1
|
Design optimisation and characterisation of an amperometric glutamate oxidase-based composite biosensor for neurotransmitter l-glutamic acid. Anal Chim Acta 2022; 1224:340205. [DOI: 10.1016/j.aca.2022.340205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/15/2022] [Accepted: 07/24/2022] [Indexed: 11/22/2022]
|
2
|
Abstract
Heme proteins take part in a number of fundamental biological processes, including oxygen transport and storage, electron transfer, catalysis and signal transduction. The redox chemistry of the heme iron and the biochemical diversity of heme proteins have led to the development of a plethora of biotechnological applications. This work focuses on biosensing devices based on heme proteins, in which they are electronically coupled to an electrode and their activity is determined through the measurement of catalytic currents in the presence of substrate, i.e., the target analyte of the biosensor. After an overview of the main concepts of amperometric biosensors, we address transduction schemes, protein immobilization strategies, and the performance of devices that explore reactions of heme biocatalysts, including peroxidase, cytochrome P450, catalase, nitrite reductase, cytochrome c oxidase, cytochrome c and derived microperoxidases, hemoglobin, and myoglobin. We further discuss how structural information about immobilized heme proteins can lead to rational design of biosensing devices, ensuring insights into their efficiency and long-term stability.
Collapse
|
3
|
Poly(carboxybetaine methacrylate)-grafted silica nanoparticle: A novel carrier for enzyme immobilization. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.01.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
4
|
Wilson LR, Panda S, Schmidt AC, Sombers LA. Selective and Mechanically Robust Sensors for Electrochemical Measurements of Real-Time Hydrogen Peroxide Dynamics in Vivo. Anal Chem 2018; 90:888-895. [PMID: 29191006 PMCID: PMC5750107 DOI: 10.1021/acs.analchem.7b03770] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hydrogen peroxide (H2O2) is an endogenous molecule that plays several important roles in brain function: it is generated in cellular respiration, serves as a modulator of dopaminergic signaling, and its presence can indicate the upstream production of more aggressive reactive oxygen species (ROS). H2O2 has been implicated in several neurodegenerative diseases, including Parkinson's disease (PD), creating a critical need to identify mechanisms by which H2O2 modulates cellular processes in general and how it affects the dopaminergic nigrostriatal pathway, in particular. Furthermore, there is broad interest in selective electrochemical quantification of H2O2, because it is often enzymatically generated at biosensors as a reporter for the presence of nonelectroactive target molecules. H2O2 fluctuations can be monitored in real time using fast-scan cyclic voltammetry (FSCV) coupled with carbon-fiber microelectrodes. However, selective identification is a critical issue when working in the presence of other molecules that generate similar voltammograms, such as adenosine and histamine. We have addressed this problem by fabricating a robust, H2O2-selective electrode. 1,3-Phenylenediamine (mPD) was electrodeposited on a carbon-fiber microelectrode to create a size-exclusion membrane, rendering the electrode sensitive to H2O2 fluctuations and pH shifts but not to other commonly studied neurochemicals. The electrodes are described and characterized herein. The data demonstrate that this technology can be used to ensure the selective detection of H2O2, enabling confident characterization of the role this molecule plays in normal physiological function as well as in the progression of PD and other neuropathies involving oxidative stress.
Collapse
Affiliation(s)
- Leslie R. Wilson
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Sambit Panda
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Andreas C. Schmidt
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Leslie A. Sombers
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
5
|
Zhou Y, Ling B, Chen H, Wang L. Mn 2+-doped NaYF 4:Yb,Er upconversion nanoparticles for detection of uric acid based on the Fenton reaction. Talanta 2017; 180:120-126. [PMID: 29332789 DOI: 10.1016/j.talanta.2017.12.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/30/2017] [Accepted: 12/04/2017] [Indexed: 01/27/2023]
Abstract
A novel fluorescence method for the determination of hydrogen peroxide (H2O2) and uric acid (UA) was developed. The procedure was based on the hydroxyl radicals (·OH), which effectively quenched the fluorescence of the Mn2+-doped NaYF4:Yb,Er upconversion nanoparticles (UCNPs). Based on the property of Mn2+-doped NaYF4:Yb,Er upconversion nanoparticles, the Fenton reaction and enzymatic reaction of uric acid, this method could be used for highly sensitive detection of H2O2 and uric acid. Under optimal conditions, we observed that the fluorescence quenching signal showed good linearity with the H2O2 concentration in the range of 3.00×10-8 M ~ 6.00×10-5 M, and the detection limit of this assay was 1.30×10-8 M. Meanwhile, the linear concentration range for UA was 4.00×10-9 M ~ 1.00×10-5 M, and the lower limit of detection was 1.90×10-9 M. Furthermore, the developed method was successfully used for the determination of UA levels in human serum with satisfactory results.
Collapse
Affiliation(s)
- Yaoyao Zhou
- Anhui Key Laboratory of Chemo-Biosensing, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China
| | - Bo Ling
- Anhui Key Laboratory of Chemo-Biosensing, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China
| | - Hongqi Chen
- Anhui Key Laboratory of Chemo-Biosensing, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China.
| | - Lun Wang
- Anhui Key Laboratory of Chemo-Biosensing, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China.
| |
Collapse
|
6
|
Reid CH, Finnerty NJ. Real-Time Amperometric Recording of Extracellular H₂O₂ in the Brain of Immunocompromised Mice: An In Vitro, Ex Vivo and In Vivo Characterisation Study. SENSORS (BASEL, SWITZERLAND) 2017; 17:E1596. [PMID: 28698470 PMCID: PMC5539478 DOI: 10.3390/s17071596] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/03/2017] [Accepted: 07/05/2017] [Indexed: 12/22/2022]
Abstract
We detail an extensive characterisation study on a previously described dual amperometric H₂O₂ biosensor consisting of H₂O₂ detection (blank) and degradation (catalase) electrodes. In vitro investigations demonstrated excellent H₂O₂ sensitivity and selectivity against the interferent, ascorbic acid. Ex vivo studies were performed to mimic physiological conditions prior to in vivo deployment. Exposure to brain tissue homogenate identified reliable sensitivity and selectivity recordings up to seven days for both blank and catalase electrodes. Furthermore, there was no compromise in pre- and post-implanted catalase electrode sensitivity in ex vivo mouse brain. In vivo investigations performed in anaesthetised mice confirmed the ability of the H₂O₂ biosensor to detect increases in amperometric current following locally perfused/infused H₂O₂ and antioxidant inhibitors mercaptosuccinic acid and sodium azide. Subsequent recordings in freely moving mice identified negligible effects of control saline and sodium ascorbate interference injections on amperometric H₂O₂ current. Furthermore, the stability of the amperometric current was confirmed over a five-day period and analysis of 24-h signal recordings identified the absence of diurnal variations in amperometric current. Collectively, these findings confirm the biosensor current responds in vivo to increasing exogenous and endogenous H₂O₂ and tentatively supports measurement of H₂O₂ dynamics in freely moving NOD SCID mice.
Collapse
Affiliation(s)
- Caroline H Reid
- Chemistry Department, Maynooth University, Maynooth W23 F2H6, County Kildare, Ireland.
| | - Niall J Finnerty
- Chemistry Department, Maynooth University, Maynooth W23 F2H6, County Kildare, Ireland.
| |
Collapse
|
7
|
Doran MM, Finnerty NJ, Lowry JP. In-Vitro
Development and Characterisation of a Superoxide Dismutase-Based Biosensor. ChemistrySelect 2017. [DOI: 10.1002/slct.201700793] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Michelle M. Doran
- Neurochemistry Laboratory, Maynooth University Department of Chemistry; Maynooth University; Maynooth Co. Kildare Ireland
| | - Niall J. Finnerty
- Neurochemistry Laboratory, Maynooth University Department of Chemistry; Maynooth University; Maynooth Co. Kildare Ireland
| | - John P. Lowry
- Neurochemistry Laboratory, Maynooth University Department of Chemistry; Maynooth University; Maynooth Co. Kildare Ireland
| |
Collapse
|
8
|
Xiao T, Wu F, Hao J, Zhang M, Yu P, Mao L. In Vivo Analysis with Electrochemical Sensors and Biosensors. Anal Chem 2016; 89:300-313. [DOI: 10.1021/acs.analchem.6b04308] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Tongfang Xiao
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Analytical Chemistry for Living Biosystems and Photochemistry, Institute
of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Wu
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Analytical Chemistry for Living Biosystems and Photochemistry, Institute
of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Hao
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Analytical Chemistry for Living Biosystems and Photochemistry, Institute
of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meining Zhang
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Analytical Chemistry for Living Biosystems and Photochemistry, Institute
of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Yu
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Analytical Chemistry for Living Biosystems and Photochemistry, Institute
of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lanqun Mao
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Analytical Chemistry for Living Biosystems and Photochemistry, Institute
of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Highly Active and Stable Large Catalase Isolated from a Hydrocarbon Degrading Aspergillus terreus MTCC 6324. Enzyme Res 2016; 2016:4379403. [PMID: 27057351 PMCID: PMC4807065 DOI: 10.1155/2016/4379403] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/11/2015] [Accepted: 12/20/2015] [Indexed: 11/17/2022] Open
Abstract
A hydrocarbon degrading Aspergillus terreus MTCC 6324 produces a high level of extremely active and stable cellular large catalase (CAT) during growth on n-hexadecane to combat the oxidative stress caused by the hydrocarbon degrading metabolic machinery inside the cell. A 160-fold purification with specific activity of around 66 × 105 U mg−1 protein was achieved. The native protein molecular mass was 368 ± 5 kDa with subunit molecular mass of nearly 90 kDa, which indicates that the native CAT protein is a homotetramer. The isoelectric pH (pI) of the purified CAT was 4.2. BLAST aligned peptide mass fragments of CAT protein showed its highest similarity with the catalase B protein from other fungal sources. CAT was active in a broad range of pH 4 to 12 and temperature 25°C to 90°C. The catalytic efficiency (Kcat/Km) of 4.7 × 108 M−1 s−1 within the studied substrate range and alkaline pH stability (half-life, t1/2 at pH 12~15 months) of CAT are considerably higher than most of the extensively studied catalases from different sources. The storage stability (t1/2) of CAT at physiological pH 7.5 and 4°C was nearly 30 months. The haem was identified as haem b by electrospray ionization tandem mass spectroscopy (ESI-MS/MS).
Collapse
|
10
|
Hu J, Wisetsuwannaphum S, Foord JS. Glutamate biosensors based on diamond and graphene platforms. Faraday Discuss 2015; 172:457-72. [PMID: 25427169 DOI: 10.1039/c4fd00032c] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
l-Glutamate is one of the most important neurotransmitters in the mammalian central nervous system, playing a vital role in many physiological processes and implicated in several neurological disorders, for which monitoring of dynamic levels of extracellular glutamate in the living brain tissues may contribute to medical understanding and treatments. Electrochemical sensing of glutamate has been developed recently mainly using platinum, carbon fibre and carbon nanotube electrodes. In the present work, we explore the fabrication and properties of electrochemical glutamate sensors fabricated on doped chemical vapour deposition diamond electrodes and graphene nanoplatelet structures. The sensors incorporate platinum nanoparticles to catalyse the electrooxidation of hydrogen peroxide, glutamate oxidase to oxidise glutamate, and a layer of poly-phenylenediamine to impart selectivity. The performance of the devices was compared to a similar sensor fabricated on glassy carbon. Both the diamond and the graphene sensor showed very competitive performance compared to the majority of existing electrochemical sensors. The graphene based sensor showed the best performance of the three investigated in terms of sensitivity, linear dynamic range and long term stability, whereas it was found that the diamond device showed the best limit of detection.
Collapse
Affiliation(s)
- Jingping Hu
- Huazhong University of Science and Technology, School of Environmental Science and Engineering, Wuhan, P.R. China 430074.
| | | | | |
Collapse
|
11
|
Ascorbic Acid Rejection Characteristics of Modified Platinum Electrodes: A Shelf Life Investigation. CHEMOSENSORS 2015. [DOI: 10.3390/chemosensors3020055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
12
|
Baker KL, Bolger FB, Lowry JP. A microelectrochemical biosensor for real-time in vivo monitoring of brain extracellular choline. Analyst 2015; 140:3738-45. [DOI: 10.1039/c4an02027h] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A first generation Pt-based polymer enzyme composite biosensor developed for real-time neurochemical monitoring was characterised in vivo for sensitive and selective detection of choline.
Collapse
Affiliation(s)
- Keeley L. Baker
- Neurochemistry Research Unit
- BioAnalytics Laboratory
- Maynooth University Department of Chemistry
- Maynooth University
- Maynooth
| | - Fiachra B. Bolger
- Neurochemistry Research Unit
- BioAnalytics Laboratory
- Maynooth University Department of Chemistry
- Maynooth University
- Maynooth
| | - John P. Lowry
- Neurochemistry Research Unit
- BioAnalytics Laboratory
- Maynooth University Department of Chemistry
- Maynooth University
- Maynooth
| |
Collapse
|
13
|
Xiang L, Yu P, Zhang M, Hao J, Wang Y, Zhu L, Dai L, Mao L. Platinized Aligned Carbon Nanotube-Sheathed Carbon Fiber Microelectrodes for In Vivo Amperometric Monitoring of Oxygen. Anal Chem 2014; 86:5017-23. [DOI: 10.1021/ac500622m] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ling Xiang
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Analytical
Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS), Beijing 100190, People’s Republic of China
| | - Ping Yu
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Analytical
Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS), Beijing 100190, People’s Republic of China
| | - Meining Zhang
- Department
of Chemistry, Renmin University of China, Beijing 100872, People’s Republic of China
| | - Jie Hao
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Analytical
Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS), Beijing 100190, People’s Republic of China
| | - Yuexiang Wang
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Analytical
Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS), Beijing 100190, People’s Republic of China
| | - Lin Zhu
- Department
of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Liming Dai
- Department
of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Lanqun Mao
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Analytical
Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS), Beijing 100190, People’s Republic of China
| |
Collapse
|
14
|
Fluorometric enzymatic autoindicating biosensor for H2O2 determination based on modified catalase. Biosens Bioelectron 2013; 41:150-6. [DOI: 10.1016/j.bios.2012.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 07/20/2012] [Accepted: 08/01/2012] [Indexed: 11/19/2022]
|
15
|
A New Trend on Biosensor for Neurotransmitter Choline/Acetylcholine—an Overview. Appl Biochem Biotechnol 2013; 169:1927-39. [DOI: 10.1007/s12010-013-0099-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Accepted: 01/10/2013] [Indexed: 11/27/2022]
|
16
|
Zheng XT, Hu W, Wang H, Yang H, Zhou W, Li CM. Bifunctional electro-optical nanoprobe to real-time detect local biochemical processes in single cells. Biosens Bioelectron 2011; 26:4484-90. [DOI: 10.1016/j.bios.2011.05.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2011] [Revised: 04/17/2011] [Accepted: 05/04/2011] [Indexed: 02/05/2023]
|
17
|
Prieto-Rodríguez L, Oller I, Zapata A, Agüera A, Malato S. Hydrogen peroxide automatic dosing based on dissolved oxygen concentration during solar photo-Fenton. Catal Today 2011. [DOI: 10.1016/j.cattod.2010.11.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Rothwell SA, O'Neill RD. Effects of applied potential on the mass of non-conducting poly(ortho-phenylenediamine) electro-deposited on EQCM electrodes: comparison with biosensor selectivity parameters. Phys Chem Chem Phys 2011; 13:5413-21. [PMID: 21359356 DOI: 10.1039/c0cp02341h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An electrochemical quartz-crystal microbalance (EQCM) was used to determine the mass of poly-(o-phenylenediamine) (PoPD) layers electro-deposited at different applied potentials in neutral buffered monomer solution, conditions that produce the insulating form of the polymer used as a permselective membrane in biosensor applications. There was a systematic increase in the total, steady state PoPD mass deposited for fixed applied potentials from 0.05 to 0.6 V vs. SCE, followed by a plateau up to 0.8 V. Comparison of PoPD mass and permselectivity parameters indicates that the ability of the passivating form of PoPD to block interference species in biosensor applications is not related in a simple way to the mass of material deposited on the surface. Instead, effects of the applied electropolymerisation potential in driving the electro-oxidation of oPD dimers and oligomers formed during the electro-deposition process are likely to have a more direct impact on the selectivity characteristics of the PoPD layer. The results highlight the usefulness of apparent permeabilities, especially of ascorbic acid, in revealing differences between PoPD layers electro-deposited under different conditions.
Collapse
Affiliation(s)
- Sharon A Rothwell
- UCD School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | | |
Collapse
|
19
|
Simultaneous topographic and amperometric membrane mapping using an AFM probe integrated biosensor. Biosens Bioelectron 2011; 26:2911-6. [DOI: 10.1016/j.bios.2010.11.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 10/26/2010] [Accepted: 11/23/2010] [Indexed: 11/19/2022]
|
20
|
Felhofer JL, Caranto JD, Garcia CD. Adsorption kinetics of catalase to thin films of carbon nanotubes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:17178-83. [PMID: 20945910 PMCID: PMC3033603 DOI: 10.1021/la103035n] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The adsorption conditions used to immobilize catalase onto thin films of carbon nanotubes were investigated to elucidate the conditions that produced films with maximum amounts of active catalase. The adsorption kinetics were monitored by spectroscopic ellipsometry, and the immobilized catalase films were then assayed for catalytic activity. The development of a volumetric optical model used to interpret the ellipsometric data is discussed. According to the results herein discussed, not only the adsorbed amount but also the initial adsorption rates determine the final catalytic activity of the adsorbed layer. The results described in this paper have direct implications on the rational design and analytical performance of enzymatic biosensors.
Collapse
Affiliation(s)
- Jessica L. Felhofer
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle, San Antonio, TX 78249, USA
| | - Jonathan D. Caranto
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle, San Antonio, TX 78249, USA
| | - Carlos D. Garcia
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle, San Antonio, TX 78249, USA
| |
Collapse
|
21
|
Vaddiraju S, Burgess DJ, Tomazos I, Jain FC, Papadimitrakopoulos F. Technologies for continuous glucose monitoring: current problems and future promises. J Diabetes Sci Technol 2010; 4:1540-62. [PMID: 21129353 PMCID: PMC3005068 DOI: 10.1177/193229681000400632] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Devices for continuous glucose monitoring (CGM) are currently a major focus of research in the area of diabetes management. It is envisioned that such devices will have the ability to alert a diabetes patient (or the parent or medical care giver of a diabetes patient) of impending hypoglycemic/hyperglycemic events and thereby enable the patient to avoid extreme hypoglycemic/hyperglycemic excursions as well as minimize deviations outside the normal glucose range, thus preventing both life-threatening events and the debilitating complications associated with diabetes. It is anticipated that CGM devices will utilize constant feedback of analytical information from a glucose sensor to activate an insulin delivery pump, thereby ultimately realizing the concept of an artificial pancreas. Depending on whether the CGM device penetrates/breaks the skin and/or the sample is measured extracorporeally, these devices can be categorized as totally invasive, minimally invasive, and noninvasive. In addition, CGM devices are further classified according to the transduction mechanisms used for glucose sensing (i.e., electrochemical, optical, and piezoelectric). However, at present, most of these technologies are plagued by a variety of issues that affect their accuracy and long-term performance. This article presents a critical comparison of existing CGM technologies, highlighting critical issues of device accuracy, foreign body response, calibration, and miniaturization. An outlook on future developments with an emphasis on long-term reliability and performance is also presented.
Collapse
Affiliation(s)
- Santhisagar Vaddiraju
- Nanomaterials Optoelectronics Laboratory, Polymer Program, Institute of Materials Science, University of ConnecticutStorrs, Connecticut
- Biorasis Inc., Technology Incubation Program, University of ConnecticutStorrs, Connecticut
| | - Diane J Burgess
- Department of Pharmaceutical Sciences, University of ConnecticutStorrs, Connecticut
| | - Ioannis Tomazos
- Biorasis Inc., Technology Incubation Program, University of ConnecticutStorrs, Connecticut
| | - Faquir C Jain
- Nanomaterials Optoelectronics Laboratory, Polymer Program, Institute of Materials Science, University of ConnecticutStorrs, Connecticut
| | - Fotios Papadimitrakopoulos
- Nanomaterials Optoelectronics Laboratory, Polymer Program, Institute of Materials Science, University of ConnecticutStorrs, Connecticut
- Department of Chemistry, University of ConnecticutStorrs, Connecticut
| |
Collapse
|
22
|
Enzyme immobilization strategies and electropolymerization conditions to control sensitivity and selectivity parameters of a polymer-enzyme composite glucose biosensor. SENSORS 2010; 10:6439-62. [PMID: 22163559 PMCID: PMC3231131 DOI: 10.3390/s100706439] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 05/21/2010] [Accepted: 06/13/2010] [Indexed: 11/17/2022]
Abstract
In an ongoing programme to develop characterization strategies relevant to biosensors for in-vivo monitoring, glucose biosensors were fabricated by immobilizing the enzyme glucose oxidase (GOx) on 125 μm diameter Pt cylinder wire electrodes (Pt(C)), using three different methods: before, after or during the amperometric electrosynthesis of poly(ortho-phenylenediamine), PoPD, which also served as a permselective membrane. These electrodes were calibrated with H(2)O(2) (the biosensor enzyme signal molecule), glucose, and the archetypal interference compound ascorbic acid (AA) to determine the relevant polymer permeabilities and the apparent Michaelis-Menten parameters for glucose. A number of selectivity parameters were used to identify the most successful design in terms of the balance between substrate sensitivity and interference blocking. For biosensors electrosynthesized in neutral buffer under the present conditions, entrapment of the GOx within the PoPD layer produced the design (Pt(C)/PoPD-GOx) with the highest linear sensitivity to glucose (5.0 ± 0.4 μA cm(-2) mM(-1)), good linear range (K(M) = 16 ± 2 mM) and response time (< 2 s), and the greatest AA blocking (99.8% for 1 mM AA). Further optimization showed that fabrication of Pt(C)/PoPD-GOx in the absence of added background electrolyte (i.e., electropolymerization in unbuffered enzyme-monomer solution) enhanced glucose selectivity 3-fold for this one-pot fabrication protocol which provided AA-rejection levels at least equal to recent multi-step polymer bilayer biosensor designs. Interestingly, the presence of enzyme protein in the polymer layer had opposite effects on permselectivity for low and high concentrations of AA, emphasizing the value of studying the concentration dependence of interference effects which is rarely reported in the literature.
Collapse
|
23
|
Rothwell SA, Kinsella ME, Zain ZM, Serra PA, Rocchitta G, Lowry JP, O'Neill RD. Contributions by a novel edge effect to the permselectivity of an electrosynthesized polymer for microbiosensor applications. Anal Chem 2009; 81:3911-8. [PMID: 19371060 DOI: 10.1021/ac900162c] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Pt electrodes of different sizes (2 x 10(-5)-2 x 10(-2) cm(2)) and geometries (disks and cylinders) were coated with the ultrathin non-conducting form of poly(o-phenylenediamine), PPD, using amperometric electrosynthesis. Analysis of the ascorbic acid (AA) and H(2)O(2) apparent permeabilities for these Pt/PPD sensors revealed that the PPD deposited near the electrode insulation (Teflon or glass edge) was not as effective as the bulk surface PPD for blocking AA access to the Pt substrate. This discovery impacts on the design of implantable biosensors where electrodeposited polymers, such as PPD, are commonly used as the permselective barrier to block electroactive interference by reducing agents present in the target medium. The undesirable "edge effect" was particularly marked for small disk electrodes which have a high edge density (ratio of PPD-insulation edge length to electrode area), but was essentially absent for cylinder electrodes with a length of >0.2 mm. Sample biosensors, with a configuration based on these findings (25 microm diameter Pt fiber cylinders) and designed for brain neurotransmitter L-glutamate, behaved well in vitro in terms of Glu sensitivity and AA blocking.
Collapse
Affiliation(s)
- Sharon A Rothwell
- UCD School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | | | | | |
Collapse
|
24
|
Wilson GS, Johnson MA. In-vivo electrochemistry: what can we learn about living systems? Chem Rev 2008; 108:2462-81. [PMID: 18558752 DOI: 10.1021/cr068082i] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- George S Wilson
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA.
| | | |
Collapse
|
25
|
Designing sensitive and selective polymer/enzyme composite biosensors for brain monitoring in vivo. Trends Analyt Chem 2008. [DOI: 10.1016/j.trac.2007.11.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|