DOI: 10.1002/elan.200804253] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
36
|
Li C, Wu PM, Han J, Ahn CH. A flexible polymer tube lab-chip integrated with microsensors for smart microcatheter. Biomed Microdevices 2008; 10:671-9. [DOI: 10.1007/s10544-008-9178-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
37
|
Hassler BL, Amundsen TJ, Zeikus JG, Lee I, Worden RM. Versatile bioelectronic interfaces on flexible non-conductive substrates. Biosens Bioelectron 2008; 23:1481-7. [DOI: 10.1016/j.bios.2008.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 12/19/2007] [Accepted: 01/03/2008] [Indexed: 11/26/2022]
|