1
|
Garcia-Junior MA, Andrade BS, Lima AP, Soares IP, Notário AFO, Bernardino SS, Guevara-Vega MF, Honório-Silva G, Munoz RAA, Jardim ACG, Martins MM, Goulart LR, Cunha TM, Carneiro MG, Sabino-Silva R. Artificial-Intelligence Bio-Inspired Peptide for Salivary Detection of SARS-CoV-2 in Electrochemical Biosensor Integrated with Machine Learning Algorithms. BIOSENSORS 2025; 15:75. [PMID: 39996977 PMCID: PMC11853606 DOI: 10.3390/bios15020075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/10/2025] [Accepted: 01/23/2025] [Indexed: 02/26/2025]
Abstract
Developing affordable, rapid, and accurate biosensors is essential for SARS-CoV-2 surveillance and early detection. We created a bio-inspired peptide, using the SAGAPEP AI platform, for COVID-19 salivary diagnostics via a portable electrochemical device coupled to Machine Learning algorithms. SAGAPEP enabled molecular docking simulations against the SARS-CoV-2 Spike protein's RBD, leading to the synthesis of Bio-Inspired Artificial Intelligence Peptide 1 (BIAI1). Molecular docking was used to confirm interactions between BIAI1 and SARS-CoV-2, and BIAI1 was functionalized on rhodamine-modified electrodes. Cyclic voltammetry (CV) using a [Fe(CN)6]3-/4 solution detected virus levels in saliva samples with and without SARS-CoV-2. Support vector machine (SVM)-based machine learning analyzed electrochemical data, enhancing sensitivity and specificity. Molecular docking revealed stable hydrogen bonds and electrostatic interactions with RBD, showing an average affinity of -250 kcal/mol. Our biosensor achieved 100% sensitivity, 80% specificity, and 90% accuracy for 1.8 × 10⁴ focus-forming units in infected saliva. Validation with COVID-19-positive and -negative samples using a neural network showed 90% sensitivity, specificity, and accuracy. This BIAI1-based electrochemical biosensor, integrated with machine learning, demonstrates a promising non-invasive, portable solution for COVID-19 screening and detection in saliva.
Collapse
Affiliation(s)
- Marcelo Augusto Garcia-Junior
- Department of Physiology, Laboratory of Nanobiotechnology—Dr. Luiz Ricardo Goulart, Innovation Center in Salivary Diagnostic and Nanobiotechnology, Institute of Biomedical Sciences, Federal University of Uberlandia (UFU), Uberlândia 38408-100, Brazil; (M.A.G.-J.); (A.P.L.); (S.S.B.); (M.F.G.-V.); (G.H.-S.); (M.M.M.); (L.R.G.)
| | - Bruno Silva Andrade
- Department of Biological Sciences, Laboratory of Bioinformatics and Computational Chemistry, State University of Southwest of Bahia (UESB), Jequié 45205-490, Brazil;
| | - Ana Paula Lima
- Department of Physiology, Laboratory of Nanobiotechnology—Dr. Luiz Ricardo Goulart, Innovation Center in Salivary Diagnostic and Nanobiotechnology, Institute of Biomedical Sciences, Federal University of Uberlandia (UFU), Uberlândia 38408-100, Brazil; (M.A.G.-J.); (A.P.L.); (S.S.B.); (M.F.G.-V.); (G.H.-S.); (M.M.M.); (L.R.G.)
| | - Iara Pereira Soares
- Post-Graduation Program in Genetics and Biochemistry, Laboratory of Nanobiotechnology—Dr Luiz Ricardo Goulart, Federal University of Uberlândia (UFU), Uberlândia 38408-100, Brazil; (I.P.S.); (A.F.O.N.)
| | - Ana Flávia Oliveira Notário
- Post-Graduation Program in Genetics and Biochemistry, Laboratory of Nanobiotechnology—Dr Luiz Ricardo Goulart, Federal University of Uberlândia (UFU), Uberlândia 38408-100, Brazil; (I.P.S.); (A.F.O.N.)
| | - Sttephany Silva Bernardino
- Department of Physiology, Laboratory of Nanobiotechnology—Dr. Luiz Ricardo Goulart, Innovation Center in Salivary Diagnostic and Nanobiotechnology, Institute of Biomedical Sciences, Federal University of Uberlandia (UFU), Uberlândia 38408-100, Brazil; (M.A.G.-J.); (A.P.L.); (S.S.B.); (M.F.G.-V.); (G.H.-S.); (M.M.M.); (L.R.G.)
| | - Marco Fidel Guevara-Vega
- Department of Physiology, Laboratory of Nanobiotechnology—Dr. Luiz Ricardo Goulart, Innovation Center in Salivary Diagnostic and Nanobiotechnology, Institute of Biomedical Sciences, Federal University of Uberlandia (UFU), Uberlândia 38408-100, Brazil; (M.A.G.-J.); (A.P.L.); (S.S.B.); (M.F.G.-V.); (G.H.-S.); (M.M.M.); (L.R.G.)
| | - Ghabriel Honório-Silva
- Department of Physiology, Laboratory of Nanobiotechnology—Dr. Luiz Ricardo Goulart, Innovation Center in Salivary Diagnostic and Nanobiotechnology, Institute of Biomedical Sciences, Federal University of Uberlandia (UFU), Uberlândia 38408-100, Brazil; (M.A.G.-J.); (A.P.L.); (S.S.B.); (M.F.G.-V.); (G.H.-S.); (M.M.M.); (L.R.G.)
| | | | - Ana Carolina Gomes Jardim
- Institute of Biosciences, Languages, and Exact Sciences (Ibilce), São Paulo State University (Unesp), São José do Rio Preto 15054-000, Brazil;
- Laboratory of Antiviral Research, Department of Microbiology, Institute of Biomedical Sciences, Federal University of Uberlandia (UFU), Uberlândia 38408-100, Brazil
| | - Mário Machado Martins
- Department of Physiology, Laboratory of Nanobiotechnology—Dr. Luiz Ricardo Goulart, Innovation Center in Salivary Diagnostic and Nanobiotechnology, Institute of Biomedical Sciences, Federal University of Uberlandia (UFU), Uberlândia 38408-100, Brazil; (M.A.G.-J.); (A.P.L.); (S.S.B.); (M.F.G.-V.); (G.H.-S.); (M.M.M.); (L.R.G.)
| | - Luiz Ricardo Goulart
- Department of Physiology, Laboratory of Nanobiotechnology—Dr. Luiz Ricardo Goulart, Innovation Center in Salivary Diagnostic and Nanobiotechnology, Institute of Biomedical Sciences, Federal University of Uberlandia (UFU), Uberlândia 38408-100, Brazil; (M.A.G.-J.); (A.P.L.); (S.S.B.); (M.F.G.-V.); (G.H.-S.); (M.M.M.); (L.R.G.)
| | - Thulio Marquez Cunha
- Department of Pulmonology, School of Medicine, Federal University of Uberlandia (UFU), Uberlândia 38408-100, Brazil;
| | | | - Robinson Sabino-Silva
- Department of Physiology, Laboratory of Nanobiotechnology—Dr. Luiz Ricardo Goulart, Innovation Center in Salivary Diagnostic and Nanobiotechnology, Institute of Biomedical Sciences, Federal University of Uberlandia (UFU), Uberlândia 38408-100, Brazil; (M.A.G.-J.); (A.P.L.); (S.S.B.); (M.F.G.-V.); (G.H.-S.); (M.M.M.); (L.R.G.)
| |
Collapse
|
2
|
Sabra DM, Krin A, Romeral AB, Frieß JL, Jeremias G. Anthrax revisited: how assessing the unpredictable can improve biosecurity. Front Bioeng Biotechnol 2023; 11:1215773. [PMID: 37795173 PMCID: PMC10546327 DOI: 10.3389/fbioe.2023.1215773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/24/2023] [Indexed: 10/06/2023] Open
Abstract
B. anthracis is one of the most often weaponized pathogens. States had it in their bioweapons programs and criminals and terrorists have used or attempted to use it. This study is motivated by the narrative that emerging and developing technologies today contribute to the amplification of danger through greater easiness, accessibility and affordability of steps in the making of an anthrax weapon. As states would have way better preconditions if they would decide for an offensive bioweapons program, we focus on bioterrorism. This paper analyzes and assesses the possible bioterrorism threat arising from advances in synthetic biology, genome editing, information availability, and other emerging, and converging sciences and enabling technologies. Methodologically we apply foresight methods to encourage the analysis of contemporary technological advances. We have developed a conceptual six-step foresight science framework approach. It represents a synthesis of various foresight methodologies including literature review, elements of horizon scanning, trend impact analysis, red team exercise, and free flow open-ended discussions. Our results show a significant shift in the threat landscape. Increasing affordability, widespread distribution, efficiency, as well as ease of use of DNA synthesis, and rapid advances in genome-editing and synthetic genomic technologies lead to an ever-growing number and types of actors who could potentially weaponize B. anthracis. Understanding the current and future capabilities of these technologies and their potential for misuse critically shapes the current and future threat landscape and underlines the necessary adaptation of biosecurity measures in the spheres of multi-level political decision making and in the science community.
Collapse
Affiliation(s)
- Dunja Manal Sabra
- Carl Friedrich von Weizsäcker-Centre for Science and Peace Research (ZNF), University of Hamburg, Bogenallee, Hamburg, Germany
| | | | | | | | | |
Collapse
|
3
|
Koyappayil A, Yagati AK, Lee MH. Recent Trends in Metal Nanoparticles Decorated 2D Materials for Electrochemical Biomarker Detection. BIOSENSORS 2023; 13:91. [PMID: 36671926 PMCID: PMC9855691 DOI: 10.3390/bios13010091] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/27/2022] [Accepted: 01/01/2023] [Indexed: 05/29/2023]
Abstract
Technological advancements in the healthcare sector have pushed for improved sensors and devices for disease diagnosis and treatment. Recently, with the discovery of numerous biomarkers for various specific physiological conditions, early disease screening has become a possibility. Biomarkers are the body's early warning systems, which are indicators of a biological state that provides a standardized and precise way of evaluating the progression of disease or infection. Owing to the extremely low concentrations of various biomarkers in bodily fluids, signal amplification strategies have become crucial for the detection of biomarkers. Metal nanoparticles are commonly applied on 2D platforms to anchor antibodies and enhance the signals for electrochemical biomarker detection. In this context, this review will discuss the recent trends and advances in metal nanoparticle decorated 2D materials for electrochemical biomarker detection. The prospects, advantages, and limitations of this strategy also will be discussed in the concluding section of this review.
Collapse
Affiliation(s)
| | | | - Min-Ho Lee
- School of Integrative Engineering, Chung-Ang University, 84 Heuseok-ro, Dongjak-Gu, Seoul 06974, Republic of Korea
| |
Collapse
|
4
|
Ahangari A, Mahmoodi P, Mohammadzadeh A. Advanced nano biosensors for rapid detection of zoonotic bacteria. Biotechnol Bioeng 2023; 120:41-56. [PMID: 36253878 DOI: 10.1002/bit.28266] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 09/09/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022]
Abstract
An infectious disease that is transmitted from animals to humans and vice-versa is called zoonosis. Bacterial zoonotic diseases can re-emerge after they have been eradicated or controlled and are among the world's major health problems which inflict tremendous burden on healthcare systems. The first step to encounter such illnesses can be early and precise detection of bacterial pathogens to further prevent the following losses due to their infections. Although conventional methods for diagnosing pathogens, including culture-based, polymerase chain reaction-based, and immunological-based techniques, benefit from their advantages, they also have their own drawbacks, for example, taking long time to provide results, and requiring laborious work, expensive materials, and special equipment in certain conditions. Consequently, there is a greater tendency to introduce simple, innovative, quicker, accurate, and low-cost detection methods to effectively characterize the causative agents of infectious diseases. Biosensors, therefore, seem to practically be one of those novel promising diagnostic tools on this aim. These are effective and reliable elements with high sensitivity and specificity, that their usability can even be improved in medical diagnostic systems when empowered by nanoparticles. In the present review, recent advances in the development of several bio and nano biosensors, for rapid detection of zoonotic bacteria, have been discussed in details.
Collapse
Affiliation(s)
- Azam Ahangari
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| | - Pezhman Mahmoodi
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| | - Abdolmajid Mohammadzadeh
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| |
Collapse
|
5
|
Manessis G, Gelasakis AI, Bossis I. Point-of-Care Diagnostics for Farm Animal Diseases: From Biosensors to Integrated Lab-on-Chip Devices. BIOSENSORS 2022; 12:455. [PMID: 35884258 PMCID: PMC9312888 DOI: 10.3390/bios12070455] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 02/06/2023]
Abstract
Zoonoses and animal diseases threaten human health and livestock biosecurity and productivity. Currently, laboratory confirmation of animal disease outbreaks requires centralized laboratories and trained personnel; it is expensive and time-consuming, and it often does not coincide with the onset or progress of diseases. Point-of-care (POC) diagnostics are rapid, simple, and cost-effective devices and tests, that can be directly applied on field for the detection of animal pathogens. The development of POC diagnostics for use in human medicine has displayed remarkable progress. Nevertheless, animal POC testing has not yet unfolded its full potential. POC devices and tests for animal diseases face many challenges, such as insufficient validation, simplicity, and portability. Emerging technologies and advanced materials are expected to overcome some of these challenges and could popularize animal POC testing. This review aims to: (i) present the main concepts and formats of POC devices and tests, such as lateral flow assays and lab-on-chip devices; (ii) summarize the mode of operation and recent advances in biosensor and POC devices for the detection of farm animal diseases; (iii) present some of the regulatory aspects of POC commercialization in the EU, USA, and Japan; and (iv) summarize the challenges and future perspectives of animal POC testing.
Collapse
Affiliation(s)
- Georgios Manessis
- Laboratory of Anatomy and Physiology of Farm Animals, Department of Animal Science, Agricultural University of Athens (AUA), Iera Odos 75 Str., 11855 Athens, Greece; (G.M.); (A.I.G.)
| | - Athanasios I. Gelasakis
- Laboratory of Anatomy and Physiology of Farm Animals, Department of Animal Science, Agricultural University of Athens (AUA), Iera Odos 75 Str., 11855 Athens, Greece; (G.M.); (A.I.G.)
| | - Ioannis Bossis
- Laboratory of Animal Husbandry, Department of Animal Production, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
6
|
Liu X, Zhang Q, Knoll W, Liedberg B, Wang Y. Rational Design of Functional Peptide-Gold Hybrid Nanomaterials for Molecular Interactions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2000866. [PMID: 32743897 DOI: 10.1002/adma.202000866] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/21/2020] [Indexed: 05/12/2023]
Abstract
Gold nanoparticles (AuNPs) have been extensively used for decades in biosensing-related development due to outstanding optical properties. Peptides, as newly realized functional biomolecules, are promising candidates of replacing antibodies, receptors, and substrates for specific molecular interactions. Both peptides and AuNPs are robust and easily synthesized at relatively low cost. Hence, peptide-AuNP-based bio-nano-technological approaches have drawn increasing interest, especially in the field of molecular targeting, cell imaging, drug delivery, and therapy. Many excellent works in these areas have been reported: demonstrating novel ideas, exploring new targets, and facilitating advanced diagnostic and therapeutic technologies. Importantly, some of them also have been employed to address real practical problems, especially in remote and less privileged areas. This contribution focuses on the application of peptide-gold hybrid nanomaterials for various molecular interactions, especially in biosensing/diagnostics and cell targeting/imaging, as well as for the development of highly active antimicrobial/antifouling coating strategies. Rationally designed peptide-gold nanomaterials with functional properties are discussed along with future challenges and opportunities.
Collapse
Affiliation(s)
- Xiaohu Liu
- School of Biomedical Engineering, School of Ophthalmology & Optometry, Wenzhou Medical University, Xueyuan Road 270, Wenzhou, 325027, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Xinsan Road 16, Wenzhou, 325001, China
| | - Qingwen Zhang
- School of Biomedical Engineering, School of Ophthalmology & Optometry, Wenzhou Medical University, Xueyuan Road 270, Wenzhou, 325027, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Xinsan Road 16, Wenzhou, 325001, China
| | - Wolfgang Knoll
- Austrian Institute of Technology, Giefinggasse 4, Vienna, 1210, Austria
| | - Bo Liedberg
- Centre for Biomimetic Sensor Science, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yi Wang
- School of Biomedical Engineering, School of Ophthalmology & Optometry, Wenzhou Medical University, Xueyuan Road 270, Wenzhou, 325027, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Xinsan Road 16, Wenzhou, 325001, China
| |
Collapse
|
7
|
Zorea J, Shukla RP, Elkabets M, Ben-Yoav H. Probing antibody surface density and analyte antigen incubation time as dominant parameters influencing the antibody-antigen recognition events of a non-faradaic and diffusion-restricted electrochemical immunosensor. Anal Bioanal Chem 2020; 412:1709-1717. [PMID: 31996962 PMCID: PMC7026205 DOI: 10.1007/s00216-020-02417-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 12/17/2022]
Abstract
Electrochemical sensors based on antibody-antigen recognition events are commonly used for the rapid, label-free, and sensitive detection of various analytes. However, various parameters at the bioelectronic interface, i.e., before and after the probe (such as an antibody) assembly onto the electrode, have a dominant influence on the underlying detection performance of analytes (such as an antigen). In this work, we thoroughly investigate the dependence of the bioelectronic interface characteristics on parameters that have not been investigated in depth: the antibody density on the electrode’s surface and the antigen incubation time. For this important aim, we utilized the sensitive non-faradaic electrochemical impedance spectroscopy method. We showed that as the incubation time of the antigen-containing drop solution increased, a decrease was observed in both the solution resistance and the diffusional resistance with reflecting boundary elements, as well as the capacitive magnitude of a constant phase element, which decreased at a rate of 160 ± 30 kΩ/min, 800 ± 100 mΩ/min, and 520 ± 80 pF × s(α-1)/min, respectively. Using atomic force microscopy, we also showed that high antibody density led to thicker electrode coating than low antibody density, with root-mean-square roughness values of 2.2 ± 0.2 nm versus 1.28 ± 0.04 nm, respectively. Furthermore, we showed that as the antigen accumulated onto the electrode, the solution resistance increased for high antibody density and decreased for low antibody density. Finally, the antigen detection performance test yielded a better limit of detection for low antibody density than for high antibody density (0.26 μM vs 2.2 μM). Overall, we show here the importance of these two factors and how changing one parameter can drastically affect the desired outcome. Graphical abstract ![]()
Collapse
Affiliation(s)
- Jonathan Zorea
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel.,Nanobioelectronics Laboratory (NBEL), Department of Biomedical Engineering and Ilse Katz Institute of Nanoscale Science and Technology, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel
| | - Rajendra P Shukla
- Nanobioelectronics Laboratory (NBEL), Department of Biomedical Engineering and Ilse Katz Institute of Nanoscale Science and Technology, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel
| | - Moshe Elkabets
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel
| | - Hadar Ben-Yoav
- Nanobioelectronics Laboratory (NBEL), Department of Biomedical Engineering and Ilse Katz Institute of Nanoscale Science and Technology, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel.
| |
Collapse
|
8
|
Negative Impact of Adjacent Coordination on Direct Electrochemistry and Enzymatic Catalysis of Laccase Immobilization onto Multi-wall Carbon Nanotubes Functionalized by Perylene Derivative. Macromol Res 2019. [DOI: 10.1007/s13233-019-7131-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
9
|
Walper SA, Lasarte Aragonés G, Sapsford KE, Brown CW, Rowland CE, Breger JC, Medintz IL. Detecting Biothreat Agents: From Current Diagnostics to Developing Sensor Technologies. ACS Sens 2018; 3:1894-2024. [PMID: 30080029 DOI: 10.1021/acssensors.8b00420] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although a fundamental understanding of the pathogenicity of most biothreat agents has been elucidated and available treatments have increased substantially over the past decades, they still represent a significant public health threat in this age of (bio)terrorism, indiscriminate warfare, pollution, climate change, unchecked population growth, and globalization. The key step to almost all prevention, protection, prophylaxis, post-exposure treatment, and mitigation of any bioagent is early detection. Here, we review available methods for detecting bioagents including pathogenic bacteria and viruses along with their toxins. An introduction placing this subject in the historical context of previous naturally occurring outbreaks and efforts to weaponize selected agents is first provided along with definitions and relevant considerations. An overview of the detection technologies that find use in this endeavor along with how they provide data or transduce signal within a sensing configuration follows. Current "gold" standards for biothreat detection/diagnostics along with a listing of relevant FDA approved in vitro diagnostic devices is then discussed to provide an overview of the current state of the art. Given the 2014 outbreak of Ebola virus in Western Africa and the recent 2016 spread of Zika virus in the Americas, discussion of what constitutes a public health emergency and how new in vitro diagnostic devices are authorized for emergency use in the U.S. are also included. The majority of the Review is then subdivided around the sensing of bacterial, viral, and toxin biothreats with each including an overview of the major agents in that class, a detailed cross-section of different sensing methods in development based on assay format or analytical technique, and some discussion of related microfluidic lab-on-a-chip/point-of-care devices. Finally, an outlook is given on how this field will develop from the perspective of the biosensing technology itself and the new emerging threats they may face.
Collapse
Affiliation(s)
- Scott A. Walper
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Guillermo Lasarte Aragonés
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- College of Science, George Mason University Fairfax, Virginia 22030, United States
| | - Kim E. Sapsford
- OMPT/CDRH/OIR/DMD Bacterial Respiratory and Medical Countermeasures Branch, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Carl W. Brown
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- College of Science, George Mason University Fairfax, Virginia 22030, United States
| | - Clare E. Rowland
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- National Research Council, Washington, D.C. 20036, United States
| | - Joyce C. Breger
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Igor L. Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| |
Collapse
|
10
|
Liu N, Hui N, Davis JJ, Luo X. Low Fouling Protein Detection in Complex Biological Media Supported by a Designed Multifunctional Peptide. ACS Sens 2018; 3:1210-1216. [PMID: 29771110 DOI: 10.1021/acssensors.8b00318] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The construction of sensitive and selective biosensors capable of detecting specific targets in complex biological samples remains a challenge highly relevant to a range of sensor/diagnostic applications. Herein, we have utilized a multifunctional peptide to present an interface that supports the very specific recruitment of targets from serum. The novel peptide sequence designed contains an anchoring domain (CPPPP-), an antifouling domain (-NQNQNQNQDHWRGWVA), and a human immunoglobulin G (IgG) recognition domain (-HWRGWVA), and the whole peptide was designed to be antifouling. These were integrated into polyaniline nanowire arrays in supporting the quantification of IgG (with a limit of detection of 0.26 ng mL-1) in neat serum and real clinical samples. The strategy of utilizing multisegment peptide films to underpin highly selective target recruitment is, of course, readily extended to a broad range of targets for which an affinity sequence can be generated.
Collapse
Affiliation(s)
- Nianzu Liu
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Ni Hui
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- College of Chemistry and Pharmacy, Qingdao Agricultural University, Qingdao 266109, China
| | - Jason J. Davis
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
| | - Xiliang Luo
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
11
|
Du X, Zhou J. Application of biosensors to detection of epidemic diseases in animals. Res Vet Sci 2018; 118:444-448. [PMID: 29730246 DOI: 10.1016/j.rvsc.2018.04.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/26/2018] [Accepted: 04/26/2018] [Indexed: 12/31/2022]
Abstract
Epidemic diseases are the leading cause of animal mortality, resulting in significant losses to the agricultural economy. These economic impacts have generated a strong interest in advancing methods for the diagnosis and control of epidemic diseases in animals. Conventional methods are often time-consuming (typically result is available in 2-10 days), expensive, and require both large-scale equipment and experienced personnel. However, the advent of biosensor technology has ushered in a new and promising approach for the diagnosis of animal diseases. With advantages that include simplicity, real -time analysis, high sensitivity, miniaturization, rapid detection time, and low cost, biosensor technologies are under active development for the diagnosis of epidemic diseases in animals. Here, we summarize recent developments in biological sensing technologies used to detect infectious viral, bacterial, and parasitic diseases. Additionally, we discuss research challenges and future prospects for this field of study.
Collapse
Affiliation(s)
- Xin Du
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan 250014, China..
| | - Jun Zhou
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
12
|
Lu X, Jiang DJ, Yan JX, Ma ZE, Luo XE, Wei TL, Xu Y, He QH. An ultrasensitive electrochemical immunosensor for Cry1Ab based on phage displayed peptides. Talanta 2018; 179:646-651. [DOI: 10.1016/j.talanta.2017.11.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 10/30/2017] [Accepted: 11/16/2017] [Indexed: 12/22/2022]
|
13
|
Enzymatically Regulated Peptide Pairing and Catalysis for the Bioanalysis of Extracellular Prometastatic Activities of Functionally Linked Enzymes. Sci Rep 2016; 6:25362. [PMID: 27140831 PMCID: PMC4853721 DOI: 10.1038/srep25362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/13/2016] [Indexed: 01/17/2023] Open
Abstract
Diseases such as cancer arise from systematical reconfiguration of interactions of exceedingly large numbers of proteins in cell signaling. The study of such complicated molecular mechanisms requires multiplexed detection of the inter-connected activities of several proteins in a disease-associated context. However, the existing methods are generally not well-equipped for this kind of application. Here a method for analyzing functionally linked protein activities is developed based on enzyme controlled pairing between complementary peptide helix strands, which simultaneously enables elaborate regulation of catalytic activity of the paired peptides. This method has been used to detect three different types of protein modification enzymes that participate in the modification of extracellular matrix and the formation of invasion front in tumour. In detecting breast cancer tissue samples using this method, up-regulated activity can be observed for two of the assessed enzymes, while the third enzyme is found to have a subtle fluctuation of activity. These results may point to the application of this method in evaluating prometastatic activities of proteins in tumour.
Collapse
|
14
|
Reverté L, Prieto-Simón B, Campàs M. New advances in electrochemical biosensors for the detection of toxins: Nanomaterials, magnetic beads and microfluidics systems. A review. Anal Chim Acta 2015; 908:8-21. [PMID: 26826685 DOI: 10.1016/j.aca.2015.11.050] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 11/25/2015] [Accepted: 11/28/2015] [Indexed: 01/01/2023]
Abstract
The use of nanotechnology in bioanalytical devices has special advantages in the detection of toxins of interest in food safety and environmental applications. The low levels to be detected and the small size of toxins justify the increasing number of publications dealing with electrochemical biosensors, due to their high sensitivity and design versatility. The incorporation of nanomaterials in their development has been exploited to further increase their sensitivity, providing simple and fast devices, with multiplexed capabilities. This paper gives an overview of the electrochemical biosensors that have incorporated carbon and metal nanomaterials in their configurations for the detection of toxins. Biosensing systems based on magnetic beads or integrated into microfluidics systems have also been considered because of their contribution to the development of compact analytical devices. The roles of these materials, the methods used for their incorporation in the biosensor configurations as well as the advantages they provide to the analyses are summarised.
Collapse
Affiliation(s)
- Laia Reverté
- IRTA, Carretera Poble Nou km. 5.5, 43540 Sant Carles de la Ràpita, Tarragona, Spain
| | - Beatriz Prieto-Simón
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, University of South Australia, SA 5095, Australia
| | - Mònica Campàs
- IRTA, Carretera Poble Nou km. 5.5, 43540 Sant Carles de la Ràpita, Tarragona, Spain.
| |
Collapse
|
15
|
Advances in Anthrax Detection: Overview of Bioprobes and Biosensors. Appl Biochem Biotechnol 2015; 176:957-77. [PMID: 25987133 DOI: 10.1007/s12010-015-1625-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 04/08/2015] [Indexed: 12/22/2022]
Abstract
Anthrax is an infectious disease caused by Bacillus anthracis. Although anthrax commonly affects domestic and wild animals, it causes a rare but lethal infection in humans. A variety of techniques have been introduced and evaluated to detect anthrax using cultures, polymerase chain reaction, and immunoassays to address the potential threat of anthrax being used as a bioweapon. The high-potential harm of anthrax in bioterrorism requires sensitive and specific detection systems that are rapid, field-ready, and real-time monitoring. Here, we provide a systematic overview of anthrax detection probes with their potential applications in various ultra-sensitive diagnostic systems.
Collapse
|
16
|
Design and Applications of Nanomaterial-Based and Biomolecule-Based Nanodevices and Nanosensors. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/978-94-017-8848-9_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
17
|
An electrochemical peptide-based Ara h 2 antibody sensor fabricated on a nickel(II)-nitriloacetic acid self-assembled monolayer using a His-tagged peptide. Anal Chim Acta 2014; 828:85-91. [DOI: 10.1016/j.aca.2014.04.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 03/30/2014] [Accepted: 04/16/2014] [Indexed: 11/23/2022]
|
18
|
Peptide-Based Surface Plasmon Resonance Biosensor for Detection of Staphylococcal Enterotoxin B. FOOD ANAL METHOD 2013. [DOI: 10.1007/s12161-013-9739-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
19
|
Kim DJ, Park HC, Sohn IY, Jung JH, Yoon OJ, Park JS, Yoon MY, Lee NE. Electrical graphene aptasensor for ultra-sensitive detection of anthrax toxin with amplified signal transduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:3352-3360. [PMID: 23589198 DOI: 10.1002/smll.201203245] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 01/23/2013] [Indexed: 06/02/2023]
Abstract
Detection of the anthrax toxin, the protective antigen (PA), at the attomolar (aM) level is demonstrated by an electrical aptamer sensor based on a chemically derived graphene field-effect transistor (FET) platform. Higher affinity of the aptamer probes to PA in the aptamer-immobilized FET enables significant improvements in the limit of detection (LOD), dynamic range, and sensitivity compared to the antibody-immobilized FET. Transduction signal enhancement in the aptamer FET due to an increase in captured PA molecules results in a larger 30 mV/decade shift in the charge neutrality point (Vg,min ) as a sensitivity parameter, with the dynamic range of the PA concentration between 12 aM (LOD) and 120 fM. An additional signal enhancement is obtained by the secondary aptamer-conjugated gold nanoparticles (AuNPs-aptamer), which have a sandwich structure of aptamer/PA/aptamer-AuNPs, induce an increase in charge-doping in the graphene channel, resulting in a reduction of the LOD to 1.2 aM with a three-fold increase in the Vg,min shift.
Collapse
Affiliation(s)
- Duck-Jin Kim
- Department of Chemistry, Hanyang University, Seoul 133-791, Korea
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Affiliation(s)
- Scott Banta
- Department of Chemical Engineering, Columbia University, New York, NY 10027;
| | - Kevin Dooley
- Department of Chemical Engineering, Columbia University, New York, NY 10027;
| | - Oren Shur
- Department of Chemical Engineering, Columbia University, New York, NY 10027;
- Current affiliation: Boston Consulting Group, New York, NY 10022
| |
Collapse
|
21
|
Curiel D, Sánchez G, Más-Montoya M, Tárraga A, Molina P. Rational design of a fluorescent receptor for the recognition of anthrax biomarker dipicolinate. Analyst 2012; 137:5499-501. [DOI: 10.1039/c2an35895f] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Short peptides as biosensor transducers. Anal Bioanal Chem 2011; 402:3055-70. [DOI: 10.1007/s00216-011-5589-8] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 10/25/2011] [Accepted: 11/20/2011] [Indexed: 12/27/2022]
|
23
|
Xu LP, Liu Y, Zhang X. Interfacial self-assembly of amino acids and peptides: scanning tunneling microscopy investigation. NANOSCALE 2011; 3:4901-4915. [PMID: 22057641 DOI: 10.1039/c1nr11070e] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Proteins play important roles in human daily life. To take advantage of the lessons learned from nature, it is essential to investigate the self-assembly of subunits of proteins, i.e., amino acids and polypeptides. Due to its high resolution and versatility of working environment, scanning tunneling microscopy (STM) has become a powerful tool for studying interfacial molecular assembly structures. This review is intended to reflect the progress in studying interfacial self-assembly of amino acids and peptides by STM. In particular, we focus on environment-induced polymorphism, chiral recognition, and coadsorption behavior with molecular templates. These studies would be highly beneficial to research endeavors exploring the mechanism and nanoscale-controlling molecular assemblies of amino acids and polypeptides on surfaces, understanding the origin of life, unravelling the essence of disease at the molecular level and deeming what is necessary for the "bottom-up" nanofabrication of molecular devices and biosensors being constructed with useful properties and desired performance.
Collapse
Affiliation(s)
- Li-Ping Xu
- Research Center for Bioengineering and Sensing Technology, University of Science & Technology Beijing, Beijing, 100083, PR China.
| | | | | |
Collapse
|
24
|
Huan TN, Ganesh T, Han SH, Yoon MY, Chung H. Sensitive detection of an Anthrax biomarker using a glassy carbon electrode with a consecutively immobilized layer of polyaniline/carbon nanotube/peptide. Biosens Bioelectron 2011; 26:4227-30. [DOI: 10.1016/j.bios.2011.03.034] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 03/18/2011] [Accepted: 03/27/2011] [Indexed: 02/07/2023]
|
25
|
Choi JS, Kim SG, Lahousse M, Park HY, Park HC, Jeong B, Kim J, Kim SK, Yoon MY. Screening and characterization of high-affinity ssDNA aptamers against anthrax protective antigen. ACTA ACUST UNITED AC 2011; 16:266-71. [PMID: 21245470 DOI: 10.1177/1087057110391787] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The protective antigen (PA) of Bacillus anthracis is a secreted protein that functions as a critical virulence factor. Protective antigen has been selected as a biomarker in detecting bacterial infection. The in vitro selection method, systematic evolution of ligands by exponential enrichment (SELEX), was used to find single-stranded DNAs that were tightly bound to PA. After 8 rounds of the SELEX process with PA, 4 different oligonucleotides (referred to as aptamers) that contain a 30-residue ssDNA sequence were identified. Dissociation constant (K(d)) values with Cy3-attached aptamers were determined via fluorophotometry to be within a nanomolar range. The authors attempted to visualize the detection of PA using an aptamer-based enzyme-linked immunosorbent assay method, which has proven to be successful within a nanomolar K(d) value range. Furthermore, 2 of the 4 aptamers exhibited specificity to PA against bovine serum albumin and bovine serum. The results of this study demonstrate the analytical potential of an oligonucleotide-based biosensor for a wide variety of applications, particularly in diagnosing disease through specific protein biomarkers.
Collapse
Affiliation(s)
- Ji Sun Choi
- Department of Chemistry and Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Gerasimov JY, Lai RY. Design and characterization of an electrochemical peptide-based sensor fabricated via“click” chemistry. Chem Commun (Camb) 2011; 47:8688-90. [DOI: 10.1039/c1cc12783g] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
|