1
|
Hasannezhad H, Bakhshi A, Mozafari MR, Naghib SM. A review of chitosan role in milk bioactive-based drug delivery, smart packaging and biosensors: Recent advances and developments. Int J Biol Macromol 2024; 294:139248. [PMID: 39740715 DOI: 10.1016/j.ijbiomac.2024.139248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 12/21/2024] [Accepted: 12/25/2024] [Indexed: 01/02/2025]
Abstract
Chitosan, a versatile biopolymer derived from chitin, is increasingly recognized in the milk industry for its multifunctional applications in drug delivery, smart packaging, and biosensor development. This review provides a comprehensive analysis of recent advances in chitosan production techniques. These include chemical, biological, and novel methods such as deep eutectic solvents (DES), microwave-assisted approaches, and laser-assisted processes. Surface modification strategies to enhance its functional properties are also discussed. The review highlights the development of various chitosan-based nanocarriers, including nanoparticles, nanofibers, nanogels, and nanocomposites. It emphasizes their stability when combined with milk bioactive ingredients like lipids, peptides, lactose, and minerals. The gastrointestinal fate and safety of chitosan nanoparticles are critically evaluated, showcasing their potential for safe consumption in dairy-related applications. In drug delivery systems, chitosan exhibits excellent compatibility with milk-derived carbohydrates, proteins, and minerals, enabling the development of innovative drug delivery platforms. Additionally, its incorporation into smart packaging materials enhances the shelf-life and quality of dairy products. Chitosan-based biosensors offer precise contaminant detection in the milk industry by enabling precise detection of contaminants such as Bisphenol A, melamine, bacteria, drugs, antibiotics, toxins, heavy metals, and allergens, thus ensuring food safety and quality. Emerging trends, including the integration of artificial intelligence, advanced gene editing, and multifunctional chitosan, are discussed, offering insights into future personalized delivery systems and merging food and drug technologies. The review concludes by highlighting gaps in current research and offering recommendations for future exploration. These suggestions aim to optimize chitosan's unique properties to address key challenges in the milk industry. This article serves as a valuable resource for researchers, industry professionals, and policymakers aiming to innovate within the dairy sector using chitosan-based technologies.
Collapse
Affiliation(s)
- Hossein Hasannezhad
- Biomaterials and Tissue Engineering Research Group, Interdisciplinary Technologies Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran; Department of Food Science and Technology, Faculty of Agriculture and Food Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ali Bakhshi
- Biomaterials and Tissue Engineering Research Group, Interdisciplinary Technologies Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran; Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran.
| |
Collapse
|
2
|
Huang J, Zhang M, Huang X, Li H, Han J, Zhao S, Bedair Mohamed Ahmed M, Sun X, Guo Y. Stable detection of diazinon residues in vegetables by an electrochemiluminescent aptasensor based on the in-situ production of H 2O 2 from dual-catalytic glucose. Talanta 2024; 277:126443. [PMID: 38897007 DOI: 10.1016/j.talanta.2024.126443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
Stable detection of diazinon (DZN) residues in vegetables is important for food safety. In this work, an electrochemiluminescence (ECL) aptasensor with dual-catalytic glucose in-situ production of H2O2 was constructed for the stable detection of DZN in vegetables. Firstly, MWCNTs@MB was prepared using π-π stacking interactions between methylene blue (MB) and multi-walled carbon nanotubes (MWCNTs) to enhance the loading of MB on an electrode and thus catalyze the generation of H2O2 from glucose. Secondly, Cu2O@AuNPs was formed by loading AuNPs on the surface of Cu2O through spontaneous reduction reaction, which improved the interfacial charge transfer, Cu2O nano-enzyme had glucose oxidase mimicking activity and could further catalyze the production of more H2O2 from glucose. MWCNTs@MB and Cu2O@AuNPs played a key role in the in-situ generation of co-reacting reagent H2O2, which solved the problem of unstable detection caused by the easy decomposition of the H2O2 solution added to the luminescence system. In addition, the aptamer was immobilized on the electrode surface by forming Au-S bonds with Cu2O@AuNPs. As a result, the ECL aptasensor performed good linearity in 1.00 pg mL-1-1.00 μg mL-1 and a low limit of detection (LOD) to 0.39 pg mL-1 (S/N = 3). This work provided an effective method for the accurate and stable detection of DZN residues in vegetables, which was of great significance in ensuring food safety and assessing the environmental risk of DZN.
Collapse
Affiliation(s)
- Jingcheng Huang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, 255049, China
| | - Mei Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, 255049, China
| | - Xue Huang
- Binzhou Polytechnic, Binzhou, Shandong, 256603, China
| | - He Li
- Binzhou Polytechnic, Binzhou, Shandong, 256603, China
| | - Jie Han
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, 255049, China
| | - Shancang Zhao
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, Shandong, 250100, China
| | - Mohamed Bedair Mohamed Ahmed
- Food Toxicology and Contaminants Dept., Institute of Food Industries and Nutrition, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, 255049, China.
| | - Yemin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, 255049, China.
| |
Collapse
|
3
|
Sun R, Xiong S, Zhang W, Huang Y, Zheng J, Shao J, Chi Y. Highly Active Coreactant-Capped and Water-Stable 3D@2D Core-Shell Perovskite Quantum Dots as a Novel and Strong Self-Enhanced Electrochemiluminescence Probe. Anal Chem 2024; 96:5711-5718. [PMID: 38551104 DOI: 10.1021/acs.analchem.4c00951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Self-enhanced electrochemiluminescence (ECL) probes have attracted more and more attention in analytical chemistry for their significant simplification of the ECL sensing operation while improving the ECL sensing sensitivity. However, the development and applications of self-enhanced ECL probes are still in their infancy and mainly suffer from the requirement of a complicated synthesis strategy and relatively low self-enhanced ECL activity. In this work, we took advantage of the recently emerged perovskite quantum dots (PQDs) with high optical quantum yields and easy surface engineering to develop a new type of PQD-based self-enhanced ECL system. The long alkyl chain (C18) diethanolamine (i.e., N-octadecyldiethanolamine (ODA)) with high ECL coreactant activity was selected as a capping ligand to synthesize an ODA-capped PQD self-enhanced ECL probe. The preparation of the coreactant-capped PQDs is as simple as for the ordinary oleylamine (OAm)-capped PQDs, and the obtained ODA-capped PQDs exhibit very strong self-enhanced ECL activity, 82.5 times higher than that of traditional OAm-capped PQDs. Furthermore, the prepared ODA-PQDs have a unique nanostructure (ODA-CsPbBr3@CsPb2Br5), with the highly emissive 3D CsPbBr3 PQD as the core and the water-stable 2D CsPb2Br5 as the shell, which allows ODA-PQDs to be very stable in aqueous media. It is envisioned that the prepared ODA-3D@2D PQDs with the easy preparation method, strong self-enhanced ECL, and excellent water stability have promising applications in ECL sensing.
Collapse
Affiliation(s)
- Ruifen Sun
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Shuyun Xiong
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Weiwei Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yun Huang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jingcheng Zheng
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jiwei Shao
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yuwu Chi
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| |
Collapse
|
4
|
Bai Y, Jing Z, Ma R, Wan X, Liu J, Huang W. A critical review of enzymes immobilized on chitosan composites: characterization and applications. Bioprocess Biosyst Eng 2023; 46:1539-1567. [PMID: 37540309 DOI: 10.1007/s00449-023-02914-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 07/21/2023] [Indexed: 08/05/2023]
Abstract
Enzymes with industrial significance are typically used in biological processes. However, instability, high sensitivity, and impractical recovery are the major drawbacks of enzymes in practical applications. In recent years, the immobilization technology has attracted wide attention to overcoming these restrictions and improving the efficiency of enzyme applications. Chitosan (CS) is a unique functional substance with biocompatibility, biodegradability, non-toxicity, and antibacterial properties. Chitosan composites are anticipated to be widely used in the near future for a variety of purposes, including as supports for enzyme immobilization, because of their advantages. Therefor this review explores the effects of the chitosan's structure, molecular weight, degree of deacetylation on the enzyme immobilized, effect of key factors, and the enzymes immobilized on chitosan based composites for numerous applications, including the fields of biosensor, biomedical science, food industry, environmental protection, and industrial production. Moreover, this study carefully investigates the advantages and disadvantages of using these composites as well as their potential in the future.
Collapse
Affiliation(s)
- Yuan Bai
- School of Environment and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, People's Republic of China.
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, People's Republic of China.
| | - Zongxian Jing
- School of Environment and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, People's Republic of China
| | - Rui Ma
- School of Environment and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, People's Republic of China
| | - Xinwen Wan
- School of Environment and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, People's Republic of China
| | - Jie Liu
- School of Environment and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, People's Republic of China
| | - Weiting Huang
- School of Environment and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, People's Republic of China
| |
Collapse
|
5
|
Aslam J, Zehra S, Mobin M, Quraishi MA, Verma C, Aslam R. Metal/metal oxide-carbohydrate polymers framework for industrial and biological applications: Current advancements and future directions. Carbohydr Polym 2023; 314:120936. [PMID: 37173012 DOI: 10.1016/j.carbpol.2023.120936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/09/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023]
Abstract
Recently, the development and consumption of metal/metal oxide carbohydrate polymer nanocomposites (M/MOCPNs) are withdrawing significant attention because of their numerous salient features. Metal/metal oxide carbohydrate polymer nanocomposites are being used as environmentally friendly alternatives for traditional metal/metal oxide carbohydrate polymer nanocomposites exhibit variable properties that make them excellent prospects for a variety of biological and industrial uses. In metal/metal oxide carbohydrate polymer nanocomposites, carbohydrate polymers bind with metallic atoms and ions using coordination bonding in which heteroatoms of polar functional groups behave as adsorption centers. Metal/metal oxide carbohydrate polymer nanocomposites are widely used in woundhealing, additional biological uses and drug delivery, heavy ions removal or metal decontamination, and dye removal. The present review article features the collection of some major biological and industrial applications of metal/metal oxide carbohydrate polymer nanocomposites. The binding affinity of carbohydrate polymers with metal atoms and ions in metal/metal oxide carbohydrate polymer nanocomposites has also been described.
Collapse
Affiliation(s)
- Jeenat Aslam
- Department of Chemistry, College of Science, Taibah University, Yanbu 30799, Al-Madina, Saudi Arabia.
| | - Saman Zehra
- Corrosion Research Laboratory, Department of Applied Chemistry, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Mobin
- Corrosion Research Laboratory, Department of Applied Chemistry, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh 202002, India
| | - M A Quraishi
- Interdisciplinary Research Centre for Advanced Materials, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Chandrabhan Verma
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 2533, Abu Dhabi, United Arab Emirates.
| | - Ruby Aslam
- Corrosion Research Laboratory, Department of Applied Chemistry, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
6
|
Leong MY, Kong YL, Burgess K, Wong WF, Sethi G, Looi CY. Recent Development of Nanomaterials for Transdermal Drug Delivery. Biomedicines 2023; 11:biomedicines11041124. [PMID: 37189742 DOI: 10.3390/biomedicines11041124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 05/17/2023] Open
Abstract
Nano-engineered medical products first appeared in the last decade. The current research in this area focuses on developing safe drugs with minimal adverse effects associated with the pharmacologically active cargo. Transdermal drug delivery, an alternative to oral administration, offers patient convenience, avoids first-pass hepatic metabolism, provides local targeting, and reduces effective drug toxicities. Nanomaterials provide alternatives to conventional transdermal drug delivery including patches, gels, sprays, and lotions, but it is crucial to understand the transport mechanisms involved. This article reviews the recent research trends in transdermal drug delivery and emphasizes the mechanisms and nano-formulations currently in vogue.
Collapse
Affiliation(s)
- Moong Yan Leong
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, Subang Jaya, Selangor Darul Ehsan 47500, Malaysia
| | - Yeo Lee Kong
- Department of Engineering and Applied Science, America Degree Program, Taylor's University Lakeside Campus, Subang Jaya, Selangor Darul Ehsan 47500, Malaysia
| | - Kevin Burgess
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, TX 77842, USA
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Chung Yeng Looi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, Subang Jaya, Selangor Darul Ehsan 47500, Malaysia
| |
Collapse
|
7
|
Gan J, Ashraf SS, Bilal M, Iqbal HMN. Biodegradation of environmental pollutants using catalase-based biocatalytic systems. ENVIRONMENTAL RESEARCH 2022; 214:113914. [PMID: 35932834 DOI: 10.1016/j.envres.2022.113914] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
The synergistic combination of biocatalysts and nanomaterials provides a new interface of a robust biocatalytic system that can effectively remediate environmental pollutants. Enzymes, such as catalase-based constructs, impart the desired candidature for catalytic transformation processes and are potential alternatives to replace conventional remediation strategies that have become laborious and somewhat inefficient. Furthermore, the controlled or uncontrolled discharge of various emerging pollutants (EPs) into water bodies is equally proportional to the fast-growing population and extensive urbanization. EPs affect the entire living being and continuously deteriorate the environmental system, directly or indirectly. The occurrence of EPs (even released after partial treatments, but still in bioactive forms) disturbs ecological integrity. Due to the ineffectiveness of in-practice traditional remediation processes, new and robust treatment measures as effective and sustainable remediation have become a meaningful goal. In this context, special attention has been shifted to engineering an enzyme (catalase)-based biodegradation system with immense prospects in environmental cleanup. The unique synergistic combination of nanomaterials (having multifunctional attributes) with enzymes of interest makes them a state-of-the-art interface that can further ameliorate bio-catalysis and biodegradation performance. This review covers current research and scientific advancement in developing and deploying catalase-based biocatalytic systems to mitigate several EPs from the environment matrices. The biocatalytic features of catalase, along with the mechanistic insight into H2O2 neutralization, several nano-based materials loaded with catalase, including nanoparticles (NPs), carbon nanotubes (CNTs), metal-organic frameworks (MOFs), polymeric-based composites, oxime-functionalized cryo-gel disks, electro-spun nanofibrous membranes, and other hybrid materials have also been discussed with suitable examples.
Collapse
Affiliation(s)
- JianSong Gan
- School of Food and Drug, Jiangsu Vocational College of Finance & Economics, Huaian, 223003, China.
| | - Syed Salman Ashraf
- Department of Biology, College of Arts and Sciences, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Center for Biotechnology (BTC), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Center for Catalysis and Separation (CeCas), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
8
|
Rational design of effective solid-state electrochemiluminescence platform of Gold@Polyluminol nanocomposite as an ultrasensitive immuno-probe for selective detection of prostate specific antigen. Anal Chim Acta 2022; 1206:339736. [PMID: 35473865 DOI: 10.1016/j.aca.2022.339736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/08/2022] [Accepted: 03/15/2022] [Indexed: 11/24/2022]
Abstract
An electrodeposited gold@poly-luminol nanocomposite on glassy carbon electrode (Au@PL-NC/GCE) has been developed and demonstrated as solid-state electrochemiluminescence (ECL) immunosensor platform for prostate specific antigen (PSA) sensing. In-situ electro-generated reactive oxygen species (ROS) from oxygen reduction reaction in oxygen saturated PBS (pH 7.4) acts as sole co-reactant augmenting the signal transduction. Protein-G bio-affinity layer interfaced with Au@PL-NC/GCE (Protein-G/Au@PL-NC/GCE) to support the effective localization of Fc region of the monoclonal antibodies of PSA (mAb-PSA). As-developed ECL probe exhibit selective recognition of target analyte, PSA, enabling wide linearity of 1 fg mL-1 to 10 μg mL-1 with a calculated limit of detection (LOD) and limit of quantification (LOQ) of 0.45 fg mL-1 and 1.37 fg mL-1, respectively. The selectivity and specificity of the ECL probe was tested using human serum albumin, immunoglobulin G and mixtures of the same with target analyte. Fabricated ECL probe not only exhibit high sensitivity and specificity against commercial PSA samples but also enable clinical detection in real human serum and urine samples with acceptable recovery range from 97% to 103%. Our results suggest that the fabricated reagent-less solid-state ECL platform holds promising application in the field of prostate oncological screening and its point-of-care applications.
Collapse
|
9
|
Kamyabi MA, Moharramnezhad M, Hajari N. Facile microwave route for the synthesis of CuS/CQDs/g-C3N4NS as a novel promising cathodic electrochemiluminescence detection of imidacloprid. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05161-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Wen J, Jiang D, Shan X, Wang W, Xu F, Shiigi H, Chen Z. Ternary electrochemiluminescence biosensor based on black phosphorus quantum dots doped perylene derivative and metal organic frameworks as a coreaction accelerator for the detection of chloramphenicol. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106927] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Pashaei B, Shahroosvand H, Moharramnezhad M, Kamyabi MA, Bakhshi H, Pilkington M, Nazeeruddin MK. Two in One: A Dinuclear Ru(II) Complex for Deep-Red Light-Emitting Electrochemical Cells and as an Electrochemiluminescence Probe for Organophosphorus Pesticides. Inorg Chem 2021; 60:17040-17050. [PMID: 34730947 DOI: 10.1021/acs.inorgchem.1c02154] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The emissive properties of two Ru(II) complexes, [Ru(dmbipy)2L1][PF6]2 (1) and [Ru2(dmbipy)4L2][PF6]4 (2), (where L1 and L2 are π-extended phenanthroline-based ligands and dmbipy = 4,4'-dimethyl-2,2'-bipyridine) have been explored for dual applications, namely, deep-red light-emitting electrochemical cells (LECs) and electrochemiluminescence (ECL) sensors for the detection of organophosphorus pesticides (OPs) that include chlorpyrifos (CPS). A simple single-layer deep-red LEC device comprising 2 is reported that outperforms both its mononuclear derivative 1 and all previously reported dinuclear LECs, with a maximum brightness of 524 cd/m2, an external quantum efficiency of 0.62%, and a turn-on voltage of 3.2 V. Optoelectronic studies reveal that the ECL response of 2 is improved when compared to its mononuclear counterpart 1 and benchmark [Ru(bipy)3]2+ (3). Modified glassy carbon electrodes coated with 2 are highly sensitive deep-red ECL sensors that facilitate the detection of CPS directly from river water and fruit samples without any complex pretreatment steps, operating over a broad logarithmic concentration range, with a low detection limit.
Collapse
Affiliation(s)
- Babak Pashaei
- Group for Molecular Engineering of Advanced Functional Materials (GMA), Department of Chemistry, University of Zanjan, 45371-38791 Zanjan, Iran
| | - Hashem Shahroosvand
- Group for Molecular Engineering of Advanced Functional Materials (GMA), Department of Chemistry, University of Zanjan, 45371-38791 Zanjan, Iran
| | - Mohsen Moharramnezhad
- Laboratory for Analytical Chemistry, Department of Chemistry, University of Zanjan, 45371-38791 Zanjan, Iran
| | - Mohammad Ali Kamyabi
- Laboratory for Analytical Chemistry, Department of Chemistry, University of Zanjan, 45371-38791 Zanjan, Iran
| | - Hamed Bakhshi
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario L2S3A1, Canada
| | - Melanie Pilkington
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario L2S3A1, Canada
| | - Mohammad Khaja Nazeeruddin
- Group for Molecular Engineering of Functional Materials, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1951 Sion, Switzerland
| |
Collapse
|
12
|
Vinita, Nirala NR, Prakash R. Facile and selective colorimetric assay of choline based on AuNPs-WS2QDs as a peroxidase mimic. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Ye J, Ren G, Wang C, Hu A, Li F, Zhou S, He Z. A facile and fast strategy for cathodic electroactive-biofilm assembly via magnetic nanoparticle bioconjugation. Biosens Bioelectron 2021; 190:113464. [PMID: 34197998 DOI: 10.1016/j.bios.2021.113464] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/19/2021] [Accepted: 06/22/2021] [Indexed: 02/04/2023]
Abstract
Microbial electrosynthesis is a promising electricity-driven technology for converting carbon dioxide into value-added compounds, but the formation of cathodic electroactive-biofilms (CEBs) is challenging. Herein, we have demonstrated an innovative strategy for CEBs assembly via magnetic nanoparticle bioconjugation, which lies in the synergistic interactions among a bonder (Streptavidin, SA), conductive nanomaterials (Fe3O4), and a methanogen (M. barkeri). The results showed that the bioconjugated M. barkeri-SA-Fe3O4 biohybrids significantly enhanced both methane yield (33.2-fold) and faradaic efficiency (5.6-fold), compared with that of bare M. barkeri. Such an enhancement was attributed to the improved viability of CEBs with a higher biomass density. Particularly, more live cells were presented in the inner biofilms and promoted the long-distance electron exchange between the live outer-layer biofilm and the cathode electrode. Meanwhile, the higher redox activity of CEBs with the M. barkeri-SA-Fe3O4 biohybrids resulted in an improved transient charge storage capability, which was beneficial for the biological CO2-to-CH4 conversion via acting as an additional electron donor. This work has provided a new approach to accelerate the formation of CEBs and subsequent electron transfer, which holds a great potential for accomplishing electrosynthesis and CO2 fixation.
Collapse
Affiliation(s)
- Jie Ye
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Guoping Ren
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chao Wang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Andong Hu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Fengqi Li
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Zhen He
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
14
|
Wen J, Jiang D, Shan X, Wang W, Xu F, Chen Z. A novel electrochemiluminescence aptasensor for sensitive detection of kanamycin based on the synergistic enhancement effects between black phosphorus quantum dots and silver-decorated high-luminescence polydopamine nanospheres. Analyst 2021; 146:3493-3499. [PMID: 33960345 DOI: 10.1039/d1an00265a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Black phosphorus quantum dots (BPQDs), as a new type of nanomaterial, have excellent electrical and optical properties. In this work, an efficient monitoring method for kanamycin (KAN) was developed based on a sensitive and selective electrochemiluminescence (ECL) aptasensor. The construction of the ECL illuminant was based on BPQDs loaded on silver-nanoparticle modified high-luminescence polydopamine nanospheres (HLPNs@Ag). HLPNs possessed a large specific surface area and strong adhesion, which could support a great deal of BPQDs. Meanwhile, Ag NPs could accelerate the electron-transfer (ET) rate of the sensor and amplify the ECL signal of the BPQDs. Based on the synergistic enhancement effects between the above materials, the as-fabricated nanocomposites exhibited superior ECL performance. With the assistance of a KAN aptamer, the sensor can detect KAN sensitively and selectively. Under optimal conditions, the aptasensor could detect KAN in a wide linear range from 1 × 10-12 to 1.0 × 10-7 M with a detection limit of 1.7 × 10-13 M (S/N = 3). More importantly, this ultra-sensitive and rapid ECL aptasensor-based KAN detection system provided excellent applicability for the monitoring of environmental safety.
Collapse
Affiliation(s)
- Jing Wen
- Jiangsu key Laboratory of advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 21364, China.
| | - Ding Jiang
- Jiangsu key Laboratory of advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 21364, China. and Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Xueling Shan
- Jiangsu key Laboratory of advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 21364, China. and Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Wenchang Wang
- Jiangsu key Laboratory of advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 21364, China. and Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Fangmin Xu
- Jiangsu key Laboratory of advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 21364, China. and Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Zhidong Chen
- Jiangsu key Laboratory of advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 21364, China. and Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| |
Collapse
|
15
|
Ghosh T, Singh R, Nesamma AA, Jutur PP. Marine Polysaccharides: Properties and Applications. POLYSACCHARIDES 2021. [DOI: 10.1002/9781119711414.ch3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
16
|
DNA/Au-Pt bimetallic nanoparticles/graphene oxide-chitosan composites modified pencil graphite electrode used as an electrochemical biosensor for sub-picomolar detection of anti-HIV drug zidovudine. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
17
|
Díez-Buitrago B, Saa L, Briz N, Pavlov V. Development of portable CdS QDs screen-printed carbon electrode platform for electrochemiluminescence measurements and bioanalytical applications. Talanta 2021; 225:122029. [PMID: 33592758 DOI: 10.1016/j.talanta.2020.122029] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 12/31/2022]
Abstract
In this work, a portable and disposable screen-printed electrode-based platform for CdS QDs electrochemiluminescence (ECL) detection is presented. CdS QDs were synthesized in aqueous media and placed on top of carbon electrodes by drop casting. The CdS QDs spherical assemblies consisted of nanoparticles about 4 nm diameters and served as ECL sensitizers to enzymatic assays. The nanoparticles were characterized by optical techniques, TEM and XPS. Besides, the electrode modification process was optimized and further studied by SEM and confocal microscopy. The ECL emission from CdS QDs was triggered with H2O2 as cofactor and enzymatic assays were employed to modulate the CdS QDs ECL signal by blocking the surface or generating H2O2 in situ. Thiol-bearing compounds such as thiocholine generated through the hydrolysis of acetylthiocholine by acetylcholinesterase (AChE) interacted with the surface of CdS QDs thus blocking the ECL. The biosensor showed a linear range up to 5 mU mL-1 and a detection limit of 0.73 mU mL-1 for AChE. Moreover, the inhibition mechanism of the enzyme was studied by using 1,5-bis-(4-allyldimethylammonium-phenyl)pentan-3-one dibromide with a detection limit of 79.22 nM. Furthermore, the natural production of H2O2 from the oxidation of methanol by the action of alcohol oxidase was utilized to carry out the ECL process. This enzymatic assay presented a linear range up to 0.5 mg L-1 and a detection limit of 61.46 μg L-1 for methanol. The reported methodology shows potential applications for the development of sensitive and easy to hand biosensors and was applied to the determination of AChE and methanol in real samples.
Collapse
Affiliation(s)
- Beatriz Díez-Buitrago
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014, Donostia San Sebastián, Spain; Tecnalia, Basque Research and Technology Alliance (BRTA), Paseo Mikeletegi 2, 20009, Donostia-San Sebastián, Spain
| | - Laura Saa
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014, Donostia San Sebastián, Spain
| | - Nerea Briz
- Tecnalia, Basque Research and Technology Alliance (BRTA), Paseo Mikeletegi 2, 20009, Donostia-San Sebastián, Spain
| | - Valeri Pavlov
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014, Donostia San Sebastián, Spain.
| |
Collapse
|
18
|
Zhou L, Jiang D, Wang Y, Li H, Shan X, Wang W, Chen Z. A highly-enhanced electrochemiluminescence luminophore generated by a metal-organic framework-linked perylene derivative and its application for ractopamine assay. Analyst 2021; 146:2029-2036. [PMID: 33528465 DOI: 10.1039/d0an02186e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, a sensitive and effective monitoring method for ractopamine (RAC) was developed based on a sensitive electrochemiluminescence (ECL) aptasensor. Here, we employed a perylene derivative (PTC-PEI) with a Cu-based metal-organic framework (HKUST-1), which could accelerate the electron-transfer (ET) rate and strengthen interactions by the amido bond, resulting in enhanced ECL sensitivity and stability. Astonishingly, compared with the response of PTC-PEI and complex, the ECL signal of the MOF-based ECL material was noticeably raised by 6 times higher than that of PTC-PEI. HKUST-1 exhibited an excellent catalytic effect towards the electrochemical reduction process of S2O82-, thus allowing more sulfate radical anions (SO4˙-) to be generated. The strong ECL intensity of HKUST-1/PTC-PEI not only stemmed from the fixation of PTC-PEI that utilized its excellent film-forming abilities but also originated from the high porosity of HKUST-1 that carried more luminophores able to be excited. Satisfyingly, in the presence of the target molecule RAC, we observed an obvious quenching effect of signal, which could be attributed to aptamer recognition resulting in RAC being specifically captured on the electrode. Under optimal conditions, the developed sensor for the RAC assay displayed a desired linear range of 1.0 × 10-12-1.0 × 10-6 M and a low detection limit of 6.17 × 10-13 M (S/N = 3). This ECL sensor showed high sensitivity, good stability and excellent selectivity. More importantly, the proposed aptasensor exhibited excellent determination towards RAC detection and potential practical utility for real samples.
Collapse
Affiliation(s)
- Lijun Zhou
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 21364, China.
| | | | | | | | | | | | | |
Collapse
|
19
|
Nagraik R, Sharma A, Kumar D, Mukherjee S, Sen F, Kumar AP. Amalgamation of biosensors and nanotechnology in disease diagnosis: Mini-review. SENSORS INTERNATIONAL 2021. [DOI: 10.1016/j.sintl.2021.100089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
20
|
Ouiram T, Moonla C, Preechaworapun A, Muangpil S, Maneeprakorn W, Tangkuaram T. Choline Oxidase Based Composite ZrO
2
@AuNPs with Cu
2
O@MnO
2
Platform for Signal Enhancing the Choline Biosensors. ELECTROANAL 2020. [DOI: 10.1002/elan.202060340] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Tik Ouiram
- Applied Chemistry Program Faculty of Science Maejo University Chiang Mai 50290 Thailand
- National Nanotechnology Center (NANOTEC) National Science and Technology Development Agency (NSTDA) Pathumthani 12120 Thailand
| | - Chochanon Moonla
- Applied Chemistry Program Faculty of Science Maejo University Chiang Mai 50290 Thailand
| | - Anchana Preechaworapun
- Chemistry Program Faculty of Science and Technology Pibulsongkram Rajabhat University Phitsanulok 65000 Thailand
| | - Sairoong Muangpil
- Chemistry Program Faculty of Science Maejo University Chiang Mai 50290 Thailand
| | - Weerakanya Maneeprakorn
- National Nanotechnology Center (NANOTEC) National Science and Technology Development Agency (NSTDA) Pathumthani 12120 Thailand
| | - Tanin Tangkuaram
- Applied Chemistry Program Faculty of Science Maejo University Chiang Mai 50290 Thailand
- Chemistry Program Faculty of Science Maejo University Chiang Mai 50290 Thailand
| |
Collapse
|
21
|
Kaçar C. Disposable Bienzymatic Choline Biosensor Based on MnO
2
Nanoparticles Decorated Carbon Nanofibers and Poly(methylene green) Modified Screen Printed Carbon Electrode. ELECTROANAL 2020. [DOI: 10.1002/elan.202060010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ceren Kaçar
- Department of Chemistry Faculty of Science Ankara University Ankara TURKEY
| |
Collapse
|
22
|
Kamyabi MA, Alipour Z, Moharramnezhad M. Amplified cathodic electrochemiluminescence of luminol based on zinc oxide nanoparticle modified Ni-foam electrode for ultrasensitive detection of amoxicillin. J Solid State Electrochem 2020. [DOI: 10.1007/s10008-020-04820-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
23
|
Martínez-Periñán E, Gutiérrez-Sánchez C, García-Mendiola T, Lorenzo E. Electrochemiluminescence Biosensors Using Screen-Printed Electrodes. BIOSENSORS-BASEL 2020; 10:bios10090118. [PMID: 32916838 PMCID: PMC7559215 DOI: 10.3390/bios10090118] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 12/25/2022]
Abstract
Electrogenerated chemiluminescence (also called electrochemiluminescence (ECL)) has become a great focus of attention in different fields of analysis, mainly as a consequence of the potential remarkably high sensitivity and wide dynamic range. In the particular case of sensing applications, ECL biosensor unites the benefits of the high selectivity of biological recognition elements and the high sensitivity of ECL analysis methods. Hence, it is a powerful analytical device for sensitive detection of different analytes of interest in medical prognosis and diagnosis, food control and environment. These wide range of applications are increased by the introduction of screen-printed electrodes (SPEs). Disposable SPE-based biosensors cover the need to perform in-situ measurements with portable devices quickly and accurately. In this review, we sum up the latest biosensing applications and current progress on ECL bioanalysis combined with disposable SPEs in the field of bio affinity ECL sensors including immunosensors, DNA analysis and catalytic ECL sensors. Furthermore, the integration of nanomaterials with particular physical and chemical properties in the ECL biosensing systems has improved tremendously their sensitivity and overall performance, being one of the most appropriates research fields for the development of highly sensitive ECL biosensor devices.
Collapse
Affiliation(s)
- Emiliano Martínez-Periñán
- Departamento de Química Analítica y Análisis Instrumental Universidad Autónoma de Madrid, 28049 Madrid, Spain; (E.M.-P.); (C.G.-S.); (T.G.-M.)
| | - Cristina Gutiérrez-Sánchez
- Departamento de Química Analítica y Análisis Instrumental Universidad Autónoma de Madrid, 28049 Madrid, Spain; (E.M.-P.); (C.G.-S.); (T.G.-M.)
| | - Tania García-Mendiola
- Departamento de Química Analítica y Análisis Instrumental Universidad Autónoma de Madrid, 28049 Madrid, Spain; (E.M.-P.); (C.G.-S.); (T.G.-M.)
- Institute for Advanced Research in Chemical Sciences (IAdChem) Universidad Autónoma de Madrid, 28049 Madrid, Spain
- IMDEA-Nanociencia, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
| | - Encarnación Lorenzo
- Departamento de Química Analítica y Análisis Instrumental Universidad Autónoma de Madrid, 28049 Madrid, Spain; (E.M.-P.); (C.G.-S.); (T.G.-M.)
- Institute for Advanced Research in Chemical Sciences (IAdChem) Universidad Autónoma de Madrid, 28049 Madrid, Spain
- IMDEA-Nanociencia, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
- Correspondence: ; Tel.: +34-91-497-4488
| |
Collapse
|
24
|
Niu H, Yang X, Wang Y, Li M, Zhang G, Pan P, Qi Y, Yang Z, Wang J, Liao Z. Electrochemiluminescence Detection of Sunset Yellow by Graphene Quantum Dots. Front Chem 2020; 8:505. [PMID: 32714896 PMCID: PMC7344220 DOI: 10.3389/fchem.2020.00505] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 05/15/2020] [Indexed: 12/12/2022] Open
Abstract
Use of food additives, such as colorants and preservatives, is highly regulated because of their potential health risks to humans. Therefore, it is important to detect these compounds effectively to ensure conformance with industrial standards and to mitigate risk. In this paper, we describe the preparation and performance of an ultrasensitive electrochemiluminescence (ECL) sensor for detecting a key food additive, sunset yellow. The sensor uses graphene quantum dots (GQDs) as the luminescent agent and potassium persulfate as the co-reactant. Strong and sensitive ECL signals are generated in response to trace amounts of added sunset yellow. A detection limit (signal-to-noise ratio = 3) of 7.6 nM and a wide linear range from 2.5 nM to 25 μM are demonstrated. A further advantage of the method is that the luminescent reagents can be recycled, indicating that the method is sustainable, in addition to being simple and highly sensitive.
Collapse
Affiliation(s)
- Huimin Niu
- Tianjin Key Laboratory of Film Electronic and Communication Devices, Advanced Materials and Printed Electronics Center, School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin, China
| | - Xin Yang
- Tianjin Key Laboratory of Film Electronic and Communication Devices, Advanced Materials and Printed Electronics Center, School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin, China
| | - Yilei Wang
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Mingchen Li
- Tianjin Key Laboratory of Film Electronic and Communication Devices, Advanced Materials and Printed Electronics Center, School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin, China
| | - Guangliang Zhang
- Tianjin Key Laboratory of Film Electronic and Communication Devices, Advanced Materials and Printed Electronics Center, School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin, China
| | - Peng Pan
- Tianjin Key Laboratory of Film Electronic and Communication Devices, Advanced Materials and Printed Electronics Center, School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin, China
| | - Yangyang Qi
- Tianjin Key Laboratory of Film Electronic and Communication Devices, Advanced Materials and Printed Electronics Center, School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin, China
| | - Zhengchun Yang
- Tianjin Key Laboratory of Film Electronic and Communication Devices, Advanced Materials and Printed Electronics Center, School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin, China
| | - John Wang
- Department of Materials Science and Engineering, National University of Singapore, Singapore, Singapore
| | - Zhenyu Liao
- Pony Testing International Group, Tianjin, China
- Tianjin Food Safety Inspection Technology Institute, Tianjin, China
| |
Collapse
|
25
|
Shan X, Pan Y, Dai F, Chen X, Wang W, Chen Z. ZnO/CNT-COOHs based solid-state ECL sensor for tetracycline detection in fishpond water. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104708] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Electrochemiluminescence Analysis of Hydrogen Peroxide Using L012 Modified Electrodes. JOURNAL OF ANALYSIS AND TESTING 2020. [DOI: 10.1007/s41664-020-00134-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
27
|
Kamyabi MA, Moharramnezhad M. An ultra-sensitive electrochemiluminescence platform based on ZnONPs/Ni-foam and K2S2O8 for detection of chlorpyrifos. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114120] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
28
|
Nickel foam decorated with ZnO nanocrystals using mesoporous silica templates for ultrasensitive electrogenerated chemiluminescence determination of diazinon. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104540] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
29
|
Li J, Shan X, Jiang D, Chen Z. An ultrasensitive electrochemiluminescence aptasensor for the detection of diethylstilbestrol based on the enhancing mechanism of the metal-organic framework NH 2-MIL-125(Ti) in a 3,4,9,10-perylenetetracarboxylic acid/K 2S 2O 8 system. Analyst 2020; 145:3306-3312. [PMID: 32195485 DOI: 10.1039/d0an00212g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this work, a sensitive and selective electrochemiluminescent aptasensor was proposed based on the enhancing mechanism of the metal-organic framework NH2-MIL-125(Ti) in a 3,4,9,10-perylenetetracarboxylic acid/K2S2O8 system for a diethylstilbestrol assay. Herein, 3,4,9,10-perylenetetracarboxylic acid was selected as the major luminophore, and the metal-organic framework NH2-MIL-125(Ti) displayed a large specific surface area to immobilize abundant PTCA molecules to facilitate electrochemiluminescence efficiency. Besides, the metal-organic framework NH2-MIL-125(Ti) was used as a novel catalyst in the 3,4,9,10-perylenetetracarboxylic acid/K2S2O8 system, which could react with the co-reactant K2S2O8 to produce more SO4˙-. In addition, we introduced the amino-aptamer of diethylstilbestrol; due to the specific binding affinity between the aptamer and diethylstilbestrol, a selective electrochemiluminescent aptasensor for diethylstilbestrol was thus developed here. Under the optimal conditions, a wide detection range from 1.0 fM to 1.0 μM with a low detection limit of 0.28 fM (S/N = 3) was obtained. More importantly, the residual diethylstilbestrol in water was detected by the developed aptasensor; this confirmed that this method has good performance and potential applications in real samples.
Collapse
Affiliation(s)
- Jingxian Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | | | | | | |
Collapse
|
30
|
Hou F, Hu XB, Ma SH, Cao JT, Liu YM. Construction of electrochemiluminescence sensing platform with in situ generated coreactant strategy for sensitive detection of prostate specific antigen. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2019.113817] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
31
|
Kamyabi MA, Moharramnezhad M. Highly Sensitive Electrochemiluminescent Insecticide Sensor Based on ZnO Nanocrystals Anchored Nickel Foam for Determination of Imidacloprid in Real Samples. ELECTROANAL 2019. [DOI: 10.1002/elan.201900388] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Mohammad Ali Kamyabi
- Department of Chemistry, College of Science University of Zanjan P.O. BOX 19395-4697 Zanjan Iran
| | - Mohsen Moharramnezhad
- Department of Chemistry, College of Science University of Zanjan P.O. BOX 19395-4697 Zanjan Iran
| |
Collapse
|
32
|
Shan X, Shan X, Pan T, Dai F, Chen X, Wang W, Chen Z. A Solid-state Electrochemiluminescence Sensor for Detecting Glutathione with a Graphite-phase Carbon Nitride/Silica Modified Glassy Carbon Electrode. ANAL SCI 2019; 35:1299-1304. [PMID: 31308299 DOI: 10.2116/analsci.19p201] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A solid-state electrochemiluminescence (ECL) sensor for the detection of reduced glutathione (GSH) based on a g-C3N4/SiO2 modified glass carbon electrode (GCE) has been developed in this research. The g-C3N4, which is employed as a luminophore, is simply prepared and exhibits an excellent ECL response. Mesoporous silica hollow spheres (SiO2) with a large specific surface area are introduced here to increase the loading amount of g-C3N4. Compared to a g-C3N4 modified GCE, the g-C3N4/SiO2 modified GCE displays a much higher ECL intensity. A high enhancement effect on the ECL intensity of g-C3N4/SiO2 modified GCE is obtained in the presence of GSH in the electrolyte. Moreover, the enhanced ECL intensity shows a good linear relationship to the GSH concentration in the range from 1.0 × 10-7 to 5.0 × 10-4 M, with a detection limit of 2.0 × 10-8 M (6.1 ng/mL). Besides, the ECL sensor exhibits a good anti-interference ability and has been successfully applied in the detection of GSH in commercial samples. The proposed sensor provides a promising platform for life science.
Collapse
Affiliation(s)
- Xueling Shan
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University
| | - Xiaomeng Shan
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University
| | - Tao Pan
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University
| | - Fanzhuo Dai
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University
| | - Xiaohui Chen
- School of Chemistry and Material Engineering, Changzhou Vocational Institute of Engineering
| | - Wenchang Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University
| | - Zhidong Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University
| |
Collapse
|
33
|
Shan X, Pan T, Pan Y, Wang W, Chen X, Shan X, Chen Z. Highly Sensitive and Selective Detection of Pb(II) by NH
2
−SiO
2
/Ru(bpy)
3
2+
−UiO66 based Solid‐state ECL Sensor. ELECTROANAL 2019. [DOI: 10.1002/elan.201900424] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Xiaomeng Shan
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical EngineeringChangzhou University Changzhou 213164 China
| | - Tao Pan
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical EngineeringChangzhou University Changzhou 213164 China
| | - Yuting Pan
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical EngineeringChangzhou University Changzhou 213164 China
| | - Wenchang Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical EngineeringChangzhou University Changzhou 213164 China
- Advanced Catalysis and Green Manufacturing Collaborative Innovation CenterChangzhou University Changzhou 213164 China
| | - Xiaohui Chen
- School of Chemistry and Material EngineeringChangzhou Vocational Institute of Engineering Changzhou 213164 China
| | - Xueling Shan
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical EngineeringChangzhou University Changzhou 213164 China
- Advanced Catalysis and Green Manufacturing Collaborative Innovation CenterChangzhou University Changzhou 213164 China
| | - Zhidong Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical EngineeringChangzhou University Changzhou 213164 China
- Advanced Catalysis and Green Manufacturing Collaborative Innovation CenterChangzhou University Changzhou 213164 China
| |
Collapse
|
34
|
Cohen E, Merzendorfer H. Chitin/Chitosan: Versatile Ecological, Industrial, and Biomedical Applications. EXTRACELLULAR SUGAR-BASED BIOPOLYMERS MATRICES 2019; 12. [PMCID: PMC7115017 DOI: 10.1007/978-3-030-12919-4_14] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chitin is a linear polysaccharide of N-acetylglucosamine, which is highly abundant in nature and mainly produced by marine crustaceans. Chitosan is obtained by hydrolytic deacetylation. Both polysaccharides are renewable resources, simply and cost-effectively extracted from waste material of fish industry, mainly crab and shrimp shells. Research over the past five decades has revealed that chitosan, in particular, possesses unique and useful characteristics such as chemical versatility, polyelectrolyte properties, gel- and film-forming ability, high adsorption capacity, antimicrobial and antioxidative properties, low toxicity, and biocompatibility and biodegradability features. A plethora of chemical chitosan derivatives have been synthesized yielding improved materials with suggested or effective applications in water treatment, biosensor engineering, agriculture, food processing and storage, textile additives, cosmetics fabrication, and in veterinary and human medicine. The number of studies in this research field has exploded particularly during the last two decades. Here, we review recent advances in utilizing chitosan and chitosan derivatives in different technical, agricultural, and biomedical fields.
Collapse
Affiliation(s)
- Ephraim Cohen
- Department of Entomology, The Robert H. Smith Faculty of Agriculture Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Hans Merzendorfer
- School of Science and Technology, Institute of Biology – Molecular Biology, University of Siegen, Siegen, Germany
| |
Collapse
|
35
|
Shan X, Pan Y, Chen X, Wang W, Chen Z. A Sensitive Electrochemiluminescence Sensor for Brilliant Blue FCF Using Ru(bpy) 32+ Immobilized Zn-MOF. ANAL SCI 2019; 35:639-644. [PMID: 30745507 DOI: 10.2116/analsci.18p572] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A novel electrochemiluminescence (ECL) sensor for detection of brilliant blue FCF (BB) has been developed using Ru@Zn-MOF/nafion modified GCE (glass carbon electrode) in this research. Different from conventional method for usage of Ru(bpy)32+ in solution-phase, Ru(bpy)32+ here was immobilized on a zinc-metal-organic-framework (Zn-MOF). After adding BB, a significant quenching phenomenon of ECL intensity was observed. The behavior of BB on the quenching effect of Ru(bpy)32+/Zn-MOF in different conditions was investigated thoroughly and the detection limit was achieved to 2.5 × 10-8 M in an optimized condition. Furthermore, the interference of some conventional ions and amino acids to the detection of BB was also investigated. Additionally, the composite showed a good effect on the detection of BB in commercial samples. The proposed sensor provided a promising platform for food safety analysis, environmental monitoring and clinical testing.
Collapse
Affiliation(s)
- Xueling Shan
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University
| | - Yuting Pan
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University
| | - Xiaohui Chen
- School of Chemistry and Material Engineering, Changzhou Vocational Institute of Engineering
| | - Wenchang Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University
| | - Zhidong Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University
| |
Collapse
|
36
|
|
37
|
Cheng H, Hu C, Ji Z, Ma W, Wang H. A solid ionic Lactate biosensor using doped graphene-like membrane of Au-EVIMC-titania nanotubes-polyaniline. Biosens Bioelectron 2018; 118:97-101. [DOI: 10.1016/j.bios.2018.07.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 07/08/2018] [Accepted: 07/16/2018] [Indexed: 01/23/2023]
|
38
|
One-pot synthesis of popcorn-like Au@Polyluminol nanoflowers for sensitive solid-state electrochemiluminescent sensor. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.04.194] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
39
|
Chitosan: An undisputed bio-fabrication material for tissue engineering and bio-sensing applications. Int J Biol Macromol 2018; 110:110-123. [DOI: 10.1016/j.ijbiomac.2018.01.006] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 12/19/2017] [Accepted: 01/02/2018] [Indexed: 12/31/2022]
|
40
|
Wang Z, Qian Y, Wei X, Zhang Y, Wu G, Lu X. An “on-off” Electrochemiluminescence Biosensor Based on Molecularly Imprinted Polymer and Recycling Amplifications for Determination of Dopamine. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.08.076] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
41
|
Lou F, Lu Z, Hu F, Li CM. A 3D bio-platform constructed by glucose oxidase adsorbed on Au nanoparticles assembled polyaniline nanowires to sensitively detect glucose by electrochemiluminescence. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.01.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
42
|
Sallem F, Boudon J, Heintz O, Séverin I, Megriche A, Millot N. Synthesis and characterization of chitosan-coated titanate nanotubes: towards a new safe nanocarrier. Dalton Trans 2017; 46:15386-15398. [DOI: 10.1039/c7dt03029k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chitosan-coated titanate nanotubes as promising new nanocarriers: two different approaches, two different behaviors.
Collapse
Affiliation(s)
- Fadoua Sallem
- Université de Tunis El Manar
- Faculté des Sciences de Tunis
- UR11ES18 Chimie Minérale Appliquée
- Tunis
- Tunisia
| | - Julien Boudon
- Laboratoire Interdisciplinaire Carnot de Bourgogne
- UMR 6303 CNRS Université Bourgogne Franche-Comté
- 21078 Dijon
- France
| | - Olivier Heintz
- Laboratoire Interdisciplinaire Carnot de Bourgogne
- UMR 6303 CNRS Université Bourgogne Franche-Comté
- 21078 Dijon
- France
| | - Isabelle Séverin
- Université Bourgogne Franche Comté
- AgroSupDijon
- NUTox INSERM
- UMR 1231
- 21000 Dijon
| | - Adel Megriche
- Université de Tunis El Manar
- Faculté des Sciences de Tunis
- UR11ES18 Chimie Minérale Appliquée
- Tunis
- Tunisia
| | - Nadine Millot
- Laboratoire Interdisciplinaire Carnot de Bourgogne
- UMR 6303 CNRS Université Bourgogne Franche-Comté
- 21078 Dijon
- France
| |
Collapse
|
43
|
Zhao Q, Tang S, Fang C, Tu YF. Titania nanotubes decorated with gold nanoparticles for electrochemiluminescent biosensing of glycosylated hemoglobin. Anal Chim Acta 2016; 936:83-90. [DOI: 10.1016/j.aca.2016.07.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 07/01/2016] [Accepted: 07/11/2016] [Indexed: 01/04/2023]
|
44
|
Zhang J, Devaramani S, Shan D, Lu X. Electrochemiluminescence behavior of meso-tetra(4-sulfonatophenyl)porphyrin in aqueous medium: its application for highly selective sensing of nanomolar Cu2+. Anal Bioanal Chem 2016; 408:7155-63. [DOI: 10.1007/s00216-016-9655-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/06/2016] [Accepted: 05/18/2016] [Indexed: 12/29/2022]
|
45
|
Improved electrogenerated chemiluminescence of luminol by cobalt nanoparticles decorated multi-walled carbon nanotubes. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2015.12.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
46
|
Yu G, Zhao Q, Wu W, Wei X, Lu Q. A facile and practical biosensor for choline based on manganese dioxide nanoparticles synthesized in-situ at the surface of electrode by one-step electrodeposition. Talanta 2016; 146:707-13. [DOI: 10.1016/j.talanta.2015.06.037] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 05/09/2015] [Accepted: 06/13/2015] [Indexed: 11/24/2022]
|
47
|
Shukla SK, Shukla SK, Govender PP, Giri NG. Biodegradable polymeric nanostructures in therapeutic applications: opportunities and challenges. RSC Adv 2016. [DOI: 10.1039/c6ra15764e] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Biodegradable polymeric nanostructures (BPNs) have shown great promise in different therapeutic applications such as diagnosis, imaging, drug delivery, cosmetics, organ implants, and tissue engineering.
Collapse
Affiliation(s)
- S. K. Shukla
- Department of Polymer Science
- Bhaskaracharya College of Applied Sciences
- University of Delhi
- Delhi-110075
- India
| | - Sudheesh K. Shukla
- Department of Applied Chemistry
- University of Johannesburg
- Johannesburg
- South Africa
| | - Penny P. Govender
- Department of Applied Chemistry
- University of Johannesburg
- Johannesburg
- South Africa
| | - N. G. Giri
- Department of Chemistry
- Shivaji College
- University of Delhi
- New Delhi-110027
- India
| |
Collapse
|
48
|
Emerging Nanomaterials for Analytical Detection. BIOSENSORS FOR SUSTAINABLE FOOD - NEW OPPORTUNITIES AND TECHNICAL CHALLENGES 2016. [DOI: 10.1016/bs.coac.2016.03.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
49
|
The electrochemiluminescence of luminol on titania nanotubes functionalised indium tin oxide glass for flow injection analysis. Talanta 2015; 143:90-96. [DOI: 10.1016/j.talanta.2015.05.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 05/10/2015] [Accepted: 05/12/2015] [Indexed: 12/20/2022]
|
50
|
Multiple enhancement of luminol electrochemiluminescence using electrodes functionalized with titania nanotubes and platinum black: ultrasensitive determination of hydrogen peroxide, resveratrol, and dopamine. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1614-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|