1
|
Ivanov A, Shamagsumova R, Larina M, Evtugyn G. Electrochemical Acetylcholinesterase Sensors for Anti-Alzheimer's Disease Drug Determination. BIOSENSORS 2024; 14:93. [PMID: 38392012 PMCID: PMC10886970 DOI: 10.3390/bios14020093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024]
Abstract
Neurodegenerative diseases and Alzheimer's disease (AD), as one of the most common causes of dementia, result in progressive losses of cholinergic neurons and a reduction in the presynaptic markers of the cholinergic system. These consequences can be compensated by the inhibition of acetylcholinesterase (AChE) followed by a decrease in the rate of acetylcholine hydrolysis. For this reason, anticholinesterase drugs with reversible inhibition effects are applied for the administration of neurodegenerative diseases. Their overdosage, variation in efficiency and recommendation of an individual daily dose require simple and reliable measurement devices capable of the assessment of the drug concentration in biological fluids and medications. In this review, the performance of electrochemical biosensors utilizing immobilized cholinesterases is considered to show their advantages and drawbacks in the determination of anticholinesterase drugs. In addition, common drugs applied in treating neurodegenerative diseases are briefly characterized. The immobilization of enzymes, nature of the signal recorded and its dependence on the transducer modification are considered and the analytical characteristics of appropriate biosensors are summarized for donepezil, huperzine A, rivastigmine, eserine and galantamine as common anti-dementia drugs. Finally, the prospects for the application of AChE-based biosensors in clinical practice are discussed.
Collapse
Affiliation(s)
- Alexey Ivanov
- A.M. Butlerov’ Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia; (R.S.); (G.E.)
| | - Rezeda Shamagsumova
- A.M. Butlerov’ Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia; (R.S.); (G.E.)
| | - Marina Larina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia;
| | - Gennady Evtugyn
- A.M. Butlerov’ Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia; (R.S.); (G.E.)
- Analytical Chemistry Department, Chemical Technology Institute, Ural Federal University, 19 Mira Street, 620002 Ekaterinburg, Russia
| |
Collapse
|
2
|
Liu B, Jin J, Ran B, Chen C, Li J, Qin N, Zhu Y. Continuous production of bimetallic nanoparticles on carbon nanotubes based on 3D-printed microfluidics. NANOSCALE 2024; 16:2565-2573. [PMID: 38224263 DOI: 10.1039/d3nr05090d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Nanoparticle-functionalized carbon nanotubes are promising in many research fields, especially in sensing, due to their intriguing performance in catalysis. However, these nanomaterials are mainly produced through batch processes under harsh conditions, thus encountering inherent limitations of low throughput and uncontrollable morphology of functional nanoparticles (NPs). In this work, we propose a method for high-yield and continuous production of bimetallic (Pt-Pd) NPs on multi-walled carbon nanotubes (MWCNTs) at room temperature through a custom 3D-printed microfluidic platform. A homogenous particle nucleation and growth environment could be created on the microfluidic platform that was equipped with two 3D-printed micromixers. Pt-Pd NPs loaded on MWCNTs were prepared in the microfluidic platform with high throughput and controlled size, dispersity and composition. The synthetic parameters for these nanocomposites were investigated to optimize their electrocatalytic performance. The optimized nanocomposites exhibited excellent electrocatalytic activity with exceptional sensitivity and wide detection range, superior to their counterparts prepared via conventional approaches. This method proposed here could be further adapted for manufacturing other catalyst support materials, opening more avenues for future large-scale production and catalytic investigation of functional nanomaterials.
Collapse
Affiliation(s)
- Bo Liu
- School of Energy and Power Engineering, Shandong University, Jinan 250061, China
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China.
| | - Jing Jin
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China.
| | - Bin Ran
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China.
| | - Chaozhan Chen
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China.
| | - Jiaqian Li
- School of Energy and Power Engineering, Shandong University, Jinan 250061, China
| | - Ning Qin
- School of Energy and Power Engineering, Shandong University, Jinan 250061, China
| | - Yonggang Zhu
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China.
| |
Collapse
|
3
|
Kyomuhimbo HD, Feleni U, Haneklaus NH, Brink H. Recent Advances in Applications of Oxidases and Peroxidases Polymer-Based Enzyme Biocatalysts in Sensing and Wastewater Treatment: A Review. Polymers (Basel) 2023; 15:3492. [PMID: 37631549 PMCID: PMC10460086 DOI: 10.3390/polym15163492] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Oxidase and peroxidase enzymes have attracted attention in various biotechnological industries due to their ease of synthesis, wide range of applications, and operation under mild conditions. Their applicability, however, is limited by their poor stability in harsher conditions and their non-reusability. As a result, several approaches such as enzyme engineering, medium engineering, and enzyme immobilization have been used to improve the enzyme properties. Several materials have been used as supports for these enzymes to increase their stability and reusability. This review focusses on the immobilization of oxidase and peroxidase enzymes on metal and metal oxide nanoparticle-polymer composite supports and the different methods used to achieve the immobilization. The application of the enzyme-metal/metal oxide-polymer biocatalysts in biosensing of hydrogen peroxide, glucose, pesticides, and herbicides as well as blood components such as cholesterol, urea, dopamine, and xanthine have been extensively reviewed. The application of the biocatalysts in wastewater treatment through degradation of dyes, pesticides, and other organic compounds has also been discussed.
Collapse
Affiliation(s)
- Hilda Dinah Kyomuhimbo
- Department of Chemical Engineering, University of Pretoria, Pretoria 0028, South Africa;
| | - Usisipho Feleni
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Campus, Roodepoort, Johannesburg 1710, South Africa;
| | - Nils H. Haneklaus
- Transdisciplinarity Laboratory Sustainable Mineral Resources, University for Continuing Education Krems, 3500 Krems, Austria;
| | - Hendrik Brink
- Department of Chemical Engineering, University of Pretoria, Pretoria 0028, South Africa;
| |
Collapse
|
4
|
Dong M, Gao Z, Zhang Y, Cai J, Li J, Xu P, Jiang H, Gu J, Wang J. Ultrasensitive electrochemical biosensor for detection of circulating tumor cells based on a highly efficient enzymatic cascade reaction. RSC Adv 2023; 13:12966-12972. [PMID: 37124001 PMCID: PMC10130820 DOI: 10.1039/d3ra01160g] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/14/2023] [Indexed: 05/02/2023] Open
Abstract
There has been great interest in the enzymatic cascade amplification strategy for the electrochemical detection of circulating tumor cells (CTCs). In this work, we designed a highly efficient enzymatic cascade reaction based on a multiwalled carbon nanotubes-chitosan (MWCNTs-CS) composite for detection of CTCs. A high electrochemical effective surface area was obtained for a MWCNTs-CS-modified glassy carbon electrode (GCE) for loading glucose oxidase (GOD), as well as a high loading rate and high electrical activity of the enzyme. As a 'power source', the MWCNTs-CS composites provided a strong driving power for horseradish peroxidase (HRP) on the surface of polystyrene (PS) microspheres, which acted as probes for capturing CTCs and allowed the reaction to proceed with further facilitation of electron transfer. Aptamer, CTCs, and PS microspheres with HRP and anti-epithelial cell adhesion molecule (anti-EpCAM) antibody were assembled on the MWCNTs-CS/GCE to allow for the modulation of enzyme distance at the micrometer level, and thus ultra-long-range signal transmission was made possible. An ultrasensitive response to CTCs was obtained via this proposed sensing strategy, with a linear range from 10 cell mL-1 to 6 × 106 cell mL-1 and a detection limit of 3 cell mL-1. Moreover, this electrochemical sensor possessed the capability to detect CTCs in serum samples with satisfactory accuracy, which indicated great potential for early diagnosis and clinical analysis of cancer.
Collapse
Affiliation(s)
- Min Dong
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University Qinhuangdao 066004 China
| | - Zhihong Gao
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University Qinhuangdao 066004 China
| | - Yating Zhang
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University Qinhuangdao 066004 China
| | - Jiahui Cai
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University Qinhuangdao 066004 China
| | - Jian Li
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University Qinhuangdao 066004 China
| | - Panpan Xu
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University Qinhuangdao 066004 China
| | - Hong Jiang
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University Qinhuangdao 066004 China
| | - Jianmin Gu
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University Qinhuangdao 066004 China
- State Key Laboratory of Metastable Materials Science and Technology (MMST), Yanshan University Qinhuangdao 066004 China
| | - Jidong Wang
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University Qinhuangdao 066004 China
- State Key Laboratory of Metastable Materials Science and Technology (MMST), Yanshan University Qinhuangdao 066004 China
| |
Collapse
|
5
|
Almeida EMF, De Souza D. Current electroanalytical approaches in the carbamates and dithiocarbamates determination. Food Chem 2023; 417:135900. [PMID: 36944296 DOI: 10.1016/j.foodchem.2023.135900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 02/16/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023]
Abstract
Pesticides are a suitable tool for controlling plagues and disease vectors. However, their inappropriate use allows for contamination of the environment, soil, water, and foods. Carbamates and dithiocarbamates pesticides present accumulative effects in the human body resulting in hormonal, neurological and reproductive disorders, and some are still suspected or proven to give carcinogenic or mutagenic effects. This review provides a current electroanalytical approach in the carbamates and dithiocarbamates determination, showing the use of voltammetric techniques such as amperometry, cyclic and linear scan, differential pulse, and square wave voltammetry, indicating their advantages, disadvantages, and perspectives in electroanalytical detection of carbamates and dithiocarbamates in natural water and foods. Also are reported the different materials used in the preparation of working electrodes since their choice has an important impact on the success of the analytical applications, resulting in suitable sensitivity, selectivity, stability, and robustness.
Collapse
Affiliation(s)
- Elis Marina Fonseca Almeida
- Laboratory of Electroanalytical Applied to Biotechnology and Food Engineering (LEABE), Chemistry Institute, Uberlândia Federal University, Major Jerônimo Street, 566, Patos de Minas, MG 38700-002, Brazil
| | - Djenaine De Souza
- Laboratory of Electroanalytical Applied to Biotechnology and Food Engineering (LEABE), Chemistry Institute, Uberlândia Federal University, Major Jerônimo Street, 566, Patos de Minas, MG 38700-002, Brazil.
| |
Collapse
|
6
|
Zdarta J, Kołodziejczak-Radzimska A, Bachosz K, Rybarczyk A, Bilal M, Iqbal HMN, Buszewski B, Jesionowski T. Nanostructured supports for multienzyme co-immobilization for biotechnological applications: Achievements, challenges and prospects. Adv Colloid Interface Sci 2023; 315:102889. [PMID: 37030261 DOI: 10.1016/j.cis.2023.102889] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 03/14/2023] [Accepted: 03/26/2023] [Indexed: 03/31/2023]
Abstract
The synergistic combination of current biotechnological and nanotechnological research has turned to multienzyme co-immobilization as a promising concept to design biocatalysis engineering. It has also intensified the development and deployment of multipurpose biocatalysts, for instance, multienzyme co-immobilized constructs, via biocatalysis/protein engineering to scale-up and fulfil the ever-increasing industrial demands. Considering the characteristic features of both the loaded multienzymes and nanostructure carriers, i.e., selectivity, specificity, stability, resistivity, induce activity, reaction efficacy, multi-usability, high catalytic turnover, optimal yield, ease in recovery, and cost-effectiveness, multienzyme-based green biocatalysts have become a powerful norm in biocatalysis/protein engineering sectors. In this context, the current state-of-the-art in enzyme engineering with a synergistic combination of nanotechnology, at large, and nanomaterials, in particular, are significantly contributing and providing robust tools to engineer and/or tailor enzymes to fulfil the growing catalytic and contemporary industrial needs. Considering the above critics and unique structural, physicochemical, and functional attributes, herein, we spotlight important aspects spanning across prospective nano-carriers for multienzyme co-immobilization. Further, this work comprehensively discuss the current advances in deploying multienzyme-based cascade reactions in numerous sectors, including environmental remediation and protection, drug delivery systems (DDS), biofuel cells development and energy production, bio-electroanalytical devices (biosensors), therapeutical, nutraceutical, cosmeceutical, and pharmaceutical oriented applications. In conclusion, the continuous developments in nano-assembling the multienzyme loaded co-immobilized nanostructure carriers would be a unique way that could act as a core of modern biotechnological research.
Collapse
Affiliation(s)
- Jakub Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland.
| | - Agnieszka Kołodziejczak-Radzimska
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
| | - Karolina Bachosz
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
| | - Agnieszka Rybarczyk
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
| | - Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Torun, Poland; Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland.
| |
Collapse
|
7
|
Thet Tun WS, Saenchoopa A, Daduang S, Daduang J, Kulchat S, Patramanon R. Electrochemical biosensor based on cellulose nanofibers/graphene oxide and acetylcholinesterase for the detection of chlorpyrifos pesticide in water and fruit juice †. RSC Adv 2023; 13:9603-9614. [PMID: 36968027 PMCID: PMC10038066 DOI: 10.1039/d3ra00512g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/02/2023] [Indexed: 03/26/2023] Open
Abstract
In this work, cellulose nanofibers and graphene oxide are used to fabricate a simple and reliable electrochemical biosensor, based on acetylcholinesterase (AChE) for the detection of highly dangerous organophosphates (OPs), utilizing chlorpyrifos as a representative sample. AChE is an enzyme that is essential for neurotransmission and catalyzes the conversion of acetylcholine (ATCh) into thiocholine and acetic acid. The pesticide used in this work, chlorpyrifos, inhibits the catalytic activity of AChE on ATCh, and this inhibition can be measured using square wave voltammetry (SWV). Utilizing a process of surface modification, layers of cellulose nanofibers, graphene oxide, a chitosan-graphene oxide composite, and acetylcholinesterase (AChE/CS-GO/GO/CNFs) were immobilized on a screen-printed carbon electrode (SPCE). The modified SPCE working electrode was characterized using scanning electron microscopy and graphene oxide trapped in the cellulose nanofibers was found to increase the sensitivity of the biosensor. The modified biosensor demonstrated good performance for detection of chlorpyrifos over a linear range of 25–1000 nM under optimum conditions, and the limits of detection and quantification were 2.2 nM and 73 nM, respectively. Our sophisticated technique might offer a more precise, straightforward, quick, and environmentally friendly way to assess chlorpyrifos contamination in water and juice samples. Cellulose nanofibers and graphene oxide are used to fabricate an electrochemical biosensor based on acetylcholinesterase for detecting organophosphates. This biosensor is simple and reliable, and it utilizes chlorpyrifos as a representative sample of highly dangerous OPs.![]()
Collapse
Affiliation(s)
- Wonn Shweyi Thet Tun
- Department of Chemistry, Faculty of Science, Khon Kaen UniversityKhon Kaen40002Thailand
- Department of Biochemistry, Faculty of Science, Khon Kaen UniversityKhon Kaen40002Thailand
| | - Apichart Saenchoopa
- Department of Chemistry, Faculty of Science, Khon Kaen UniversityKhon Kaen40002Thailand
| | - Sakda Daduang
- Faculty of Pharmaceutical Sciences, Khon Kaen UniversityKhon Kaen 40002Thailand
| | - Jureerat Daduang
- Department of Clinical Chemistry, Faculty of Associated Medical Sciences, Khon Kaen UniversityKhon Kaen40002Thailand
| | - Sirinan Kulchat
- Department of Chemistry, Faculty of Science, Khon Kaen UniversityKhon Kaen40002Thailand
| | - Rina Patramanon
- Department of Biochemistry, Faculty of Science, Khon Kaen UniversityKhon Kaen40002Thailand
| |
Collapse
|
8
|
A sensitive analysis of sulfadimethoxine using an AuNPs/Ag-GO-Nf-based electrochemical immunosensor. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-021-05069-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Emran MY, Shenashen MA, Elmarakbi A, Selim MM, El-Safty SA. Hierarchical engineering of Mn 2O 3/carbon nanostructured electrodes for sensitive screening of acetylcholine in biological samples. NEW J CHEM 2022; 46:15557-15566. [DOI: 10.1039/d2nj02390c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Enzymeless electrochemical sensors have received considerable interest for the direct, sensitive, and selective monitoring of biomolecules in a complex biological environment.
Collapse
Affiliation(s)
- Mohammed Y. Emran
- National Institute for Materials Science (NIMS), Research Center for Functional Materials, 1-2-1 Sengen, Tsukuba-shi, Ibaraki-ken 305-0047, Japan
- Chemistry Department, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Mohamed A. Shenashen
- National Institute for Materials Science (NIMS), Research Center for Functional Materials, 1-2-1 Sengen, Tsukuba-shi, Ibaraki-ken 305-0047, Japan
- Department of Petrochemical, Egyptian Petroleum Research Institute (EPRI), Nasr City 11727, Cairo, Egypt
| | - Ahmed Elmarakbi
- Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Mahmoud M. Selim
- Al-Aflaj College of Science and Human Studies, Prince Sattam Bin Abdulaziz University, Al-Aflaj, 710-11912, Saudi Arabia
| | - Sherif A. El-Safty
- National Institute for Materials Science (NIMS), Research Center for Functional Materials, 1-2-1 Sengen, Tsukuba-shi, Ibaraki-ken 305-0047, Japan
| |
Collapse
|
10
|
Enzymeless copper microspheres@carbon sensor design for sensitive and selective acetylcholine screening in human serum. Colloids Surf B Biointerfaces 2021; 210:112228. [PMID: 34839049 DOI: 10.1016/j.colsurfb.2021.112228] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/13/2021] [Accepted: 11/01/2021] [Indexed: 12/21/2022]
Abstract
Follow up of neuronal disorders, such as Alzheimer's and Parkinson's diseases using simple, sensitive, and selective assays is urgently needed in clinical and research investigation. Here, we designed a sensitive and selective enzymeless electrochemical acetylcholine sensor that can be used in human fluid samples. The designed electrode consisted of a micro spherical construction of Cu-metal decorated by a thin layer of carbon (CuMS@C). A simple and one-pot synthesis approach was used for Cu-metal controller formation with a spherical like structures. The spherical like structure was formed with rough outer surface texture, circular build up, homogeneous formation, micrometric spheres size (0.5 -1 µm), and internal hollow structure. The formation of a thin layer of carbon materials on the surface of CuMS sustained the catalytic activity of Cu atoms and enriched negatively charge of the surface. CuMS@C acted as a highly active mediator surface that consisted of Cu metal as a highly active catalyst and carbons as protecting, charge transport, and attractive surface. Therefore, the CuMS@C surface morphology and composition played a key role in various aspects such as facilitated ACh diffusion/loading, increased the interface surface area, and enhanced the catalytic activity. The CuMS@C acted as an electroactive catalyst for ACh electrooxidation and current production, due to the losing of two electrons. The fabricated CuMS@C could be a highly sensitive and selective enzymeless sensor for detecting ACh with a detection limit of 0.1 µM and a wide linear range of 0.01 - 0.8 mM. The designed ACh sensor assay based on CuMS@C exhibited fast sensing property as well as sensitivity, selectivity, stability, and reusability for detecting ACh in human serum samples. This work presents the design of a highly active electrode surface for direct detection of ACh and further clinical investigation of ACh levels.
Collapse
|
11
|
Singh AP, Balayan S, Gupta S, Jain U, Sarin R, Chauhan N. Detection of pesticide residues utilizing enzyme-electrode interface via nano-patterning of TiO2 nanoparticles and molybdenum disulfide (MoS2) nanosheets. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.06.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Zhai R, Chen G, Liu G, Huang X, Xu X, Li L, Zhang Y, Wang J, Jin M, Xu D, Abd El-Aty A. Enzyme inhibition methods based on Au nanomaterials for rapid detection of organophosphorus pesticides in agricultural and environmental samples: A review. J Adv Res 2021; 37:61-74. [PMID: 35499055 PMCID: PMC9039737 DOI: 10.1016/j.jare.2021.08.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/07/2021] [Accepted: 08/12/2021] [Indexed: 01/01/2023] Open
Abstract
The review systematically and completely collated the enzyme inhibition method based on Au nanomaterials for organophosphorus pesticide detection method in the last 20 years. The significance of the optical properties of Au nanomaterials is outlined with different shapes, sizes, and surface modifiers in enzyme inhibition methods. The principles, classification and application of enzyme inhibition methods based on Au nanomaterials are comprehensively summarized from a new perspective in agricultural and environmental samples, including colorimetric method, fluorometric method, electrochemical biosensor method. Unlike traditional enzyme inhibition method, the merits of enzyme inhibition method based on Au nanomaterials were elaborated in this review. Combined with the research progress of enzyme inhibition method, this review predicts the future research direction of enzyme inhibition method, providing a theoretical reference for researchers.
Background Organophosphorus pesticides (OPs), as insecticides or acaricides, are widely used in agricultural products to ensure agricultural production. However, widespread use of OPs leads to environmental contamination and significant negative consequences on biodiversity, food security, and water resources. Therefore, developing a sensitive and rapid method to determine OPs residues in different matrices is necessary. Originally, the enzyme inhibition methods are often used as preliminary screens of OPs in crops. Many studies on the characteristic of Au nanomaterials have constantly been emerging in the past decade. Combined with anisotropic Au nanomaterials, enzyme inhibition methods have the advantages of high sensitivity, durability, and high stability. Aim of Review This review aims to summarize the principles and strategies of gold (Au) nanomaterials in enzyme inhibition methods, including colorimetric (dispersion, particle size of Au nanomaterials) and fluorometric (fluorescence energy transfer, internal filtration effect) detection, and electrochemical sensing system (shape of Au nanomaterials, Au nanomaterials combined with other nanomaterials). The application of enzyme inhibition in agricultural products and research progress was also outlined. Next, this review illustrates the advantages of Au nanomaterial-based enzyme inhibition methods compared with conventional enzyme inhibition methods. The detection limits and linear range of colorimetric and fluorometric detection and electrochemical biosensors have also been provided. At last, key perspectives, trends, gaps, and future research directions are proposed. Key Scientific Concepts of Review Herein, we introduced the technology of enzyme inhibition method based on Au nanomaterials for onsite and infield rapid detection of organophosphorus pesticide.
Collapse
Affiliation(s)
- Rongqi Zhai
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing, 100081, PR China
| | - Ge Chen
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing, 100081, PR China
- Corresponding authors.
| | - Guangyang Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing, 100081, PR China
| | - Xiaodong Huang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing, 100081, PR China
| | - XiaoMin Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing, 100081, PR China
| | - Lingyun Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing, 100081, PR China
| | - Yanguo Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing, 100081, PR China
| | - Jing Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, PR China
| | - Maojun Jin
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, PR China
| | - Donghui Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing, 100081, PR China
- Corresponding authors.
| | - A.M. Abd El-Aty
- State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| |
Collapse
|
13
|
Effective adsorption of A-series chemical warfare agents on graphdiyne nanoflake: a DFT study. J Mol Model 2021; 27:117. [PMID: 33796926 DOI: 10.1007/s00894-021-04730-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/14/2021] [Indexed: 10/21/2022]
Abstract
Chemical warfare agents (CWAs) are highly poisonous and their presence may cause diverse effects not only on living organisms but also on environment. Therefore, their detection and removal in a short time span is very important. In this regard, here the utility of graphdiyne (GDY) nanoflake is studied theoretically as an electrochemical sensor material for the hazardous CWAs including A-230, A-232, and A-234. Herein, we explain the phenomenon of adsorption of A-series CWAs on GDY nanoflake within the density functional theory (DFT) framework. The characterisation of adsorption is based on optimised geometries, BSSE-corrected energies, SAPT0, RDG, FMO, CHELPG charge transfer, QTAIM and UV-Vis analyses. The calculated counterpoise adsorption energies for reported complexes range from - 13.70 to - 17.19 kcal mol-1. These adsorption energies show that analytes are physiosorbed onto GDY which usually takes place through noncovalent interactions. The noncovalent adsorption of CWAs on GDY is also attributed by the SAPT0, RDG and QTAIM analyses. These properties also reveal that dispersion factors dominate in the complexes among many noncovalent components (exchange, induction, electrostatic, steric and repulsion). In order to estimate the sensitivity of GDY, the %sensitivity and average energy gap variations are quantitatively measured by energies of HOMO and LUMO orbitals. In terms of adsorption affinity of GDY, UV-Vis analysis, CHELPG charge transfer and DOS analyses depict an appreciable response towards these toxic CWAs. Graphical abstract.
Collapse
|
14
|
New Nanospheres to Use in the Determination of Imidan Phosmet and Vantex Pesticides. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-020-01871-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
15
|
A modified nanocomposite biosensor for quantitative l-glutamate detection in beef. Meat Sci 2020; 168:108185. [PMID: 32487350 DOI: 10.1016/j.meatsci.2020.108185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 03/29/2020] [Accepted: 05/08/2020] [Indexed: 11/22/2022]
Abstract
A new biosensor for detecting l-glutamate (l-Glu) in beef was developed. Firstly, a bare Au electrode was surface-modified by gold nanoparticles (Au NPs), graphene oxide (GO), and chitosan (CS) as immobilized materials, and then its surface was connected with l-glutamate oxidase (GluOx). The modified Au NPs/GO/CS electrode was characterized by scanning electron microscopy, and the formation mechanism was elaborated. The response current of the l-Glu biosensor maximized to 0.08 mA at pH 7.5 and 0.09 mA at 30 °C, with a detection range of 0.2-1.4 mM and a detection limit of 0.023 mM. The l-Glu biosensor had high accuracy, and its results linearly fitted with those of the amino acid analyzer with a coefficient of 0.996. The l-Glu biosensor had high selectivity, repeatability, and stability and detected higher l-Glu content in the cooked beef than in the raw beef.
Collapse
|
16
|
Dhull V. A Nafion/AChE-cSWCNT/MWCNT/Au-based amperometric biosensor for the determination of organophosphorous compounds. ENVIRONMENTAL TECHNOLOGY 2020; 41:566-576. [PMID: 30052145 DOI: 10.1080/09593330.2018.1505964] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/22/2018] [Indexed: 06/08/2023]
Abstract
In the present study, a biosensor was developed for the detection of organophosphorous compounds. Core electrode of a working electrode was obtained by depositing the paste of Gold nanoparticles and Multi-walled Carbon Nanotubes on a gold wire. The acetylcholinesterase enzyme was immobilized on carboxylated Single-walled Carbon Nanotubes and pasted onto a core of electrode followed by coating with a nafion layer to prevent enzyme leaching from the electrode. This electrode was further used as a working electrode in the sensor. This sensor worked on the AChE inhibition mechanism where the signal is inversely proportional to the amount of organophosphorous compounds. The electrocatalytic activity of this sensor was observed at a potential of +0.360 mV. The standardized conditions for this sensor were pH at 7.0, temperature at 30°C and response time at less than 10s. The linear working range of this biosensor was 0.1-130 µM with the lowest detection limit (LOD) of 1.9, 2.3, 2.2 and 2.5 nM for Methyl Parathion, Monocrotophos, Chlorpyrifos and Endosulfan, respectively. The biosensor showed excellent reusability (upto 55 times) and can be stored stably for 2 months.
Collapse
Affiliation(s)
- Vikas Dhull
- Department of Biotechnology Engineering, University Institute of Engineering & Technology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
17
|
He Y, Du J, Luo J, Chen S, Yuan R. Coreactant-free electrochemiluminescence biosensor for the determination of organophosphorus pesticides. Biosens Bioelectron 2020; 150:111898. [DOI: 10.1016/j.bios.2019.111898] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/24/2019] [Accepted: 11/14/2019] [Indexed: 01/30/2023]
|
18
|
Rawal R, Kharangarh PR, Dawra S, Tomar M, Gupta V, Pundir C. A comprehensive review of bilirubin determination methods with special emphasis on biosensors. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.10.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Bu L, Guo L, Xie J. An in situ assay of nerve agents enabled by a self-assembled bienzymatic electrochemical biosensor. NEW J CHEM 2020. [DOI: 10.1039/d0nj00929f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A new self-assembled bienzymatic electrochemical biosensor is proposed to in situ detect NAs and readily investigate the inhibition processes of NAs using a single step protocol.
Collapse
Affiliation(s)
- Lijuan Bu
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis
- Institute of Pharmacology and Toxicology
- Academy of Military Medical Sciences
- Beijing 100850
- P. R. China
| | - Lei Guo
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis
- Institute of Pharmacology and Toxicology
- Academy of Military Medical Sciences
- Beijing 100850
- P. R. China
| | - Jianwei Xie
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis
- Institute of Pharmacology and Toxicology
- Academy of Military Medical Sciences
- Beijing 100850
- P. R. China
| |
Collapse
|
20
|
Acetylcholine esterase enzyme doped multiwalled carbon nanotubes for the detection of organophosphorus pesticide using cyclic voltammetry. Int J Biol Macromol 2019; 137:895-903. [DOI: 10.1016/j.ijbiomac.2019.06.162] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/20/2019] [Accepted: 06/21/2019] [Indexed: 12/13/2022]
|
21
|
Pundir C, Malik A, Preety. Bio-sensing of organophosphorus pesticides: A review. Biosens Bioelectron 2019; 140:111348. [DOI: 10.1016/j.bios.2019.111348] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 05/22/2019] [Indexed: 01/09/2023]
|
22
|
Kucherenko D, Kucherenko I, Soldatkin O, Topolnikova Y, Dzyadevych S, Soldatkin A. A highly selective amperometric biosensor array for the simultaneous determination of glutamate, glucose, choline, acetylcholine, lactate and pyruvate. Bioelectrochemistry 2019; 128:100-108. [DOI: 10.1016/j.bioelechem.2019.03.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/29/2019] [Accepted: 03/29/2019] [Indexed: 10/27/2022]
|
23
|
3D graphene/MWNTs nano-frameworks embedded Ag-Au bimetallic NPs for carcinoembryonic antigen detection. Microchem J 2019. [DOI: 10.1016/j.microc.2019.05.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
24
|
Lu X, Li Y, Tao L, Song D, Wang Y, Li Y, Gao F. Amorphous metal boride as a novel platform for acetylcholinesterase biosensor development and detection of organophosphate pesticides. NANOTECHNOLOGY 2019; 30:055501. [PMID: 30499458 DOI: 10.1088/1361-6528/aaee3f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The exploration of new materials for modifying electrodes is important to advance electrochemical biosensors. Herein, we demonstrated that amorphous bimetallic boride material (Co-2Ni-B) prepared by a simple and facile aqueous reaction is an efficient matrix to immobilize acetylcholinesterase (AChE) to construct a biosensor for the determination of organophosphate pesticides. The effects of different composition and crystallinity on its electrochemical performance are investigated, and the optimization studies of the biological transducer were also discussed. Under optimal conditions, the fabricated sensor showed good analytical performance for the determination of chlorpyrifos with a low limit of detection (2.83 pM) and a wide linear range (3 pM-300 nM). The proposed biosensor also demonstrated high reproducibility, stability and accuracy. The impressive performance was due to the excellent conductivity and the unique amorphous bimetal-metalloid complex nanostructure. These results introduce a new class of promising materials as a robust platform for biosensor applications.
Collapse
Affiliation(s)
- Xiong Lu
- Key Laboratory of Applied Chemistry, Department of Applied Chemistry, Yanshan University, Qinhuangdao 066004, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
25
|
Palanivelu J, Chidambaram R. Acetylcholinesterase with mesoporous silica: Covalent immobilization, physiochemical characterization, and its application in food for pesticide detection. J Cell Biochem 2019; 120:10777-10786. [DOI: 10.1002/jcb.28369] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 12/06/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Jeyanthi Palanivelu
- Department of Industrial Biotechnology School of Bio‐Sciences and Technology, Vellore Institute of Technology Vellore India
| | - Ramalingam Chidambaram
- Department of Industrial Biotechnology School of Bio‐Sciences and Technology, Vellore Institute of Technology Vellore India
| |
Collapse
|
26
|
Mandal R, Baranwal A, Srivastava A, Chandra P. Evolving trends in bio/chemical sensor fabrication incorporating bimetallic nanoparticles. Biosens Bioelectron 2018; 117:546-561. [DOI: 10.1016/j.bios.2018.06.039] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/16/2018] [Accepted: 06/20/2018] [Indexed: 01/28/2023]
|
27
|
Morphology control of 3D-networked boron-doped diamond nanowires and its electrochemical properties. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.04.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Fabrication of AChE/SnO 2-cMWCNTs/Cu Nanocomposite-Based Sensor Electrode for Detection of Methyl Parathion in Water. Int J Anal Chem 2018; 2018:2874059. [PMID: 29977295 PMCID: PMC6011093 DOI: 10.1155/2018/2874059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/08/2018] [Indexed: 11/18/2022] Open
Abstract
The work highlights inhibition-based Acetylcholinesterase (AChE) fabrication using composite nanomaterial comprising tin oxide nanoparticles (SnO2) and carboxylated multiwalled carbon nanotubes (cMWCNTs) for detection of pesticide methyl parathion (MP) in water samples. Working electrode AChE/SnO2-cMWCNTs/Cu exhibited high sensitivity with a linearity range of 1.0 μM to 160 μM and a minimum detection limit of 0.1 μM for MP in water. The fabricated electrode was found biocompatible and nontoxic which can be used to detect low concentrations of pesticide in water samples. The synergistic and facilitated electron transferring properties of SnO2-cMWCNTs/Cu made it an excellent support for immobilization of enzyme in sensing technology. The enzyme AChE was covalently immobilized with cMWCNTs using glutaraldehyde as crosslinking agent which has enhanced the storage stability and reusability of the method. The reusability attained was 30 times for 40 days when AChE/SnO2-cMWCNTs/Cu was stored at low temperature of 4°C. Developed sensor showed excellent analytical recovery of pesticide in water sample with negligible effect of interfering species. Also, AChE/SnO2-cMWCNTs/Cu was easily reactivated simply by varying pH of phosphate buffer. This method is fast, reliable, and accurate showing successful development of amperometric biosensor for detection of MP in water sample.
Collapse
|
29
|
Jain U, Gupta S, Chauhan N. Construction of an amperometric glycated hemoglobin biosensor based on Au–Pt bimetallic nanoparticles and poly (indole-5-carboxylic acid) modified Au electrode. Int J Biol Macromol 2017; 105:549-555. [DOI: 10.1016/j.ijbiomac.2017.07.084] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 11/30/2022]
|
30
|
Tan C, Nasir MZM, Ambrosi A, Pumera M. 3D Printed Electrodes for Detection of Nitroaromatic Explosives and Nerve Agents. Anal Chem 2017; 89:8995-9001. [DOI: 10.1021/acs.analchem.7b01614] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Cavin Tan
- Division of Chemistry & Biological Chemistry, School of Physical Mathematical Science, Nanyang Technological University, Singapore 637371, Singapore
| | - Muhammad Zafir Mohamad Nasir
- Division of Chemistry & Biological Chemistry, School of Physical Mathematical Science, Nanyang Technological University, Singapore 637371, Singapore
| | - Adriano Ambrosi
- Division of Chemistry & Biological Chemistry, School of Physical Mathematical Science, Nanyang Technological University, Singapore 637371, Singapore
| | - Martin Pumera
- Division of Chemistry & Biological Chemistry, School of Physical Mathematical Science, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
31
|
Song D, Li Y, Lu X, Sun M, Liu H, Yu G, Gao F. Palladium-copper nanowires-based biosensor for the ultrasensitive detection of organophosphate pesticides. Anal Chim Acta 2017; 982:168-175. [PMID: 28734356 DOI: 10.1016/j.aca.2017.06.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 05/15/2017] [Accepted: 06/13/2017] [Indexed: 10/19/2022]
Abstract
A highly sensitive acetylcholinesterase (AChE) electrochemical biosensor for the quantitative determination of organophosphate pesticides (OPs) in vegetables and fruits based on palladium-copper nanowires (Pd-Cu NWs) was reported. AChE immobilized on the modified electrode could catalyze hydrolysis of acetylthiocholine chloride (ATCl), generating an irreversible oxidation peak. When exposed to the OPs, the activity of the AChE was inhibited and the current significantly decreased. The detection mechanism is based on the inhibition of AChE. The Pd-Cu NWs not only provide a large active surface area (0.268 ± 0.01) cm2 for the immobilization of AChE, which was approximately 3.8 times higher than the bare glass carbon electrode, but also exhibit excellent electro-catalytic activity and remarkable electron mobility. The biosensor modified with Pd-Cu NWs displayed a good affinity to ATCl and catalyzed hydrolysis of ATCl, with a low Michaelis-Menten constant (KM) of 50.56 μM. Under optimized conditions, the AChE-Cs/Pd-Cu NWs/GCE biosensor detected malathion with wide linear ranges of 5-1000 ppt and 500-3000 ppb, and the low detection limit was 1.5 ppt (4.5 pM). In addition, the OPs biosensor has been applied to the analysis of malathion in commercial vegetable and fruit samples, with excellent recoveries in the range of 98.5%-113.5%. This work provides a simple, sensitive and effective platform for biosensors and exhibits future potential in practical application for the OPs assay.
Collapse
Affiliation(s)
- Dandan Song
- Key Laboratory of Applied Chemistry, Department of Applied Chemistry, Yanshan University, Qinhuangdao 066004, PR China
| | - Yan Li
- Key Laboratory of Applied Chemistry, Department of Applied Chemistry, Yanshan University, Qinhuangdao 066004, PR China
| | - Xiong Lu
- Key Laboratory of Applied Chemistry, Department of Applied Chemistry, Yanshan University, Qinhuangdao 066004, PR China
| | - Muxue Sun
- Key Laboratory of Applied Chemistry, Department of Applied Chemistry, Yanshan University, Qinhuangdao 066004, PR China
| | - Hui Liu
- Key Laboratory of Applied Chemistry, Department of Applied Chemistry, Yanshan University, Qinhuangdao 066004, PR China
| | - Guangming Yu
- Key Laboratory of Applied Chemistry, Department of Applied Chemistry, Yanshan University, Qinhuangdao 066004, PR China
| | - Faming Gao
- Key Laboratory of Applied Chemistry, Department of Applied Chemistry, Yanshan University, Qinhuangdao 066004, PR China.
| |
Collapse
|
32
|
Sanzò G, Taurino I, Puppo F, Antiochia R, Gorton L, Favero G, Mazzei F, Carrara S, De Micheli G. A bimetallic nanocoral Au decorated with Pt nanoflowers (bio)sensor for H 2O 2 detection at low potential. Methods 2017; 129:89-95. [PMID: 28600228 DOI: 10.1016/j.ymeth.2017.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 04/13/2017] [Accepted: 06/03/2017] [Indexed: 10/19/2022] Open
Abstract
In this work, we have developed for the first time a method to make novel gold and platinum hybrid bimetallic nanostructures differing in shape and size. Au-Pt nanostructures were prepared by electrodeposition in two simple steps. The first step consists of the electrodeposition of nanocoral Au onto a gold substrate using hydrogen as a dynamic template in an ammonium chloride solution. After that, the Pt nanostructures were deposited onto the nanocoral Au organized in pores. Using Pt (II) and Pt (IV), we realized nanocoral Au decorated with Pt nanospheres and nanocoral Au decorated with Pt nanoflowers, respectively. The bimetallic nanostructures showed better capability to electrochemically oxidize hydrogen peroxide compared with nanocoral Au. Moreover, Au-Pt nanostructures were able to lower the potential of detection and a higher performance was obtained at a low applied potential. Then, glucose oxidase was immobilized onto the bimetallic Au-Pt nanostructure using cross-linking with glutaraldehyde. The biosensor was characterized by chronoamperometry at +0.15V vs. Ag pseudo-reference electrode (PRE) and showed good analytical performances with a linear range from 0.01 to 2.00mM and a sensitivity of 33.66µA/mMcm2. The good value of Kmapp (2.28mM) demonstrates that the hybrid nanostructure is a favorable environment for the enzyme. Moreover, the low working potential can minimize the interference from ascorbic acid and uric acid as well as reducing power consumption to effect sensing. The simple procedure to realize this nanostructure and to immobilize enzymes, as well as the analytical performances of the resulting devices, encourage the use of this technology for the development of biosensors for clinical analysis.
Collapse
Affiliation(s)
- Gabriella Sanzò
- Laboratory of Integrated Systems, EPFL - École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; Biosensors Laboratory, Department of Chemistry Drug Technologies, Sapienza University of Rome, P.le Aldo Moro, 5-00185 Roma, Italy
| | - Irene Taurino
- Laboratory of Integrated Systems, EPFL - École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Francesca Puppo
- Laboratory of Integrated Systems, EPFL - École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Riccarda Antiochia
- Biosensors Laboratory, Department of Chemistry Drug Technologies, Sapienza University of Rome, P.le Aldo Moro, 5-00185 Roma, Italy
| | - Lo Gorton
- Department of Analytical Chemistry/Biochemistry, P.O. Box 124, 221 00 Lund, Sweden
| | - Gabriele Favero
- Biosensors Laboratory, Department of Chemistry Drug Technologies, Sapienza University of Rome, P.le Aldo Moro, 5-00185 Roma, Italy
| | - Franco Mazzei
- Biosensors Laboratory, Department of Chemistry Drug Technologies, Sapienza University of Rome, P.le Aldo Moro, 5-00185 Roma, Italy
| | - Sandro Carrara
- Laboratory of Integrated Systems, EPFL - École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Giovanni De Micheli
- Laboratory of Integrated Systems, EPFL - École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
33
|
Chen H, Zhang H, Yuan R, Chen S. Novel Double-Potential Electrochemiluminescence Ratiometric Strategy in Enzyme-Based Inhibition Biosensing for Sensitive Detection of Organophosphorus Pesticides. Anal Chem 2017; 89:2823-2829. [DOI: 10.1021/acs.analchem.6b03883] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Hongmei Chen
- Key Laboratory of Luminescence
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| | - Han Zhang
- Key Laboratory of Luminescence
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| | - Ruo Yuan
- Key Laboratory of Luminescence
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| | - Shihong Chen
- Key Laboratory of Luminescence
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| |
Collapse
|
34
|
Raymundo-Pereira PA, Shimizu FM, Coelho D, Piazzeta MH, Gobbi AL, Machado SA, Oliveira ON. A Nanostructured Bifunctional platform for Sensing of Glucose Biomarker in Artificial Saliva: Synergy in hybrid Pt/Au surfaces. Biosens Bioelectron 2016; 86:369-376. [DOI: 10.1016/j.bios.2016.06.053] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/10/2016] [Accepted: 06/18/2016] [Indexed: 12/17/2022]
|
35
|
Liu N, Nie D, Tan Y, Zhao Z, Liao Y, Wang H, Sun C, Wu A. An ultrasensitive amperometric immunosensor for zearalenones based on oriented antibody immobilization on a glassy carbon electrode modified with MWCNTs and AuPt nanoparticles. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1996-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Electrochemiluminescence biosensor for determination of organophosphorous pesticides based on bimetallic Pt-Au/multi-walled carbon nanotubes modified electrode. Talanta 2016; 158:142-151. [DOI: 10.1016/j.talanta.2016.05.030] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/10/2016] [Accepted: 05/11/2016] [Indexed: 01/31/2023]
|
37
|
Lang Q, Han L, Hou C, Wang F, Liu A. A sensitive acetylcholinesterase biosensor based on gold nanorods modified electrode for detection of organophosphate pesticide. Talanta 2016; 156-157:34-41. [DOI: 10.1016/j.talanta.2016.05.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/29/2016] [Accepted: 05/01/2016] [Indexed: 12/23/2022]
|
38
|
Affiliation(s)
- Šárka Štěpánková
- Faculty of Chemical Technology, Department of Biological and Biochemical Sciences, University of Pardubice, Pardubice, Czech Republic
| | - Katarína Vorčáková
- Faculty of Chemical Technology, Department of Biological and Biochemical Sciences, University of Pardubice, Pardubice, Czech Republic
| |
Collapse
|
39
|
Talarico D, Arduini F, Amine A, Cacciotti I, Moscone D, Palleschi G. Screen-printed electrode modified with carbon black and chitosan: a novel platform for acetylcholinesterase biosensor development. Anal Bioanal Chem 2016; 408:7299-309. [DOI: 10.1007/s00216-016-9604-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/20/2016] [Accepted: 04/26/2016] [Indexed: 10/21/2022]
|
40
|
Jiang T, Song Y, Du D, Liu X, Lin Y. Detection of p53 Protein Based on Mesoporous Pt–Pd Nanoparticles with Enhanced Peroxidase-like Catalysis. ACS Sens 2016. [DOI: 10.1021/acssensors.6b00019] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tao Jiang
- Key
Laboratory of Animal Virology of Ministry of Agriculture, State Key
Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research
Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| | | | - Dan Du
- Key
Laboratory of Pesticides and Chemical Biology, Ministry of Education,
College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Xiangtao Liu
- Key
Laboratory of Animal Virology of Ministry of Agriculture, State Key
Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research
Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| | | |
Collapse
|
41
|
Wang X, Hou T, Dong S, Liu X, Li F. Fluorescence biosensing strategy based on mercury ion-mediated DNA conformational switch and nicking enzyme-assisted cycling amplification for highly sensitive detection of carbamate pesticide. Biosens Bioelectron 2016; 77:644-9. [DOI: 10.1016/j.bios.2015.10.034] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 09/29/2015] [Accepted: 10/11/2015] [Indexed: 11/16/2022]
|
42
|
Sun Y, Lan Y, Yang L, Kong F, Du H, Feng C. Preparation of hemoglobin imprinted polymers based on graphene and protein removal assisted by electric potential. RSC Adv 2016. [DOI: 10.1039/c6ra04039j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hemoglobin (Hb) imprinted polymers based on graphene were prepared on the surface of Au electrode and protein removal assisted by electric potential was studied in detail.
Collapse
Affiliation(s)
- Yue Sun
- School of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- China
| | - Yuting Lan
- School of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- China
| | - Lulu Yang
- School of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- China
| | - Fanbo Kong
- School of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- China
| | - Hongying Du
- School of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- China
| | - Chunliang Feng
- School of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- China
| |
Collapse
|
43
|
Wang X, Dong S, Hou T, Liu L, Liu X, Li F. Exonuclease I-aided homogeneous electrochemical strategy for organophosphorus pesticide detection based on enzyme inhibition integrated with a DNA conformational switch. Analyst 2016; 141:1830-6. [DOI: 10.1039/c5an02374b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A homogeneous electrochemical strategy for the detection of organophosphorus pesticides based on the inhibition of acetylcholinesterase activity and configuration change of hairpin DNA probes was developed.
Collapse
Affiliation(s)
- Xiuzhong Wang
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Shanshan Dong
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Ting Hou
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Lei Liu
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Xiaojuan Liu
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| |
Collapse
|
44
|
Rick J, Tsai MC, Hwang BJ. Biosensors Incorporating Bimetallic Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2015; 6:E5. [PMID: 28344262 PMCID: PMC5302532 DOI: 10.3390/nano6010005] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 12/11/2015] [Accepted: 12/16/2015] [Indexed: 12/12/2022]
Abstract
This article presents a review of electrochemical bio-sensing for target analytes based on the use of electrocatalytic bimetallic nanoparticles (NPs), which can improve both the sensitivity and selectivity of biosensors. The review moves quickly from an introduction to the field of bio-sensing, to the importance of biosensors in today's society, the nature of the electrochemical methods employed and the attendant problems encountered. The role of electrocatalysts is introduced with reference to the three generations of biosensors. The contributions made by previous workers using bimetallic constructs, grouped by target analyte, are then examined in detail; following which, the synthesis and characterization of the catalytic particles is examined prior to a summary of the current state of endeavor. Finally, some perspectives for the future of bimetallic NPs in biosensors are given.
Collapse
Affiliation(s)
- John Rick
- NanoElectrochemistry Laboratory, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan.
| | - Meng-Che Tsai
- NanoElectrochemistry Laboratory, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan.
| | - Bing Joe Hwang
- NanoElectrochemistry Laboratory, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan.
- National Synchrotron Radiation Research Center, Hsinchu 300, Taiwan.
| |
Collapse
|
45
|
Acetylcholinesterase biosensor for inhibitor measurements based on glassy carbon electrode modified with carbon black and pillar[5]arene. Talanta 2015; 144:559-68. [DOI: 10.1016/j.talanta.2015.07.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 06/26/2015] [Accepted: 07/03/2015] [Indexed: 11/21/2022]
|
46
|
Amine A, Arduini F, Moscone D, Palleschi G. Recent advances in biosensors based on enzyme inhibition. Biosens Bioelectron 2015; 76:180-94. [PMID: 26227311 DOI: 10.1016/j.bios.2015.07.010] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 06/28/2015] [Accepted: 07/05/2015] [Indexed: 02/07/2023]
Abstract
Enzyme inhibitors like drugs and pollutants are closely correlated to human and environmental health, thus their monitoring is of paramount importance in analytical chemistry. Enzymatic biosensors represent cost-effective, miniaturized and easy to use devices; particularly biosensors based on enzyme inhibition are useful analytical tools for fast screening and monitoring of inhibitors. The present review will highlight the research carried out in the last 9 years (2006-2014) on biosensors based on enzyme inhibition. We underpin the recent advances focused on the investigation in new theoretical approachs and in the evaluation of biosensor performances for reversible and irreversible inhibitors. The use of nanomaterials and microfluidic systems as well as the applications of the various biosensors in real samples is critically reviewed, demonstrating that such biosensors allow the development of useful devices for a fast and reliable alarm system.
Collapse
Affiliation(s)
- A Amine
- Faculty of Sciences and Techniques, University Hassan II of Casablanca, Morocco.
| | - F Arduini
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy; Consorzio Interuniversitario Biostrutture e Biosistemi "INBB", Viale Medaglie d'Oro 305, 00136 Rome, Italy
| | - D Moscone
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy; Consorzio Interuniversitario Biostrutture e Biosistemi "INBB", Viale Medaglie d'Oro 305, 00136 Rome, Italy
| | - G Palleschi
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy; Consorzio Interuniversitario Biostrutture e Biosistemi "INBB", Viale Medaglie d'Oro 305, 00136 Rome, Italy
| |
Collapse
|
47
|
Zhang Y, Arugula MA, Wales M, Wild J, Simonian AL. A novel layer-by-layer assembled multi-enzyme/CNT biosensor for discriminative detection between organophosphorus and non-organophosphrus pesticides. Biosens Bioelectron 2015; 67:287-95. [DOI: 10.1016/j.bios.2014.08.036] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/01/2014] [Accepted: 08/16/2014] [Indexed: 10/24/2022]
|
48
|
Nanda Kumar D, Rajeshwari A, Alex SA, Chandrasekaran N, Mukherjee A. Acetylcholinesterase inhibition-based colorimetric determination of Hg 2+ using unmodified silver nanoparticles. NEW J CHEM 2015; 39:1172-1178. [DOI: 10.1039/c4nj01722f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
A highly sensitive colorimetric sensor for Hg2+ was developed with unmodified AgNPs using an enzyme-based indirect method.
Collapse
|
49
|
Lee SK, Song MJ, Kim JH, Lim YK, Chun YS, Lim DS. Selective growth of carbon nanotubes on boron-doped diamond for electrochemical biosensor application. RSC Adv 2015. [DOI: 10.1039/c4ra15554h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Selective growth of MWCNTs on boron-doped diamond electrode was introduced and their electrochemical properties and glucose biosensing performances were reported.
Collapse
Affiliation(s)
- Seung-Koo Lee
- Dept. of Materials Science and Engineering
- Korea University
- Seoul 136-713
- Republic of Korea
| | - Min-Jung Song
- Dept. of Materials Science and Engineering
- Yonsei University
- Seoul 120-749
- Republic of Korea
| | - Jong-Hoon Kim
- Dept. of Materials Science and Engineering
- Korea University
- Seoul 136-713
- Republic of Korea
- Dept. of Technology and Society
| | - Young-Kyun Lim
- Dept. of Materials Science and Engineering
- Korea University
- Seoul 136-713
- Republic of Korea
| | - Yoon-Soo Chun
- Dept. of Materials Science and Engineering
- Korea University
- Seoul 136-713
- Republic of Korea
| | - Dae-Soon Lim
- Dept. of Materials Science and Engineering
- Korea University
- Seoul 136-713
- Republic of Korea
| |
Collapse
|
50
|
PEREIRA NDM, OLIVEIRA FMD, PEREIRA NR, VERLY RM, SOUTO DEP, KUBOTA LT, TANAKA AA, DAMOS FS, LUZ RDCS. Ultrasensitive Biosensor for Detection of Organophosphorus Pesticides Based on a Macrocycle Complex/Carbon Nanotubes Composite and 1-Methyl-3-octylimidazolium Tetrafluoroborate as Binder Compound. ANAL SCI 2015; 31:29-35. [DOI: 10.2116/analsci.31.29] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|