1
|
Guette-Marquet S, Roques C, Bergel A. Direct electrochemical detection of trans-plasma membrane electron transfer: A possible alternative pathway for cell respiration. Biosens Bioelectron 2022; 220:114896. [DOI: 10.1016/j.bios.2022.114896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022]
|
2
|
Khan MJ, Das S, Vinayak V, Pant D, Ghangrekar MM. Live diatoms as potential biocatalyst in a microbial fuel cell for harvesting continuous diafuel, carotenoids and bioelectricity. CHEMOSPHERE 2021; 291:132841. [PMID: 34767852 DOI: 10.1016/j.chemosphere.2021.132841] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/18/2021] [Accepted: 11/07/2021] [Indexed: 02/05/2023]
Abstract
Microbial fuel cell (MFC) with live diatoms (Nitzschia palea) displacing bacteria in the anodic chamber generated electrical potential. Unlike other microalgae, diatoms fix 25% of atmospheric CO2, thus releasing O2. They perform photolysis of water by photosynthesis in the plastid during light photoperiod and cellular respiration in the mitochondria during dark, producing electrons and protons, respectively. The electrogenic property of diatom was explored and evaluated by comparing the potential changes with reference fuel cell without diatoms and that operated with diatoms in the anodic chamber. Such photosynthetic diatom microbial fuel cell (PDMFC) employed f/2 media rich in nitrates, phosphates, metasilicates, trace metals and vitamins as the anolyte and potassium permanganate as catholyte enhanced the output voltage by 3rd day. The maximum power density for PDMFC was 12.62 mWm-2 and coulombic efficiency of 22.95%. Besides this, the fixed diatom cells at anode showed about 64.28% increase in lipid production on 15th day compared to that on 1st day along with the increment in formation of complex fatty acid methyl esters and carotenoids during its operation. Hence, diatoms can be envisaged to substitute bacteria in the anodic chamber of MFC to simultaneously produce bioelectricity and other valuable compounds. Further their silica nanoporous architecture serve as good absorbents for heavy metal removal found in many wastewaters.
Collapse
Affiliation(s)
- Mohd Jahir Khan
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Sciences, Dr Harisingh Gour Central University, Sagar, Madhya Pradesh, 470003, India
| | - Sovik Das
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Vandana Vinayak
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Sciences, Dr Harisingh Gour Central University, Sagar, Madhya Pradesh, 470003, India.
| | - Deepak Pant
- Separation & Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, Mol, Belgium
| | - M M Ghangrekar
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| |
Collapse
|
3
|
Javor K, Tisserant JN, Stemmer A. Biofuel cell operating on activated THP-1 cells: A fuel and substrate study. Biosens Bioelectron 2017; 87:1-6. [DOI: 10.1016/j.bios.2016.07.079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/13/2016] [Accepted: 07/23/2016] [Indexed: 10/21/2022]
|
4
|
Anderson A, Laohavisit A, Blaby IK, Bombelli P, Howe CJ, Merchant SS, Davies JM, Smith AG. Exploiting algal NADPH oxidase for biophotovoltaic energy. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:22-8. [PMID: 25641364 PMCID: PMC5016757 DOI: 10.1111/pbi.12332] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 11/14/2014] [Accepted: 12/12/2014] [Indexed: 05/21/2023]
Abstract
Photosynthetic microbes exhibit light-dependent electron export across the cell membrane, which can generate electricity in biological photovoltaic (BPV) devices. How electrons are exported remains to be determined; the identification of mechanisms would help selection or generation of photosynthetic microbes capable of enhanced electrical output. We show that plasma membrane NADPH oxidase activity is a significant component of light-dependent generation of electricity by the unicellular green alga Chlamydomonas reinhardtii. NADPH oxidases export electrons across the plasma membrane to form superoxide anion from oxygen. The C. reinhardtii mutant lacking the NADPH oxidase encoded by RBO1 is impaired in both extracellular superoxide anion production and current generation in a BPV device. Complementation with the wild-type gene restores both capacities, demonstrating the role of the enzyme in electron export. Monitoring light-dependent extracellular superoxide production with a colorimetric assay is shown to be an effective way of screening for electrogenic potential of candidate algal strains. The results show that algal NADPH oxidases are important for superoxide anion production and open avenues for optimizing the biological component of these devices.
Collapse
Affiliation(s)
| | | | - Ian K Blaby
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
| | - Paolo Bombelli
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | | | - Julia M Davies
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Alison G Smith
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
5
|
Laohavisit A, Anderson A, Bombelli P, Jacobs M, Howe CJ, Davies JM, Smith AG. Enhancing plasma membrane NADPH oxidase activity increases current output by diatoms in biophotovoltaic devices. ALGAL RES 2015. [DOI: 10.1016/j.algal.2015.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
Kuebler U, Ehlert U, Zuccarella C, Sakai M, Stemmer A, Wirtz PH. An in vitro method to investigate the microbicidal potential of human macrophages for use in psychosomatic research. Psychosom Med 2013; 75:841-8. [PMID: 24184844 DOI: 10.1097/psy.0000000000000008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Psychological states relate to changes in circulating immune cells, but associations with immune cells in peripheral tissues such as macrophages have hardly been investigated. Here, we aimed to implement and validate a method for measuring the microbicidal potential of ex vivo isolated human monocyte-derived macrophages (HMDMs) as an indicator of macrophage activation. METHODS The method was implemented and validated for two blood sampling procedures (short-term cannula insertion versus long-term catheter insertion) in 79 participants (34 women, 45 men) aged between 18 and 75 years. The method principle is based on the reduction of 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-dis-ulfophenyl)-2H-tetrazolium, monosodium salt (WST-1) by superoxide anions, the first in a series of pathogen-killing reactive oxygen species produced by phorbol myristate acetate-activated HMDM. Cytochrome c reduction and current generation were measured as reference methods for validation purposes. We further evaluated whether depressive symptom severity (Beck Depression Inventory) and chronic stress (Chronic Stress Screening Scale) were associated with macrophage microbicidal potential. RESULTS The assay induced superoxide anion responses by HMDM in all participants. Assay results depended on blood sampling procedure (cannula versus catheter insertion). Interassay variability as a measure for assay reliability was 10.92% or less. WST-1 reduction scores correlated strongly with results obtained by reference methods (cytochrome c: r = 0.57, p = .026; current generation: r values ≥ 0.47, p values <.033) and with psychological factors (depressive symptom severity: r = 0.35 [cannula insertion] versus r = -0.54 [catheter insertion]; chronic stress: r = 0.36 [cannula insertion]; p values ≤ .047). CONCLUSIONS Our findings suggest that the implemented in vitro method investigates microbicidal potential of HMDM in a manner that is valid and sensitive to psychological measures.
Collapse
Affiliation(s)
- Ulrike Kuebler
- Department of Psychology, Biological and Health Psychology, University of Bern, Alpeneggstrasse 22, 3012 Bern, Switzerland.
| | | | | | | | | | | |
Collapse
|
7
|
Soares dos Santos MP, Ferreira JAF, Ramos A, Simões JAO, Morais R, Silva NM, Santos PM, Reis MJCS, Oliveira T. Instrumented hip implants: electric supply systems. J Biomech 2013; 46:2561-71. [PMID: 24050511 DOI: 10.1016/j.jbiomech.2013.08.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 07/20/2013] [Accepted: 08/13/2013] [Indexed: 12/14/2022]
Abstract
Instrumented hip implants were proposed as a method to monitor and predict the biomechanical and thermal environment surrounding such implants. Nowadays, they are being developed as active implants with the ability to prevent failures by loosening. The generation of electric energy to power active mechanisms of instrumented hip implants remains a question. Instrumented implants cannot be implemented without effective electric power systems. This paper surveys the power supply systems of seventeen implant architectures already implanted in-vivo, namely from instrumented hip joint replacements and instrumented fracture stabilizers. Only inductive power links and batteries were used in-vivo to power the implants. The energy harvesting systems, which were already designed to power instrumented hip implants, were also analyzed focusing their potential to overcome the disadvantages of both inductive-based and battery-based power supply systems. From comparative and critical analyses of the methods to power instrumented implants, one can conclude that: inductive powering and batteries constrain the full operation of instrumented implants; motion-driven electromagnetic energy harvesting is a promising method to power instrumented passive and active hip implants.
Collapse
Affiliation(s)
- Marco P Soares dos Santos
- TEMA/UA-Centre for Mechanical Technology and Automation, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; DEM/UA-Department of Mechanical Engineering, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Kuebler U, Wirtz PH, Sakai M, Stemmer A, Ehlert U. Acute stress reduces wound-induced activation of microbicidal potential of ex vivo isolated human monocyte-derived macrophages. PLoS One 2013; 8:e55875. [PMID: 23431364 PMCID: PMC3568075 DOI: 10.1371/journal.pone.0055875] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 01/03/2013] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Psychological stress delays wound healing but the precise underlying mechanisms are unclear. Macrophages play an important role in wound healing, in particular by killing microbes. We hypothesized that (a) acute psychological stress reduces wound-induced activation of microbicidal potential of human monocyte-derived macrophages (HMDM), and (b) that these reductions are modulated by stress hormone release. METHODS Fourty-one healthy men (mean age 35 ± 13 years) were randomly assigned to either a stress or stress-control group. While the stress group underwent a standardized short-term psychological stress task after catheter-induced wound infliction, stress-controls did not. Catheter insertion was controlled. Assessing the microbicidal potential, we investigated PMA-activated superoxide anion production by HMDM immediately before and 1, 10 and 60 min after stress/rest. Moreover, plasma norepinephrine and epinephrine and salivary cortisol were repeatedly measured. In subsequent in vitro studies, whole blood was incubated with norepinephrine in the presence or absence of phentolamine (norepinephrine blocker) before assessing HMDM microbicidal potential. RESULTS Compared with stress-controls, HMDM of the stressed subjects displayed decreased superoxide anion-responses after stress (p's <.05). Higher plasma norepinephrine levels statistically mediated lower amounts of superoxide anion-responses (indirect effect 95% CI: 4.14-44.72). Norepinephrine-treated HMDM showed reduced superoxide anion-production (p<.001). This effect was blocked by prior incubation with phentolamine. CONCLUSIONS Our results suggest that acute psychological stress reduces wound-induced activation of microbicidal potential of HMDM and that this reduction is mediated by norepinephrine. This might have implications for stress-induced impairment in wound healing.
Collapse
Affiliation(s)
- Ulrike Kuebler
- Department of Clinical Psychology and Psychotherapy, University of Zurich, Zurich, Switzerland
| | - Petra H. Wirtz
- Department of Clinical Psychology and Psychotherapy, University of Zurich, Zurich, Switzerland
- Biological and Health Psychology, University of Bern, Bern, Switzerland
- * E-mail:
| | - Miho Sakai
- Nanotechnology Group, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Andreas Stemmer
- Nanotechnology Group, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Ulrike Ehlert
- Department of Clinical Psychology and Psychotherapy, University of Zurich, Zurich, Switzerland
| |
Collapse
|
9
|
Yang J, Ghobadian S, Goodrich PJ, Montazami R, Hashemi N. Miniaturized biological and electrochemical fuel cells: challenges and applications. Phys Chem Chem Phys 2013; 15:14147-61. [DOI: 10.1039/c3cp50804h] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
10
|
Justin GA, Zhang Y, Cui XT, Bradberry CW, Sun M, Sclabassi RJ. A metabolic biofuel cell: conversion of human leukocyte metabolic activity to electrical currents. J Biol Eng 2011; 5:5. [PMID: 21569243 PMCID: PMC3113927 DOI: 10.1186/1754-1611-5-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Accepted: 05/10/2011] [Indexed: 11/12/2022] Open
Abstract
An investigation of the electrochemical activity of human white blood cells (WBC) for biofuel cell (BFC) applications is described. WBCs isolated from whole human blood were suspended in PBS and introduced into the anode compartment of a proton exchange membrane (PEM) fuel cell. The cathode compartment contained a 50 mM potassium ferricyanide solution. Average current densities between 0.9 and 1.6 μA cm-2 and open circuit potentials (Voc) between 83 and 102 mV were obtained, which were both higher than control values. Cyclic voltammetry was used to investigate the electrochemical activity of the activated WBCs in an attempt to elucidate the mechanism of electron transfer between the cells and electrode. Voltammograms were obtained for the WBCs, including peripheral blood mononuclear cells (PBMCs - a lymphocyte-monocyte mixture isolated on a Ficoll gradient), a B lymphoblastoid cell line (BLCL), and two leukemia cell lines, namely K562 and Jurkat. An oxidation peak at about 363 mV vs. SCE for the PMA (phorbol ester) activated primary cells, with a notable absence of a reduction peak was observed. Oxidation peaks were not observed for the BLCL, K562 or Jurkat cell lines. HPLC confirmed the release of serotonin (5-HT) from the PMA activated primary cells. It is believed that serotonin, among other biochemical species released by the activated cells, contributes to the observed BFC currents.
Collapse
Affiliation(s)
- Gusphyl A Justin
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- GJ is currently a National Research Council (NRC) Postdoctoral Fellow at the Center for Bio/Molecular Science and Engineering at the US Naval Research Laboratory, Washington, DC, USA
| | - Yingze Zhang
- Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - X Tracy Cui
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Mingui Sun
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | | |
Collapse
|
11
|
Sundmacher K. Fuel Cell Engineering: Toward the Design of Efficient Electrochemical Power Plants. Ind Eng Chem Res 2010. [DOI: 10.1021/ie100902t] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Kai Sundmacher
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany, and Otto-von-Guericke University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| |
Collapse
|
12
|
|
13
|
DeCoursey TE. Voltage-gated proton channels find their dream job managing the respiratory burst in phagocytes. Physiology (Bethesda) 2010; 25:27-40. [PMID: 20134026 PMCID: PMC3023998 DOI: 10.1152/physiol.00039.2009] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The voltage-gated proton channel bears surprising resemblance to the voltage-sensing domain (S1-S4) of other voltage-gated ion channels but is a dimer with two conduction pathways. The proton channel seems designed for efficient proton extrusion from cells. In phagocytes, it facilitates the production of reactive oxygen species by NADPH oxidase.
Collapse
Affiliation(s)
- Thomas E DeCoursey
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, Illinois, USA.
| |
Collapse
|