1
|
Sveiven M, Serrano AK, Rosenberg J, Conrad DJ, Hall DA, O’Donoghue AJ. A GMR enzymatic assay for quantifying nuclease and peptidase activity. Front Bioeng Biotechnol 2024; 12:1363186. [PMID: 38544982 PMCID: PMC10966768 DOI: 10.3389/fbioe.2024.1363186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/01/2024] [Indexed: 04/17/2024] Open
Abstract
Hydrolytic enzymes play crucial roles in cellular processes, and dysregulation of their activities is implicated in various physiological and pathological conditions. These enzymes cleave substrates such as peptide bonds, phosphodiester bonds, glycosidic bonds, and other esters. Detecting aberrant hydrolase activity is vital for understanding disease mechanisms and developing targeted therapeutic interventions. This study introduces a novel approach to measuring hydrolase activity using giant magnetoresistive (GMR) spin valve sensors. These sensors change resistance in response to magnetic fields, and here, they are functionalized with specific substrates for hydrolases conjugated to magnetic nanoparticles (MNPs). When a hydrolase cleaves its substrate, the tethered magnetic nanoparticle detaches, causing a measurable shift in the sensor's resistance. This design translates hydrolase activity into a real-time, activity-dependent signal. The assay is simple, rapid, and requires no washing steps, making it ideal for point-of-care settings. Unlike fluorescent methods, it avoids issues like autofluorescence and photobleaching, broadening its applicability to diverse biofluids. Furthermore, the sensor array contains 80 individually addressable sensors, allowing for the simultaneous measurement of multiple hydrolases in a single reaction. The versatility of this method is demonstrated with substrates for nucleases, Bcu I and DNase I, and the peptidase, human neutrophil elastase. To demonstrate a clinical application, we show that neutrophil elastase in sputum from cystic fibrosis patients hydrolyze the peptide-GMR substrate, and the cleavage rate strongly correlates with a traditional fluorogenic substrate. This innovative assay addresses challenges associated with traditional enzyme measurement techniques, providing a promising tool for real-time quantification of hydrolase activities in diverse biological contexts.
Collapse
Affiliation(s)
- Michael Sveiven
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| | - Ana K. Serrano
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Joshua Rosenberg
- Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA, United States
| | - Douglas J. Conrad
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Drew A. Hall
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
- Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA, United States
| | - Anthony J. O’Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
2
|
Sveiven M, Gassman A, Rosenberg J, Chan M, Boniface J, O’Donoghue AJ, Laurent LC, Hall DA. A dual-binding magnetic immunoassay to predict spontaneous preterm birth. Front Bioeng Biotechnol 2023; 11:1256267. [PMID: 37790251 PMCID: PMC10542577 DOI: 10.3389/fbioe.2023.1256267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/25/2023] [Indexed: 10/05/2023] Open
Abstract
Complications posed by preterm birth (delivery before 37 weeks of pregnancy) are a leading cause of newborn morbidity and mortality. The previous discovery and validation of an algorithm that includes maternal serum protein biomarkers, sex hormone-binding globulin (SHBG), and insulin-like growth factor-binding protein 4 (IBP4), with clinical factors to predict preterm birth represents an opportunity for the development of a widely accessible point-of-care assay to guide clinical management. Toward this end, we developed SHBG and IBP4 quantification assays for maternal serum using giant magnetoresistive (GMR) sensors and a self-normalizing dual-binding magnetic immunoassay. The assays have a picomolar limit of detections (LOD) with a relatively broad dynamic range that covers the physiological level of the analytes as they change throughout gestation. Measurement of serum from pregnant donors using the GMR assays was highly concordant with those obtained using a clinical mass spectrometry (MS)-based assay for the same protein markers. The MS assay requires capitally intense equipment and highly trained operators with a few days turnaround time, whereas the GMR assays can be performed in minutes on small, inexpensive instruments with minimal personnel training and microfluidic automation. The potential for high sensitivity, accuracy, and speed of the GMR assays, along with low equipment and personnel requirements, make them good candidates for developing point-of-care tests. Rapid turnaround risk assessment for preterm birth would enable patient testing and counseling at the same clinic visit, thereby increasing the timeliness of recommended interventions.
Collapse
Affiliation(s)
- Michael Sveiven
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| | - Andrew Gassman
- Sera Prognostics, Inc., Salt Lake City, UT, United States
| | - Joshua Rosenberg
- Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA, United States
| | - Matthew Chan
- Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA, United States
| | - Jay Boniface
- Sera Prognostics, Inc., Salt Lake City, UT, United States
| | - Anthony J. O’Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Louise C. Laurent
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Drew A. Hall
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
- Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
3
|
Kim S, Wang SX, Lee JR. Real-time temperature correction for magnetoresistive biosensors integrated with temperature modulator. BIOSENSORS & BIOELECTRONICS: X 2023; 14:100356. [PMID: 37799506 PMCID: PMC10552591 DOI: 10.1016/j.biosx.2023.100356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Magnetoresistance-based biosensors utilize changes in electrical resistance upon varying magnetic fields to measure biological molecules or events involved with magnetic tags. However, electrical resistance fluctuates with temperature. To decouple unwanted temperature-dependent signals from the signal of interest, various methods have been proposed to correct signals from magnetoresistance-based biosensors. Yet, there is still a need for a temperature correction method capable of instantaneously correcting signals from all sensors in an array, as multiple biomarkers need to be detected simultaneously with a group of sensors in a central laboratory or point-of-care setting. Here we report a giant magnetoresistive biosensor system that enables real-time temperature correction for individual sensors using temperature correction coefficients obtained through a temperature sweep generated by an integrated temperature modulator. The algorithm with individual temperature correction coefficients obviously outperformed that using the average temperature correction coefficient. Further, temperature regulation did not eliminate temperature-dependent signals completely. To demonstrate that the method can be used in biomedical applications where large temperature variations are involved, binding kinetics experiments and melting curve analysis were conducted with the temperature correction method. The method successfully removed all temperature-dependent artifacts and thus produced more precise kinetic parameters and melting temperatures of DNA hybrids.
Collapse
Affiliation(s)
- Songeun Kim
- Division of Mechanical and Biomedical Engineering, Ewha Womans University, Seoul, 03760, South Korea
- Graduate Program in Smart Factory, Ewha Womans University, Seoul, 03760, South Korea
| | - Shan X. Wang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 93405, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, 93405, USA
| | - Jung-Rok Lee
- Division of Mechanical and Biomedical Engineering, Ewha Womans University, Seoul, 03760, South Korea
- Graduate Program in Smart Factory, Ewha Womans University, Seoul, 03760, South Korea
| |
Collapse
|
4
|
Kim S, Kim J, Im J, Kim M, Kim T, Wang SX, Kim D, Lee JR. Magnetic supercluster particles for highly sensitive magnetic biosensing of proteins. Mikrochim Acta 2022; 189:256. [PMID: 35697882 PMCID: PMC9192248 DOI: 10.1007/s00604-022-05354-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/30/2022] [Indexed: 11/26/2022]
Abstract
A strategy is reported to improve the detection limits of current giant magnetoresistance (GMR) biosensors by augmenting the effective magnetic moment that the magnetic tags on the biosensors can exert. Magnetic supercluster particles (MSPs), each of which consists of ~ 1000 superparamagnetic cores, are prepared by a wet-chemical technique and are utilized to improve the limit of detection of GMR biosensors down to 17.6 zmol for biotin as a target molecule. This value is more than four orders of magnitude lower than that of the conventional colorimetric assay performed using the same set of reagents except for the signal transducer. The applicability of MSPs in immunoassay is further demonstrated by simultaneously detecting vascular endothelial growth factor (VEGF) and C-reactive protein (CRP) in a duplex assay format. MSPs outperform commercially available magnetic nanoparticles in terms of signal intensity and detection limit.
Collapse
Affiliation(s)
- Songeun Kim
- Division of Mechanical and Biomedical Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
- Graduate Program in Smart Factory, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Junyoung Kim
- Department of Bionano Engineering and Bionanotechnology, Hanyang University, Ansan, 15588, Republic of Korea
- Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, 15588, Republic of Korea
| | - Jisoo Im
- Division of Mechanical and Biomedical Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
- Graduate Program in Smart Factory, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Minah Kim
- Department of Bionano Engineering and Bionanotechnology, Hanyang University, Ansan, 15588, Republic of Korea
- Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, 15588, Republic of Korea
| | - Taehyeong Kim
- Department of Bionano Engineering and Bionanotechnology, Hanyang University, Ansan, 15588, Republic of Korea
- Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, 15588, Republic of Korea
| | - Shan X Wang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Dokyoon Kim
- Department of Bionano Engineering and Bionanotechnology, Hanyang University, Ansan, 15588, Republic of Korea.
- Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, 15588, Republic of Korea.
| | - Jung-Rok Lee
- Division of Mechanical and Biomedical Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea.
- Graduate Program in Smart Factory, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
5
|
de Olazarra AS, Cortade DL, Wang SX. From saliva to SNP: non-invasive, point-of-care genotyping for precision medicine applications using recombinase polymerase amplification and giant magnetoresistive nanosensors. LAB ON A CHIP 2022; 22:2131-2144. [PMID: 35537344 PMCID: PMC9156572 DOI: 10.1039/d2lc00233g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Genetic testing is considered a cornerstone of the precision medicine paradigm. Genotyping of single nucleotide polymorphisms (SNPs) has been shown to provide insights into several important issues, including therapy selection and drug responsiveness. However, a scarcity of widely deployable and cost-effective genotyping tools has limited the integration of precision medicine into routine clinical practice. The objective of our work was to develop a portable, cost-effective, and automated platform that performs SNP genotyping at the point-of-care (POC). Using recombinase polymerase amplification (RPA) and giant magnetoresistive (GMR) nanosensors, we present a highly automated and multiplexed point-of-care platform that utilizes direct saliva for the qualitative genotyping of four SNPs (rs4633, rs4680, rs4818, rs6269) along the catechol-O-methyltransferase gene (COMT), which is associated with the modulation of pain sensitivity and perioperative opioid use. Using this approach, we successfully amplify, detect, and genotype all four of the SNPs, demonstrating 100% accordance between the experimental results obtained using the automated RPA and GMR genotyping assay and the results obtained using a COMT PCR genotyping assay that was formerly validated using pyrosequencing. This automated, portable, and multiplexed RPA and GMR assay shows great promise as a solution for SNP genotyping at the POC and reinforces the broad applications of magnetic nanotechnology in biomedicine.
Collapse
Affiliation(s)
| | - Dana Lee Cortade
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Shan X Wang
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA.
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
6
|
El-Sherif DM, Abouzid M, Gaballah MS, Ahmed AA, Adeel M, Sheta SM. New approach in SARS-CoV-2 surveillance using biosensor technology: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:1677-1695. [PMID: 34689274 PMCID: PMC8541810 DOI: 10.1007/s11356-021-17096-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/13/2021] [Indexed: 05/14/2023]
Abstract
Biosensors are analytical tools that transform the bio-signal into an observable response. Biosensors are effective for early detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection because they target viral antigens to assess clinical development and provide information on the severity and critical trends of infection. The biosensors are capable of being on-site, fast, and extremely sensitive to the target viral antigen, opening the door for early detection of SARS-CoV-2. They can screen individuals in hospitals, airports, and other crowded locations. Microfluidics and nanotechnology are promising cornerstones for the development of biosensor-based techniques. Recently, due to high selectivity, simplicity, low cost, and reliability, the production of biosensor instruments have attracted considerable interest. This review article precisely provides the extensive scientific advancement and intensive look of basic principles and implementation of biosensors in SARS-CoV-2 surveillance, especially for human health. In this review, the importance of biosensors including Optical, Electrochemical, Piezoelectric, Microfluidic, Paper-based biosensors, Immunosensors, and Nano-Biosensors in the detection of SARS-CoV-2 has been underscored. Smartphone biosensors and calorimetric strips that target antibodies or antigens should be developed immediately to combat the rapidly spreading SARS-CoV-2. Wearable biosensors can constantly monitor patients, which is a highly desired feature of biosensors. Finally, we summarized the literature, outlined new approaches and future directions in diagnosing SARS-CoV-2 by biosensor-based techniques.
Collapse
Affiliation(s)
- Dina M El-Sherif
- National Institute of Oceanography and Fisheries, NIOF, Cairo, Egypt.
| | - Mohamed Abouzid
- Department of Physical Pharmacy and Pharmacokinetics, Faculty of Pharmacy, Poznan University of Medical Sciences, 60-781, Poznan, Poland.
| | - Mohamed S Gaballah
- National Institute of Oceanography and Fisheries, NIOF, Cairo, Egypt
- College of Engineering, Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing, 100083, People's Republic of China
| | - Alhassan Ali Ahmed
- Department of Bioinformatics and Computational Biology, Poznan University of Medical Sciences, Poznan, Poland
| | - Muhammad Adeel
- BNU-HKUST Laboratory of Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University Zhuhai Subcampus, 18 Jinfeng Road, Tangjiawan, Zhuhai, Guangdong, China
| | - Sheta M Sheta
- Inorganic Chemistry Department, National Research Centre, 33 El-Behouth St., Dokki, Giza, 12622, Egypt
| |
Collapse
|
7
|
Abstract
Emerging research in biosensors has attracted much attention worldwide, particularly in response to the recent pandemic outbreak of coronavirus disease 2019 (COVID-19). Nevertheless, initiating research in biosensing applied to the diagnosis of diseases is still challenging for researchers, be it in the preferences of biosensor platforms, selection of biomarkers, detection strategies, or other aspects (e.g., cutoff values) to fulfill the clinical purpose. There are two sides to the development of a diagnostic tool: the biosensor development side and the clinical side. From the development side, the research engineers seek the typical characteristics of a biosensor: sensitivity, selectivity, linearity, stability, and reproducibility. On the other side are the physicians that expect a diagnostic tool that provides fast acquisition of patient information to obtain an early diagnosis or an efficient patient stratification, which consequently allows for making assertive and efficient clinical decisions. The development of diagnostic devices always involves assay developer researchers working as pivots to bridge both sides whose role is to find detection strategies suitable to the clinical needs by understanding (1) the intended use of the technology and its basic principle and (2) the preferable type of test: qualitative or quantitative, sample matrix challenges, biomarker(s) threshold (cutoff value), and if the system requires a mono- or multiplex assay format. This review highlights the challenges for the development of biosensors for clinical assessment and its broad application in multidisciplinary fields. This review paper highlights the following biosensor technologies: magnetoresistive (MR)-based, transistor-based, quartz crystal microbalance (QCM), and optical-based biosensors. Its working mechanisms are discussed with their pros and cons. The article also gives an overview of the most critical parameters that are optimized by developing a diagnostic tool.
Collapse
|
8
|
Magneto-Impedance Biosensor Sensitivity: Effect and Enhancement. SENSORS 2020; 20:s20185213. [PMID: 32932740 PMCID: PMC7570507 DOI: 10.3390/s20185213] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 01/04/2023]
Abstract
Biosensors based on magneto-impedance (MI) effect are powerful tools for biomedical applications as they are highly sensitive, stable, exhibit fast response, small in size, and have low hysteresis and power consumption. However, the performance of these biosensors is influenced by a variety of factors, including the design, geometry, materials and fabrication procedures. Other less appreciated factors influencing the MI effect include measuring circuit implementation, the material used for construction, geometry of the thin film sensing element, and patterning shapes compatible with the interface microelectronic circuitry. The type magnetic (ferrofluid, Dynabeads, and nanoparticles) and size of the particles, the magnetic particle concentration, magnetic field strength and stray magnetic fields can also affect the sensor sensitivity. Based on these considerations it is proposed that ideal MI biosensor sensitivity could be achieved when the sensor is constructed in sandwich thick magnetic layers with large sensing area in a meander shape, measured with circuitry that provides the lowest possible external inductance at high frequencies, enclosed by a protective layer between magnetic particles and sensing element, and perpendicularly magnetized when detecting high-concentration of magnetic particles.
Collapse
|
9
|
Bhalla N, Pan Y, Yang Z, Payam AF. Opportunities and Challenges for Biosensors and Nanoscale Analytical Tools for Pandemics: COVID-19. ACS NANO 2020; 14:7783-7807. [PMID: 32551559 PMCID: PMC7319134 DOI: 10.1021/acsnano.0c04421] [Citation(s) in RCA: 214] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 06/18/2020] [Indexed: 05/05/2023]
Abstract
Biosensors and nanoscale analytical tools have shown huge growth in literature in the past 20 years, with a large number of reports on the topic of 'ultrasensitive', 'cost-effective', and 'early detection' tools with a potential of 'mass-production' cited on the web of science. Yet none of these tools are commercially available in the market or practically viable for mass production and use in pandemic diseases such as coronavirus disease 2019 (COVID-19). In this context, we review the technological challenges and opportunities of current bio/chemical sensors and analytical tools by critically analyzing the bottlenecks which have hindered the implementation of advanced sensing technologies in pandemic diseases. We also describe in brief COVID-19 by comparing it with other pandemic strains such as that of severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) for the identification of features that enable biosensing. Moreover, we discuss visualization and characterization tools that can potentially be used not only for sensing applications but also to assist in speeding up the drug discovery and vaccine development process. Furthermore, we discuss the emerging monitoring mechanism, namely wastewater-based epidemiology, for early warning of the outbreak, focusing on sensors for rapid and on-site analysis of SARS-CoV2 in sewage. To conclude, we provide holistic insights into challenges associated with the quick translation of sensing technologies, policies, ethical issues, technology adoption, and an overall outlook of the role of the sensing technologies in pandemics.
Collapse
Affiliation(s)
- Nikhil Bhalla
- Nanotechnology
and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, Shore Road, BT37
0QB Jordanstown, Northern Ireland, United Kingdom
- Healthcare
Technology Hub, Ulster University, Shore Road, BT37 0QB Jordanstown, Northern
Ireland, United Kingdom
| | - Yuwei Pan
- Cranfield
Water Science Institute, Cranfield University, Cranfield, Bedfordshire MK43 0AL, United Kingdom
| | - Zhugen Yang
- Cranfield
Water Science Institute, Cranfield University, Cranfield, Bedfordshire MK43 0AL, United Kingdom
| | - Amir Farokh Payam
- Nanotechnology
and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, Shore Road, BT37
0QB Jordanstown, Northern Ireland, United Kingdom
- Healthcare
Technology Hub, Ulster University, Shore Road, BT37 0QB Jordanstown, Northern
Ireland, United Kingdom
| |
Collapse
|
10
|
Adem S, Jain S, Sveiven M, Zhou X, O'Donoghue AJ, Hall DA. Giant magnetoresistive biosensors for real-time quantitative detection of protease activity. Sci Rep 2020; 10:7941. [PMID: 32409675 PMCID: PMC7224196 DOI: 10.1038/s41598-020-62910-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/18/2020] [Indexed: 12/19/2022] Open
Abstract
Proteases are enzymes that cleave proteins and are crucial to physiological processes such as digestion, blood clotting, and wound healing. Unregulated protease activity is a biomarker of several human diseases. Synthetic peptides that are selectively hydrolyzed by a protease of interest can be used as reporter substrates of unregulated protease activity. We developed an activity-based protease sensor by immobilizing magnetic nanoparticles (MNPs) to the surface of a giant magnetoresistive spin-valve (GMR SV) sensor using peptides. Cleavage of these peptides by a protease releases the magnetic nanoparticles resulting in a time-dependent change in the local magnetic field. Using this approach, we detected a significant release of MNPs after 3.5 minutes incubation using just 4 nM of the cysteine protease, papain. In addition, we show that proteases in healthy human urine do not release the MNPs, however addition of 20 nM of papain to the urine samples resulted in a time-dependent change in magnetoresistance. This study lays the foundation for using GMR SV sensors as a platform for real-time, quantitative detection of protease activity in biological fluids.
Collapse
Affiliation(s)
- Sandeep Adem
- University of California - San Diego, Department of Bioengineering, La Jolla, CA, 92093, USA
| | - Sonal Jain
- University of California - San Diego, Department of Bioengineering, La Jolla, CA, 92093, USA
| | - Michael Sveiven
- University of California - San Diego, Department of Bioengineering, La Jolla, CA, 92093, USA
| | - Xiahan Zhou
- University of California - San Diego, Department of Electrical and Computer Engineering, La Jolla, CA, 92093, USA
| | - Anthony J O'Donoghue
- University of California - San Diego, Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, CA, 92093, USA.
| | - Drew A Hall
- University of California - San Diego, Department of Bioengineering, La Jolla, CA, 92093, USA.
- University of California - San Diego, Department of Electrical and Computer Engineering, La Jolla, CA, 92093, USA.
| |
Collapse
|
11
|
Zhou X, Sveiven M, Hall DA. A CMOS Magnetoresistive Sensor Front-End With Mismatch-Tolerance and Sub-ppm Sensitivity for Magnetic Immunoassays. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2019; 13:1254-1263. [PMID: 31670677 DOI: 10.1109/tbcas.2019.2949725] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Magnetic biosensing is an emerging technique for ultra-sensitive point-of-care (PoC) biomolecular detection. However, the large baseline-to-signal ratio and sensor-to-sensor mismatch in magnetoresistive (MR) biosensors severely complicates the design of the analog front-end (AFE) due to the high dynamic range (DR) required. The proposed AFE addresses these issues through new architectural and circuit level techniques including fast settling duty-cycle resistors (DCRs) to reduce readout time and a high frequency interference rejection (HFIR) sampling technique embedded in the ADC to relax the DR requirement. The AFE achieves an input-referred noise of 46.4 nT/√Hz, an input-referred baseline of less than 0.235 mT, and a readout time of 11 ms while consuming just 1.39 mW. Implemented in a 0.18 μm CMOS process, this work has state-of-the-art performance with 22.7× faster readout time, >7.8× lower baseline, and 2.3× lower power than previously reported MR sensor AFEs.
Collapse
|
12
|
Xu L, Lee JR, Hao S, Ling XB, Brooks JD, Wang SX, Gambhir SS. Improved detection of prostate cancer using a magneto-nanosensor assay for serum circulating autoantibodies. PLoS One 2019; 14:e0221051. [PMID: 31404106 PMCID: PMC6690541 DOI: 10.1371/journal.pone.0221051] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/29/2019] [Indexed: 12/22/2022] Open
Abstract
Purpose To develop a magneto-nanosensor (MNS) based multiplex assay to measure protein and autoantibody biomarkers from human serum for prostate cancer (CaP) diagnosis. Materials and methods A 4-panel MNS autoantibody assay and a MNS protein assay were developed and optimized in our labs. Using these assays, serum concentration of six biomarkers including prostate-specific antigen (PSA) protein, free/total PSA ratio, as well as four autoantibodies against Parkinson disease 7 (PARK7), TAR DNA-binding protein 43 (TARDBP), Talin 1 (TLN1), and Caldesmon 1 (CALD1) and were analyzed. Human serum samples from 99 patients (50 with non-cancer and 49 with clinically localized CaP) were evaluated. Results The MNS assay showed excellent performance characteristics and no cross-reactivity. All autoantibody assays showed a statistically significant difference between CaP and non-cancer samples except for PARK7. The most significant difference was the combination of the four autoantibodies as a panel in addition to the free/total PSA ratio. This combination had the highest area under the curve (AUC)– 0.916 in ROC analysis. Conclusions Our results suggest that this autoantibody panel along with PSA and free PSA have potential to segregate patients without cancer from those with prostate cancer with higher sensitivity and specificity than PSA alone.
Collapse
Affiliation(s)
- Lingyun Xu
- Department of Radiology, Molecular Imaging Program at Stanford, Bio-X Program, Stanford University School of Medicine, Stanford, California, United States of America
| | - Jung-Rok Lee
- Division of Mechanical and Biomedical Engineering, Ewha Womans University, Seoul, South Korea
| | - Shiying Hao
- Clinical and Translational Research Program, Betty Irene Moore Children's Heart Center, Lucile Packard Children’s Hospital, Palo Alto, California, United States of America
- Departments of Surgery, Stanford University, Stanford, California, United States of America
| | - Xuefeng Bruce Ling
- Clinical and Translational Research Program, Betty Irene Moore Children's Heart Center, Lucile Packard Children’s Hospital, Palo Alto, California, United States of America
- Departments of Surgery, Stanford University, Stanford, California, United States of America
| | - James D. Brooks
- Department of Urology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Shan X. Wang
- Department of Materials Science & Engineering, Stanford University, Stanford, California, United States of America
- Department of Electrical Engineering, Stanford University, Stanford, California, United States of America
- Department of Radiology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Sanjiv Sam Gambhir
- Department of Radiology, Molecular Imaging Program at Stanford, Bio-X Program, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Electrical Engineering, Stanford University, Stanford, California, United States of America
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
13
|
Kim K, Hall DA, Yao C, Lee JR, Ooi CC, Bechstein DJB, Guo Y, Wang SX. Magnetoresistive biosensors with on-chip pulsed excitation and magnetic correlated double sampling. Sci Rep 2018; 8:16493. [PMID: 30405155 PMCID: PMC6220270 DOI: 10.1038/s41598-018-34720-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/04/2018] [Indexed: 11/09/2022] Open
Abstract
Giant magnetoresistive (GMR) sensors have been shown to be among the most sensitive biosensors reported. While high-density and scalable sensor arrays are desirable for achieving multiplex detection, scalability remains challenging because of long data acquisition time using conventional readout methods. In this paper, we present a scalable magnetoresistive biosensor array with an on-chip magnetic field generator and a high-speed data acquisition method. The on-chip field generators enable magnetic correlated double sampling (MCDS) and global chopper stabilization to suppress 1/f noise and offset. A measurement with the proposed system takes only 20 ms, approximately 50× faster than conventional frequency domain analysis. A corresponding time domain temperature correction technique is also presented and shown to be able to remove temperature dependence from the measured signal without extra measurements or reference sensors. Measurements demonstrate detection of magnetic nanoparticles (MNPs) at a signal level as low as 6.92 ppm. The small form factor enables the proposed platform to be portable as well as having high sensitivity and rapid readout, desirable features for next generation diagnostic systems, especially in point-of-care (POC) settings.
Collapse
Affiliation(s)
- Kyunglok Kim
- Department of Electrical Engineering, Stanford University, Stanford, CA, United States
| | - Drew A Hall
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, United States
| | - Chengyang Yao
- Department of Electrical Engineering, Stanford University, Stanford, CA, United States
| | - Jung-Rok Lee
- Division of Mechanical and Biomedical Engineering, Ewha Womans University, Seoul, South Korea
| | - Chin C Ooi
- Department of Chemical Engineering, Stanford University, Stanford, CA, United States
| | - Daniel J B Bechstein
- Department of Mechanical Engineering, Stanford University, Stanford, CA, United States
| | - Yue Guo
- Department of Electrical Engineering, Stanford University, Stanford, CA, United States
| | - Shan X Wang
- Department of Electrical Engineering, Stanford University, Stanford, CA, United States.
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, United States.
| |
Collapse
|
14
|
Highly sensitive detection of DNA hypermethylation in melanoma cancer cells. Biosens Bioelectron 2018; 124-125:136-142. [PMID: 30366258 DOI: 10.1016/j.bios.2018.10.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 10/02/2018] [Accepted: 10/10/2018] [Indexed: 12/31/2022]
Abstract
Aberrant hypermethylation of CpG islands in the promoter region of tumor suppressor genes is a promising biomarker for early cancer detection. This methylation status is reflected in the methylation pattern of ctDNA shed from the primary tumor; however, to realize the full clinical utility of ctDNA methylation detection via liquid biopsy for early cancer diagnosis, improvements in the sensitivity and multiplexability of existing technologies must be improved. Additionally, the assay must be cheap and easy to perform in a clinical setting. We report the integration of methylation specific PCR (MSP) to melt curve analysis on giant magnetoresistive (GMR) biosensors to greatly enhance the sensitivity of our DNA hybridization assay for methylation detection. Our GMR sensor is functionalized with synthetic DNA probes that target methylated or unmethylated CpG sites in the MSP amplicon, and measures the difference in melting temperature (Tm) between the two probes (ΔTm), giving an analytical limit of detection down to 0.1% methylated DNA in solution. Additionally, linear regression of ΔTm's for serial dilutions of methylated:unmethylated mixtures allows for quantification of methylation percentage, which could have diagnostic and prognostic utility. Lastly, we performed multiplexed MSP on two different genes, and show the ability of our GMR assay to resolve this mixture, despite their amplicons' overlapping Tm's in standard EvaGreen melt analysis. The multiplexing ability of our assay and its enhanced sensitivity, without necessitating deep sequencing, represent important steps toward realizing an assay for the detection of methylated ctDNA in plasma for early cancer detection in a clinical setting.
Collapse
|
15
|
Lee JR, Appelmann I, Miething C, Shultz TO, Ruderman D, Kim D, Mallick P, Lowe SW, Wang SX. Longitudinal Multiplexed Measurement of Quantitative Proteomic Signatures in Mouse Lymphoma Models Using Magneto-Nanosensors. Theranostics 2018; 8:1389-1398. [PMID: 29507628 PMCID: PMC5835944 DOI: 10.7150/thno.20706] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 12/12/2017] [Indexed: 01/23/2023] Open
Abstract
Cancer proteomics is the manifestation of relevant biological processes in cancer development. Thus, it reflects the activities of tumor cells, host-tumor interactions, and systemic responses to cancer therapy. To understand the causal effects of tumorigenesis or therapeutic intervention, longitudinal studies are greatly needed. However, most of the conventional mouse experiments are unlikely to accommodate frequent collection of serum samples with a large enough volume for multiple protein assays towards single-object analysis. Here, we present a technique based on magneto-nanosensors to longitudinally monitor the protein profiles in individual mice of lymphoma models using a small volume of a sample for multiplex assays. Methods: Drug-sensitive and -resistant cancer cell lines were used to develop the mouse models that render different outcomes upon the drug treatment. Two groups of mice were inoculated with each cell line, and treated with either cyclophosphamide or vehicle solution. Serum samples taken longitudinally from each mouse in the groups were measured with 6-plex magneto-nanosensor cytokine assays. To find the origin of IL-6, experiments were performed using IL-6 knock-out mice. Results: The differences in serum IL-6 and GCSF levels between the drug-treated and untreated groups were revealed by the magneto-nanosensor measurement on individual mice. Using the multiplex assays and mouse models, we found that IL-6 is secreted by the host in the presence of tumor cells upon the drug treatment. Conclusion: The multiplex magneto-nanosensor assays enable longitudinal proteomic studies on mouse tumor models to understand tumor development and therapy mechanisms more precisely within a single biological object.
Collapse
Affiliation(s)
- Jung-Rok Lee
- Division of Mechanical and Biomedical Engineering, Ewha Womans University, Seoul, South Korea
| | - Iris Appelmann
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, University Hospital RWTH Aachen, Aachen, Germany
| | - Cornelius Miething
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Internal Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| | - Tyler O. Shultz
- Department of Materials Science and Engineering, Stanford University, Stanford, California, USA
| | - Daniel Ruderman
- Ellison Institute of Transformative Medicine of USC, USC Keck School of Medicine, Los Angeles, California, USA
| | - Dokyoon Kim
- Department of Materials Science and Engineering, Stanford University, Stanford, California, USA
| | - Parag Mallick
- Department of Medicine, Department of Radiology, Stanford University, Stanford, California, USA
| | - Scott W. Lowe
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Shan X. Wang
- Department of Materials Science and Engineering, Stanford University, Stanford, California, USA
- Department of Medicine, Department of Radiology, Stanford University, Stanford, California, USA
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| |
Collapse
|
16
|
Kolhatkar A, Chen YT, Chinwangso P, Nekrashevich I, Dannangoda GC, Singh A, Jamison AC, Zenasni O, Rusakova IA, Martirosyan KS, Litvinov D, Xu S, Willson RC, Lee TR. Magnetic Sensing Potential of Fe 3O 4 Nanocubes Exceeds That of Fe 3O 4 Nanospheres. ACS OMEGA 2017; 2:8010-8019. [PMID: 29214234 PMCID: PMC5709776 DOI: 10.1021/acsomega.7b01312] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 10/19/2017] [Indexed: 05/11/2023]
Abstract
This paper highlights the relation between the shape of iron oxide (Fe3O4) particles and their magnetic sensing ability. We synthesized Fe3O4 nanocubes and nanospheres having tunable sizes via solvothermal and thermal decomposition synthesis reactions, respectively, to obtain samples in which the volumes and body diagonals/diameters were equivalent. Vibrating sample magnetometry (VSM) data showed that the saturation magnetization (Ms) and coercivity of 100-225 nm cubic magnetic nanoparticles (MNPs) were, respectively, 1.4-3.0 and 1.1-8.4 times those of spherical MNPs on a same-volume and same-body diagonal/diameter basis. The Curie temperature for the cubic Fe3O4 MNPs for each size was also higher than that of the corresponding spherical MNPs; furthermore, the cubic Fe3O4 MNPs were more crystalline than the corresponding spherical MNPs. For applications relying on both higher contact area and enhanced magnetic properties, higher-Ms Fe3O4 nanocubes offer distinct advantages over Fe3O4 nanospheres of the same-volume or same-body diagonal/diameter. We evaluated the sensing potential of our synthesized MNPs using giant magnetoresistive (GMR) sensing and force-induced remnant magnetization spectroscopy (FIRMS). Preliminary data obtained by GMR sensing confirmed that the nanocubes exhibited a distinct sensitivity advantage over the nanospheres. Similarly, FIRMS data showed that when subjected to the same force at the same initial concentration, a greater number of nanocubes remained bound to the sensor surface because of higher surface contact area. Because greater binding and higher Ms translate to stronger signal and better analytical sensitivity, nanocubes are an attractive alternative to nanospheres in sensing applications.
Collapse
Affiliation(s)
- Arati
G. Kolhatkar
- Department
of Chemistry and Texas Center for Superconductivity, Department of Electrical
and Computer Engineering, Department of Chemical and Biomolecular Engineering, and Department of
Physics and Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, Texas 77204, United
States
| | - Yi-Ting Chen
- Department
of Chemistry and Texas Center for Superconductivity, Department of Electrical
and Computer Engineering, Department of Chemical and Biomolecular Engineering, and Department of
Physics and Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, Texas 77204, United
States
| | - Pawilai Chinwangso
- Department
of Chemistry and Texas Center for Superconductivity, Department of Electrical
and Computer Engineering, Department of Chemical and Biomolecular Engineering, and Department of
Physics and Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, Texas 77204, United
States
| | - Ivan Nekrashevich
- Department
of Chemistry and Texas Center for Superconductivity, Department of Electrical
and Computer Engineering, Department of Chemical and Biomolecular Engineering, and Department of
Physics and Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, Texas 77204, United
States
| | - Gamage C. Dannangoda
- Department
of Physics, University of Texas Rio Grande
Valley, Brownsville, Texas 78520, United States
| | - Ankit Singh
- Department
of Chemistry and Texas Center for Superconductivity, Department of Electrical
and Computer Engineering, Department of Chemical and Biomolecular Engineering, and Department of
Physics and Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, Texas 77204, United
States
| | - Andrew C. Jamison
- Department
of Chemistry and Texas Center for Superconductivity, Department of Electrical
and Computer Engineering, Department of Chemical and Biomolecular Engineering, and Department of
Physics and Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, Texas 77204, United
States
| | - Oussama Zenasni
- Department
of Chemistry and Texas Center for Superconductivity, Department of Electrical
and Computer Engineering, Department of Chemical and Biomolecular Engineering, and Department of
Physics and Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, Texas 77204, United
States
| | - Irene A. Rusakova
- Department
of Chemistry and Texas Center for Superconductivity, Department of Electrical
and Computer Engineering, Department of Chemical and Biomolecular Engineering, and Department of
Physics and Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, Texas 77204, United
States
| | - Karen S. Martirosyan
- Department
of Physics, University of Texas Rio Grande
Valley, Brownsville, Texas 78520, United States
- E-mail: (K.S.M.)
| | - Dmitri Litvinov
- Department
of Chemistry and Texas Center for Superconductivity, Department of Electrical
and Computer Engineering, Department of Chemical and Biomolecular Engineering, and Department of
Physics and Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, Texas 77204, United
States
- E-mail: (D.L.)
| | - Shoujun Xu
- Department
of Chemistry and Texas Center for Superconductivity, Department of Electrical
and Computer Engineering, Department of Chemical and Biomolecular Engineering, and Department of
Physics and Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, Texas 77204, United
States
- E-mail: (S.X.)
| | - Richard C. Willson
- Department
of Chemistry and Texas Center for Superconductivity, Department of Electrical
and Computer Engineering, Department of Chemical and Biomolecular Engineering, and Department of
Physics and Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, Texas 77204, United
States
- E-mail: (R.C.W)
| | - T. Randall Lee
- Department
of Chemistry and Texas Center for Superconductivity, Department of Electrical
and Computer Engineering, Department of Chemical and Biomolecular Engineering, and Department of
Physics and Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, Texas 77204, United
States
- E-mail: (T.R.L.)
| |
Collapse
|
17
|
Rizzi G, Lee JR, Dahl C, Guldberg P, Dufva M, Wang SX, Hansen MF. Simultaneous Profiling of DNA Mutation and Methylation by Melting Analysis Using Magnetoresistive Biosensor Array. ACS NANO 2017; 11:8864-8870. [PMID: 28832112 PMCID: PMC5810360 DOI: 10.1021/acsnano.7b03053] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Epigenetic modifications, in particular DNA methylation, are gaining increasing interest as complementary information to DNA mutations for cancer diagnostics and prognostics. We introduce a method to simultaneously profile DNA mutation and methylation events for an array of sites with single site specificity. Genomic (mutation) or bisulphite-treated (methylation) DNA is amplified using nondiscriminatory primers, and the amplicons are then hybridized to a giant magnetoresistive (GMR) biosensor array followed by melting curve measurements. The GMR biosensor platform offers scalable multiplexed detection of DNA hybridization, which is insensitive to temperature variation. The melting curve approach further enhances the assay specificity and tolerance to variations in probe length. We demonstrate the utility of this method by simultaneously profiling five mutation and four methylation sites in human melanoma cell lines. The method correctly identified all mutation and methylation events and further provided quantitative assessment of methylation density validated by bisulphite pyrosequencing.
Collapse
Affiliation(s)
- Giovanni Rizzi
- Department of Micro- and Nanotechnology DTU Nanotech, Technical University of Denmark, Building 345B, Kongens Lyngby, DK 2800, Denmark
| | - Jung-Rok Lee
- Division of Mechanical and Biomedical Engineering, ELTEC College of Engineering, Ewha Womans University, Seoul 03760, South Korea
- Department of Materials Science and Engineering, Stanford University, Stanford, California 93405, United States
| | - Christina Dahl
- Danish Cancer Society Research Center, Copenhagen, DK 2100, Denmark
| | - Per Guldberg
- Danish Cancer Society Research Center, Copenhagen, DK 2100, Denmark
| | - Martin Dufva
- Department of Micro- and Nanotechnology DTU Nanotech, Technical University of Denmark, Building 345B, Kongens Lyngby, DK 2800, Denmark
| | - Shan X. Wang
- Department of Materials Science and Engineering, Stanford University, Stanford, California 93405, United States
- Department of Electrical Engineering, Stanford University, Stanford, California 93405, United States
- Corresponding Authors:.
| | - Mikkel F. Hansen
- Department of Micro- and Nanotechnology DTU Nanotech, Technical University of Denmark, Building 345B, Kongens Lyngby, DK 2800, Denmark
- Corresponding Authors:.
| |
Collapse
|
18
|
Zhou X, Huang CC, Hall DA. Giant Magnetoresistive Biosensor Array for Detecting Magnetorelaxation. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2017; 11:755-764. [PMID: 28749344 DOI: 10.1109/tbcas.2017.2682080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this paper, a time-domain magnetorelaxometry biosensing scheme is presented using giant magnetoresistive (GMR) sensors to measure the fast relaxation response of superparamagnetic magnetic nanoparticles (MNPs) in a pulsed magnetic field. The system consists of an 8 × 10 GMR sensor array, a Helmholtz coil, an electromagnet driver, and an integrator-based analog front-end needed to capture the fast relaxation dynamics of MNPs. A custom designed electromagnet driver and Helmholtz coil improve the switch-off speed to >5 Oe/μs, limiting the dead zone time to <10 μs, and thus enables the system to monitor fast relaxation processes of 30 nm MNPs. A magnetic correlated double sampling technique is proposed to reduce sensor-to-sensor variation by 99.98% while also reducing temperature drift, circuit offset, and nonlinearity below the noise level. An optimum integration time is calculated and experimentally verified to maximize the SNR. Experiments with dried MNPs have shown successful relaxation detection, and immunoassay experiments have demonstrated their binding kinetics.
Collapse
|
19
|
Rizzi G, Lee JR, Guldberg P, Dufva M, Wang SX, Hansen MF. Denaturation strategies for detection of double stranded PCR products on GMR magnetic biosensor array. Biosens Bioelectron 2017; 93:155-160. [DOI: 10.1016/j.bios.2016.09.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/08/2016] [Accepted: 09/10/2016] [Indexed: 01/08/2023]
|
20
|
Lin G, Makarov D, Schmidt OG. Magnetic sensing platform technologies for biomedical applications. LAB ON A CHIP 2017; 17:1884-1912. [PMID: 28485417 DOI: 10.1039/c7lc00026j] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Detection and quantification of a variety of micro- and nanoscale entities, e.g. molecules, cells, and particles, are crucial components of modern biomedical research, in which biosensing platform technologies play a vital role. Confronted with the drastic global demographic changes, future biomedical research entails continuous development of new-generation biosensing platforms targeting even lower costs, more compactness, and higher throughput, sensitivity and selectivity. Among a wide choice of fundamental biosensing principles, magnetic sensing technologies enabled by magnetic field sensors and magnetic particles offer attractive advantages. The key features of a magnetic sensing format include the use of commercially available magnetic field sensing elements, e.g. magnetoresistive sensors which bear huge potential for compact integration, a magnetic field sensing mechanism which is free from interference by complex biomedical samples, and an additional degree of freedom for the on-chip handling of biochemical species rendered by magnetic labels. In this review, we highlight the historical basis, routes, recent advances and applications of magnetic biosensing platform technologies based on magnetoresistive sensors.
Collapse
Affiliation(s)
- Gungun Lin
- Institute for Integrative Nanosciences, IFW Dresden, Helmholzstr. 20, 01069, Dresden, Germany
| | | | | |
Collapse
|
21
|
Giant Magnetoresistive Biosensors for Time-Domain Magnetorelaxometry: A Theoretical Investigation and Progress Toward an Immunoassay. Sci Rep 2017; 7:45493. [PMID: 28374833 PMCID: PMC5379630 DOI: 10.1038/srep45493] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/28/2017] [Indexed: 01/18/2023] Open
Abstract
Magnetorelaxometry (MRX) is a promising new biosensing technique for point-of-care diagnostics. Historically, magnetic sensors have been primarily used to monitor the stray field of magnetic nanoparticles bound to analytes of interest for immunoassays and flow cytometers. In MRX, the magnetic nanoparticles (MNPs) are first magnetized and then the temporal response is monitored after removing the magnetic field. This new sensing modality is insensitive to the magnetic field homogeneity making it more amenable to low-power portable applications. In this work, we systematically investigated time-domain MRX by measuring the signal dependence on the applied field, magnetization time, and magnetic core size. The extracted characteristic times varied for different magnetic MNPs, exhibiting unique magnetic signatures. We also measured the signal contribution based on the MNP location and correlated the coverage with measured signal amplitude. Lastly, we demonstrated, for the first time, a GMR-based time-domain MRX bioassay. This approach validates the feasibility of immunoassays using GMR-based MRX and provides an alternative platform for point-of-care diagnostics.
Collapse
|
22
|
Magnetic impedance biosensor: A review. Biosens Bioelectron 2017; 90:418-435. [DOI: 10.1016/j.bios.2016.10.031] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/12/2016] [Accepted: 10/18/2016] [Indexed: 01/15/2023]
|
23
|
Lee JR, Haddon DJ, Gupta N, Price JV, Credo GM, Diep VK, Kim K, Hall DA, Baechler EC, Petri M, Varma M, Utz PJ, Wang SX. High-Resolution Analysis of Antibodies to Post-Translational Modifications Using Peptide Nanosensor Microarrays. ACS NANO 2016; 10:10652-10660. [PMID: 27636738 PMCID: PMC5367622 DOI: 10.1021/acsnano.6b03786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Autoantibodies are a hallmark of autoimmune diseases such as lupus and have the potential to be used as biomarkers for diverse diseases, including immunodeficiency, infectious disease, and cancer. More precise detection of antibodies to specific targets is needed to improve diagnosis of such diseases. Here, we report the development of reusable peptide microarrays, based on giant magnetoresistive (GMR) nanosensors optimized for sensitively detecting magnetic nanoparticle labels, for the detection of antibodies with a resolution of a single post-translationally modified amino acid. We have also developed a chemical regeneration scheme to perform multiplex assays with a high level of reproducibility, resulting in greatly reduced experimental costs. In addition, we show that peptides synthesized directly on the nanosensors are approximately two times more sensitive than directly spotted peptides. Reusable peptide nanosensor microarrays enable precise detection of autoantibodies with high resolution and sensitivity and show promise for investigating antibody-mediated immune responses to autoantigens, vaccines, and pathogen-derived antigens as well as other fundamental peptide-protein interactions.
Collapse
Affiliation(s)
- Jung-Rok Lee
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - D. James Haddon
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, California 94305, United States
| | - Nidhi Gupta
- Intel Corporation, Santa Clara, California 95052, United States
| | - Jordan V. Price
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, California 94305, United States
- Department of Molecular and Cell Biology, Division of Immunology and Pathogenesis, University of California, Berkeley, California 94720, United States
| | - Grace M. Credo
- Intel Corporation, Santa Clara, California 95052, United States
| | - Vivian K. Diep
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, California 94305, United States
| | - Kyunglok Kim
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Drew A. Hall
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
- Department of Electrical and Computer Engineering, University of California, San Diego, California 92093, United States
| | - Emily C. Baechler
- Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, United States
| | - Michelle Petri
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Madoo Varma
- Intel Corporation, Santa Clara, California 95052, United States
| | - Paul J. Utz
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, California 94305, United States
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Shan X. Wang
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
- Corresponding Author.
| |
Collapse
|
24
|
Magneto-nanosensor platform for probing low-affinity protein-protein interactions and identification of a low-affinity PD-L1/PD-L2 interaction. Nat Commun 2016; 7:12220. [PMID: 27447090 PMCID: PMC4961847 DOI: 10.1038/ncomms12220] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 06/13/2016] [Indexed: 12/26/2022] Open
Abstract
Substantial efforts have been made to understand the interactions between immune checkpoint receptors and their ligands targeted in immunotherapies against cancer. To carefully characterize the complete network of interactions involved and the binding affinities between their extracellular domains, an improved kinetic assay is needed to overcome limitations with surface plasmon resonance (SPR). Here, we present a magneto-nanosensor platform integrated with a microfluidic chip that allows measurement of dissociation constants in the micromolar-range. High-density conjugation of magnetic nanoparticles with prey proteins allows multivalent receptor interactions with sensor-immobilized bait proteins, more closely mimicking natural-receptor clustering on cells. The platform has advantages over traditional SPR in terms of insensitivity of signal responses to pH and salinity, less consumption of proteins and better sensitivities. Using this platform, we characterized the binding affinities of the PD-1-PD-L1/PD-L2 co-inhibitory receptor system, and discovered an unexpected interaction between the two known PD-1 ligands, PD-L1 and PD-L2.
Collapse
|
25
|
Cubells-Beltrán MD, Reig C, Madrenas J, De Marcellis A, Santos J, Cardoso S, Freitas PP. Integration of GMR Sensors with Different Technologies. SENSORS 2016; 16:s16060939. [PMID: 27338415 PMCID: PMC4934364 DOI: 10.3390/s16060939] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/06/2016] [Accepted: 06/16/2016] [Indexed: 11/19/2022]
Abstract
Less than thirty years after the giant magnetoresistance (GMR) effect was described, GMR sensors are the preferred choice in many applications demanding the measurement of low magnetic fields in small volumes. This rapid deployment from theoretical basis to market and state-of-the-art applications can be explained by the combination of excellent inherent properties with the feasibility of fabrication, allowing the real integration with many other standard technologies. In this paper, we present a review focusing on how this capability of integration has allowed the improvement of the inherent capabilities and, therefore, the range of application of GMR sensors. After briefly describing the phenomenological basis, we deal on the benefits of low temperature deposition techniques regarding the integration of GMR sensors with flexible (plastic) substrates and pre-processed CMOS chips. In this way, the limit of detection can be improved by means of bettering the sensitivity or reducing the noise. We also report on novel fields of application of GMR sensors by the recapitulation of a number of cases of success of their integration with different heterogeneous complementary elements. We finally describe three fully functional systems, two of them in the bio-technology world, as the proof of how the integrability has been instrumental in the meteoric development of GMR sensors and their applications.
Collapse
Affiliation(s)
| | - Càndid Reig
- Department of Electronic Engineering, Universitat de València, Av. Universitat s/n, Burjassot 46100 , Spain.
| | - Jordi Madrenas
- Department of Electronic Engineering, Universitat Politècnica de Catalunya, C. Jordi Girona, 1-3, Barcelona 08034, Spain.
| | - Andrea De Marcellis
- Department of Industrial and Information Engineering and Economics, University of L'Aquila, L'Aquila 67100, Italy.
| | - Joana Santos
- INESC Microsistemas e Nanotecnologias, Rua Alves Redol 9, Lisbon 1000-029, Portugal.
| | - Susana Cardoso
- INESC Microsistemas e Nanotecnologias, Rua Alves Redol 9, Lisbon 1000-029, Portugal.
| | - Paulo P Freitas
- INESC Microsistemas e Nanotecnologias, Rua Alves Redol 9, Lisbon 1000-029, Portugal.
| |
Collapse
|
26
|
Multiplex giant magnetoresistive biosensor microarrays identify interferon-associated autoantibodies in systemic lupus erythematosus. Sci Rep 2016; 6:27623. [PMID: 27279139 PMCID: PMC4899742 DOI: 10.1038/srep27623] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 05/20/2016] [Indexed: 01/05/2023] Open
Abstract
High titer, class-switched autoantibodies are a hallmark of systemic lupus erythematosus (SLE). Dysregulation of the interferon (IFN) pathway is observed in individuals with active SLE, although the association of specific autoantibodies with chemokine score, a combined measurement of three IFN-regulated chemokines, is not known. To identify autoantibodies associated with chemokine score, we developed giant magnetoresistive (GMR) biosensor microarrays, which allow the parallel measurement of multiple serum antibodies to autoantigens and peptides. We used the microarrays to analyze serum samples from SLE patients and found individuals with high chemokine scores had significantly greater reactivity to 13 autoantigens than individuals with low chemokine scores. Our findings demonstrate that multiple autoantibodies, including antibodies to U1-70K and modified histone H2B tails, are associated with IFN dysregulation in SLE. Further, they show the microarrays are capable of identifying autoantibodies associated with relevant clinical manifestations of SLE, with potential for use as biomarkers in clinical practice.
Collapse
|
27
|
Lee JR, Sato N, Bechstein DJB, Osterfeld SJ, Wang J, Gani AW, Hall DA, Wang SX. Experimental and theoretical investigation of the precise transduction mechanism in giant magnetoresistive biosensors. Sci Rep 2016; 6:18692. [PMID: 26728870 PMCID: PMC4700494 DOI: 10.1038/srep18692] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 11/24/2015] [Indexed: 12/11/2022] Open
Abstract
Giant magnetoresistive (GMR) biosensors consisting of many rectangular stripes are being developed for high sensitivity medical diagnostics of diseases at early stages, but many aspects of the sensing mechanism remain to be clarified. Using e-beam patterned masks on the sensors, we showed that the magnetic nanoparticles with a diameter of 50 nm located between the stripes predominantly determine the sensor signals over those located on the sensor stripes. Based on computational analysis, it was confirmed that the particles in the trench, particularly those near the edges of the stripes, mainly affect the sensor signals due to additional field from the stripe under an applied field. We also demonstrated that the direction of the average magnetic field from the particles that contributes to the signal is indeed the same as that of the applied field, indicating that the particles in the trench are pivotal to produce sensor signal. Importantly, the same detection principle was validated with a duplex protein assay. Also, 8 different types of sensor stripes were fabricated and design parameters were explored. According to the detection principle uncovered, GMR biosensors can be further optimized to improve their sensitivity, which is highly desirable for early diagnosis of diseases.
Collapse
Affiliation(s)
- Jung-Rok Lee
- Department of Mechanical Engineering, Stanford University, Stanford, California, USA
| | - Noriyuki Sato
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Daniel J B Bechstein
- Department of Mechanical Engineering, Stanford University, Stanford, California, USA
| | | | - Junyi Wang
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Adi Wijaya Gani
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Drew A Hall
- Department of Electrical Engineering, Stanford University, Stanford, California, USA.,Department of Electrical and Computer Engineering, University of California, San Diego, USA
| | - Shan X Wang
- Department of Electrical Engineering, Stanford University, Stanford, California, USA.,Department of Materials Science and Engineering, Stanford University, Stanford, California, USA
| |
Collapse
|
28
|
GAO YZ, ZHANG L, HUO WS, SHI S, LIAN J, GAO YH. An Integrated Giant Magnetoresistance Microfluidic Immuno-sensor for Rapid Detection and Quantification of D-dimer. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2015. [DOI: 10.1016/s1872-2040(15)60827-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
29
|
Clotilde LM, Yu H, Carbonell ML. Multiplex Immunoassay: A Planar Array on a Chip Using the MagArray(™) Technology. Methods Mol Biol 2015; 1318:119-126. [PMID: 26160570 DOI: 10.1007/978-1-4939-2742-5_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Multiplexing is an important tool in assay development as it allows simultaneous detection of numerous analytes. Current platforms with the capability to multiplex are often complex and expensive. Here, we describe a low-cost planar array on a chip capable of simultaneously detecting up to 80 different analytes using the MagArray technology in as little as 10 min. This technology is easy to operate, has a small footprint, and is highly portable as it does not require any moving parts and/or microfluidics. This technology also allows the user to obtain a real-time read-out, which is very useful for analyzing complex sample matrices and for assessing cross-reactivity easily, or to monitor the dissociation of low affinity proteins during washes. The recommended sample volume for analysis is 100 μL after dilution, but as little as 20 μL can be measured if needed.
Collapse
Affiliation(s)
- Laurie M Clotilde
- MagArray Inc., 521 Cottonwood Drive, Suite 121, Milpitas, CA, 95035, USA,
| | | | | |
Collapse
|
30
|
Nanosensor dosimetry of mouse blood proteins after exposure to ionizing radiation. Sci Rep 2014; 3:2234. [PMID: 23868657 PMCID: PMC3715761 DOI: 10.1038/srep02234] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 07/01/2013] [Indexed: 01/15/2023] Open
Abstract
Giant magnetoresistive (GMR) nanosensors provide a novel approach for measuring protein concentrations in blood for medical diagnosis. Using an in vivo mouse radiation model, we developed protocols for measuring Flt3 ligand (Flt3lg) and serum amyloid A1 (Saa1) in small amounts of blood collected during the first week after X-ray exposures of sham, 0.1, 1, 2, 3, or 6 Gy. Flt3lg concentrations showed excellent dose discrimination at ≥ 1 Gy in the time window of 1 to 7 days after exposure except 1 Gy at day 7. Saa1 dose response was limited to the first two days after exposure. A multiplex assay with both proteins showed improved dose classification accuracy. Our magneto-nanosensor assay demonstrates the dose and time responses, low-dose sensitivity, small volume requirements, and rapid speed that have important advantages in radiation triage biodosimetry.
Collapse
|
31
|
Giouroudi I, Keplinger F. Microfluidic biosensing systems using magnetic nanoparticles. Int J Mol Sci 2013; 14:18535-56. [PMID: 24022689 PMCID: PMC3794794 DOI: 10.3390/ijms140918535] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/07/2013] [Accepted: 08/21/2013] [Indexed: 01/15/2023] Open
Abstract
In recent years, there has been rapidly growing interest in developing hand held, sensitive and cost-effective on-chip biosensing systems that directly translate the presence of certain bioanalytes (e.g., biomolecules, cells and viruses) into an electronic signal. The impressive and rapid progress in micro- and nanotechnology as well as in biotechnology enables the integration of a variety of analytical functions in a single chip. All necessary sample handling and analysis steps are then performed within the chip. Microfluidic systems for biomedical analysis usually consist of a set of units, which guarantees the manipulation, detection and recognition of bioanalytes in a reliable and flexible manner. Additionally, the use of magnetic fields for performing the aforementioned tasks has been steadily gaining interest. This is because magnetic fields can be well tuned and applied either externally or from a directly integrated solution in the biosensing system. In combination with these applied magnetic fields, magnetic nanoparticles are utilized. Some of the merits of magnetic nanoparticles are the possibility of manipulating them inside microfluidic channels by utilizing high gradient magnetic fields, their detection by integrated magnetic microsensors, and their flexibility due to functionalization by means of surface modification and specific binding. Their multi-functionality is what makes them ideal candidates as the active component in miniaturized on-chip biosensing systems. In this review, focus will be given to the type of biosening systems that use microfluidics in combination with magnetoresistive sensors and detect the presence of bioanalyte tagged with magnetic nanoparticles.
Collapse
Affiliation(s)
- Ioanna Giouroudi
- Institute of Sensor and Actuator Systems, Vienna University of Technology, Gusshausstrasse 27-29/366-ISS, Vienna 1040, Austria.
| | | |
Collapse
|
32
|
Hall DA, Gaster RS, Makinwa K, Wang SX, Murmann B. A 256 pixel magnetoresistive biosensor microarray in 0.18μm CMOS. IEEE JOURNAL OF SOLID-STATE CIRCUITS 2013; 48:1290-1301. [PMID: 24761029 PMCID: PMC3993911 DOI: 10.1109/jssc.2013.2245058] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Magnetic nanotechnologies have shown significant potential in several areas of nanomedicine such as imaging, therapeutics, and early disease detection. Giant magnetoresistive spin-valve (GMR SV) sensors coupled with magnetic nanotags (MNTs) possess great promise as ultra-sensitive biosensors for diagnostics. We report an integrated sensor interface for an array of 256 GMR SV biosensors designed in 0.18 μm CMOS. Arranged like an imager, each of the 16 column level readout channels contains an analog front- end and a compact ΣΔ modulator (0.054 mm2) with 84 dB of dynamic range and an input referred noise of 49 nT/√Hz. Performance is demonstrated through detection of an ovarian cancer biomarker, secretory leukocyte peptidase inhibitor (SLPI), spiked at concentrations as low as 10 fM. This system is designed as a replacement for optical protein microarrays while also providing real-time kinetics monitoring.
Collapse
Affiliation(s)
| | | | - Kofi Makinwa
- Delft University of Technology, Delft, The Netherlands
| | | | | |
Collapse
|
33
|
Carregal-Romero S, Caballero-Díaz E, Beqa L, Abdelmonem AM, Ochs M, Hühn D, Suau BS, Valcarcel M, Parak WJ. Multiplexed sensing and imaging with colloidal nano- and microparticles. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2013; 6:53-81. [PMID: 23451718 DOI: 10.1146/annurev-anchem-062012-092621] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Sensing and imaging with fluorescent, plasmonic, and magnetic colloidal nano- and microparticles have improved during the past decade. In this review, we describe the concepts and applications of how these techniques can be used in the multiplexed mode, that is, sensing of several analytes in parallel or imaging of several labels in parallel.
Collapse
|
34
|
Gu H, Zhang X, Wei H, Huang Y, Wei S, Guo Z. An overview of the magnetoresistance phenomenon in molecular systems. Chem Soc Rev 2013; 42:5907-43. [DOI: 10.1039/c3cs60074b] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
A current sensor based on the giant magnetoresistance effect: design and potential smart grid applications. SENSORS 2012. [PMID: 23202221 PMCID: PMC3522974 DOI: 10.3390/s121115520] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Advanced sensing and measurement techniques are key technologies to realize a smart grid. The giant magnetoresistance (GMR) effect has revolutionized the fields of data storage and magnetic measurement. In this work, a design of a GMR current sensor based on a commercial analog GMR chip for applications in a smart grid is presented and discussed. Static, dynamic and thermal properties of the sensor were characterized. The characterizations showed that in the operation range from 0 to ±5 A, the sensor had a sensitivity of 28 mV·A−1, linearity of 99.97%, maximum deviation of 2.717%, frequency response of −1.5 dB at 10 kHz current measurement, and maximum change of the amplitude response of 0.0335%·°C−1 with thermal compensation. In the distributed real-time measurement and monitoring of a smart grid system, the GMR current sensor shows excellent performance and is cost effective, making it suitable for applications such as steady-state and transient-state monitoring. With the advantages of having a high sensitivity, high linearity, small volume, low cost, and simple structure, the GMR current sensor is promising for the measurement and monitoring of smart grids.
Collapse
|
36
|
Gonzalez LC. Protein microarrays, biosensors, and cell-based methods for secretome-wide extracellular protein-protein interaction mapping. Methods 2012; 57:448-58. [PMID: 22728035 DOI: 10.1016/j.ymeth.2012.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 06/02/2012] [Accepted: 06/08/2012] [Indexed: 12/15/2022] Open
Abstract
Approximately one quarter of all human genes encode proteins that function in the extracellular space or serve to bridge the extracellular and intracellular environments. Physical associations between these secretome proteins serve to regulate a wide range of biological activities and consequently represent important therapeutic targets. Moreover, some extracellular proteins are targeted by pathogens to allow host access or immune evasion. Despite the importance of extracellular protein-protein interactions, our knowledge in this area has remained sparse. Weak affinities and low abundance have often hindered efforts to identify these interactions using traditional methods such as biochemical purification and cDNA library expression cloning. Moreover, current large-scale protein-protein interaction mapping techniques largely under represent extracellular protein-protein interactions. This review highlights emerging biosensor and protein microarray technology, along with more traditional cell-based techniques, that are compatible with secretome-wide screens for extracellular protein-protein interaction discovery. A combination of these approaches will serve to rapidly expand our knowledge of the extracellular protein-protein interactome.
Collapse
Affiliation(s)
- Lino C Gonzalez
- Department of Protein Chemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, United States.
| |
Collapse
|
37
|
Gordon J, Michel G. Discerning Trends in Multiplex Immunoassay Technology with Potential for Resource-Limited Settings. Clin Chem 2012; 58:690-8. [DOI: 10.1373/clinchem.2011.176503] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
BACKGROUND
In the search for more powerful tools for diagnoses of endemic diseases in resource-limited settings, we have been analyzing technologies with potential applicability. Increasingly, the process focuses on readily accessible bodily fluids combined with increasingly powerful multiplex capabilities to unambiguously diagnose a condition without resorting to reliance on a sophisticated reference laboratory. Although these technological advances may well have important implications for the sensitive and specific detection of disease, to date their clinical utility has not been demonstrated, especially in resource-limited settings. Furthermore, many emerging technological developments are in fields of physics or engineering, which are not readily available to or intelligible to clinicians or clinical laboratory scientists.
CONTENT
This review provides a look at technology trends that could have applicability to high-sensitivity multiplexed immunoassays in resource-limited settings. Various technologies are explained and assessed according to potential for reaching relevant limits of cost, sensitivity, and multiplex capability. Frequently, such work is reported in technical journals not normally read by clinical scientists, and the authors make enthusiastic claims for the potential of their technology while ignoring potential pitfalls. Thus it is important to draw attention to technical hurdles that authors may not be publicizing.
SUMMARY
Immunochromatographic assays, optical methods including those involving waveguides, electrochemical methods, magnetorestrictive methods, and field-effect transistor methods based on nanotubes, nanowires, and nanoribbons reveal possibilities as next-generation technologies.
Collapse
Affiliation(s)
- Julian Gordon
- Foundation for Innovative New Diagnostics, Geneva, Switzerland
| | - Gerd Michel
- Foundation for Innovative New Diagnostics, Geneva, Switzerland
| |
Collapse
|
38
|
Melzer M, Karnaushenko D, Makarov D, Baraban L, Calvimontes A, Mönch I, Kaltofen R, Mei Y, Schmidt OG. Elastic magnetic sensor with isotropic sensitivity for in-flow detection of magnetic objects. RSC Adv 2012. [DOI: 10.1039/c2ra01062c] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
39
|
Mönch I, Makarov D, Koseva R, Baraban L, Karnaushenko D, Kaiser C, Arndt KF, Schmidt OG. Rolled-up magnetic sensor: nanomembrane architecture for in-flow detection of magnetic objects. ACS NANO 2011; 5:7436-42. [PMID: 21861498 DOI: 10.1021/nn202351j] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Detection and analysis of magnetic nanoobjects is a crucial task in modern diagnostic and therapeutic techniques applied to medicine and biology. Accomplishment of this task calls for the development and implementation of electronic elements directly in fluidic channels, which still remains an open and nontrivial issue. Here, we present a novel concept based on rolled-up nanotechnology for fabrication of multifunctional devices, which can be straightforwardly integrated into existing fluidic architectures. We apply strain engineering to roll-up a functional nanomembrane consisting of a magnetic sensor element based on [Py/Cu](30) multilayers, revealing giant magnetoresistance (GMR). The comparison of the sensor's characteristics before and after the roll-up process is found to be similar, allowing for a reliable and predictable method to fabricate high-quality ultracompact GMR devices. The performance of the rolled-up magnetic sensor was optimized to achieve high sensitivity to weak magnetic fields. We demonstrate that the rolled-up tube itself can be efficiently used as a fluidic channel, while the integrated magnetic sensor provides an important functionality to detect and respond to a magnetic field. The performance of the rolled-up magnetic sensor for the in-flow detection of ferromagnetic CrO(2) nanoparticles embedded in a biocompatible polymeric hydrogel shell is highlighted.
Collapse
Affiliation(s)
- Ingolf Mönch
- Institute for Integrative Nanosciences, IFW Dresden, Helmholtzstrasse 20, 01069 Dresden, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Gaster RS, Hall DA, Wang SX. nanoLAB: an ultraportable, handheld diagnostic laboratory for global health. LAB ON A CHIP 2011; 11:950-956. [PMID: 21264375 DOI: 10.1039/c0lc00534g] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Driven by scientific progress and economic stimulus, medical diagnostics will move to a stage in which straightforward medical diagnoses are independent of physician visits and large centralized laboratories. The future of basic diagnostic medicine will lie in the hands of private individuals. We have taken significant strides towards achieving this goal by developing an autoassembly assay for disease biomarker detection which obviates the need for washing steps and is run on a handheld sensing platform. By coupling magnetic nanotechnology with an array of magnetically responsive nanosensors, we demonstrate a rapid, multiplex immunoassay that eliminates the need for trained technicians to run molecular diagnostic tests. Furthermore, the platform is battery-powered and ultraportable, allowing the assay to be run anywhere in the world by any individual.
Collapse
Affiliation(s)
- Richard S Gaster
- Department of Bioengineering, Stanford University, Stanford, California 94305, USA
| | | | | |
Collapse
|
41
|
Hall DA, Wang SX, Murmann B, Gaster RS. Portable Biomarker Detection with Magnetic Nanotags. THE ... MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS CONFERENCE PROCEEDINGS : MWSCAS. MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS 2010:1779-1782. [PMID: 22495252 DOI: 10.1109/iscas.2010.5537639] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This paper presents a hand-held, portable biosensor platform for quantitative biomarker measurement. By combining magnetic nanoparticle (MNP) tags with giant magnetoresistive (GMR) spin-valve sensors, the hand-held platform achieves highly sensitive (picomolar) and specific biomarker detection in less than 20 minutes. The rapid analysis and potential low cost make this technology ideal for point-of-care (POC) diagnostics. Furthermore, this platform is able to detect multiple biomarkers simultaneously in a single assay, creating a promising diagnostic tool for a vast number of applications.
Collapse
Affiliation(s)
- Drew A Hall
- Stanford University Department of Electrical Engineering Stanford, CA, USA {drewhall, sxwang, murmann}@stanford.edu
| | | | | | | |
Collapse
|
42
|
GMR biosensor arrays: a system perspective. Biosens Bioelectron 2010; 25:2051-7. [PMID: 20207130 DOI: 10.1016/j.bios.2010.01.038] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2009] [Revised: 12/01/2009] [Accepted: 01/31/2010] [Indexed: 11/20/2022]
Abstract
Giant magnetoresistive biosensors are becoming more prevalent for sensitive, quantifiable biomolecular detection. However, in order for magnetic biosensing to become competitive with current optical protein microarray technology, there is a need to increase the number of sensors while maintaining the high sensitivity and fast readout time characteristic of smaller arrays (1-8 sensors). In this paper, we present a circuit architecture scalable for larger sensor arrays (64 individually addressable sensors) while maintaining a high readout rate (scanning the entire array in less than 4s). The system utilizes both time domain multiplexing and frequency domain multiplexing in order to achieve this scan rate. For the implementation, we propose a new circuit architecture that does not use a classical Wheatstone bridge to measure the small change in resistance of the sensor. Instead, an architecture designed around a transimpedance amplifier is employed. A detailed analysis of this architecture including the noise, distortion, and potential sources of errors is presented, followed by a global optimization strategy for the entire system comprising the magnetic tags, sensors, and interface electronics. To demonstrate the sensitivity, quantifiable detection of two blindly spiked samples of unknown concentrations has been performed at concentrations below the limit of detection for the enzyme-linked immunosorbent assay. Lastly, the multiplexing capability and reproducibility of the system was demonstrated by simultaneously monitoring sensors functionalized with three unique proteins at different concentrations in real-time.
Collapse
|