1
|
Tan H, Wang Z, Fu R, Zhang X, Su Z. Nanomaterials revolutionize biosensing: 0D-3D designs for ultrasensitive detection of microorganisms and viruses. J Mater Chem B 2024; 12:7760-7786. [PMID: 39036967 DOI: 10.1039/d4tb01077a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Various diseases caused by harmful microorganisms and viruses have caused serious harm and huge economic losses to society. Thus, rapid detection of harmful microorganisms and viruses is necessary for disease prevention and treatment. Nanomaterials have unique properties that other materials do not possess, such as a small size effect and quantum size effect. Introducing nanomaterials into biosensors improves the performance of biosensors for faster and more accurate detection of microorganisms and viruses. This review aims to introduce the different kinds of biosensors and the latest advances in the application of nanomaterials in biosensors. In particular, this review focuses on describing the physicochemical properties of zero-, one-, two-, and three-dimensional nanostructures as well as nanoenzymes. Finally, this review discusses the applications of nanobiosensors in the detection of microorganisms and viruses and the future directions of nanobiosensors.
Collapse
Affiliation(s)
- Haokun Tan
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, 100029 Beijing, China.
| | - ZhiChao Wang
- Precision Forestry Key Laboratory of Beijing, Beijing Forestry University, 100083 Beijing, China.
| | - Rao Fu
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, 100029 Beijing, China.
| | - Xiaoyuan Zhang
- Precision Forestry Key Laboratory of Beijing, Beijing Forestry University, 100083 Beijing, China.
| | - Zhiqiang Su
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, 100029 Beijing, China.
| |
Collapse
|
2
|
Yibibulla T, Hou L, Mead JL, Huang H, Fatikow S, Wang S. Frictional behavior of one-dimensional materials: an experimental perspective. NANOSCALE ADVANCES 2024; 6:3251-3284. [PMID: 38933866 PMCID: PMC11197433 DOI: 10.1039/d4na00039k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/08/2024] [Indexed: 06/28/2024]
Abstract
The frictional behavior of one-dimensional (1D) materials, including nanotubes, nanowires, and nanofibers, significantly influences the efficient fabrication, functionality, and reliability of innovative devices integrating 1D components. Such devices comprise piezoelectric and triboelectric nanogenerators, biosensing and implantable devices, along with biomimetic adhesives based on 1D arrays. This review compiles and critically assesses recent experimental techniques for exploring the frictional behavior of 1D materials. Specifically, it underscores various measurement methods and technologies employing atomic force microscopy, electron microscopy, and optical microscopy nanomanipulation. The emphasis is on their primary applications and challenges in measuring and characterizing the frictional behavior of 1D materials. Additionally, we discuss key accomplishments over the past two decades in comprehending the frictional behaviors of 1D materials, with a focus on factors such as materials combination, interface roughness, environmental humidity, and non-uniformity. Finally, we offer a brief perspective on ongoing challenges and future directions, encompassing the systematic investigation of the testing environment and conditions, as well as the modification of surface friction through surface alterations.
Collapse
Affiliation(s)
- Tursunay Yibibulla
- School of Physics, Central South University Changsha 410083 P. R. China
- School of Physics and Electronics, Nanning Normal University Nanning 530001 P. R. China
| | - Lizhen Hou
- School of Physics and Electronics, Hunan Normal University Changsha 410083 P. R. China
| | - James L Mead
- Division Microrobotics and Control Engineering, Department of Computing Science, University of Oldenburg D-26129 Oldenburg Germany
| | - Han Huang
- School of Advanced Manufacturing, Sun-Yat-sen University Shenzhen 518107 P. R. China
| | - Sergej Fatikow
- Division Microrobotics and Control Engineering, Department of Computing Science, University of Oldenburg D-26129 Oldenburg Germany
| | - Shiliang Wang
- School of Physics, Central South University Changsha 410083 P. R. China
| |
Collapse
|
3
|
Li Z, Xiao M, Jin C, Zhang Z. Toward the Commercialization of Carbon Nanotube Field Effect Transistor Biosensors. BIOSENSORS 2023; 13:326. [PMID: 36979538 PMCID: PMC10046102 DOI: 10.3390/bios13030326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
The development of biosensors based on field-effect transistors (FETs) using atomically thick carbon nanotubes (CNTs) as a channel material has the potential to revolutionize the related field due to their small size, high sensitivity, label-free detection, and real-time monitoring capabilities. Despite extensive research efforts to improve the sensitivity, selectivity, and practicality of CNT FET-based biosensors, their commercialization has not yet been achieved due to the non-uniform and unstable device performance, difficulties in their fabrication, the immaturity of sensor packaging processes, and a lack of reliable modification methods. This review article focuses on the practical applications of CNT-based FET biosensors for the detection of ultra-low concentrations of biologically relevant molecules. We discuss the various factors that affect the sensors' performance in terms of materials, device architecture, and sensor packaging, highlighting the need for a robust commercial process that prioritizes product performance. Additionally, we review recent advances in the application of CNT FET biosensors for the ultra-sensitive detection of various biomarkers. Finally, we examine the key obstacles that currently hinder the large-scale deployment of these biosensors, aiming to identify the challenges that must be addressed for the future industrialization of CNT FET sensors.
Collapse
Affiliation(s)
- Zhongyu Li
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, China
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-Based Electronics, School of Electronics, Peking University, Beijing 100871, China
- Jihua Laboratory, Foshan 528200, China
| | - Mengmeng Xiao
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, China
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-Based Electronics, School of Electronics, Peking University, Beijing 100871, China
| | - Chuanhong Jin
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, China
- Jihua Laboratory, Foshan 528200, China
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhiyong Zhang
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, China
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-Based Electronics, School of Electronics, Peking University, Beijing 100871, China
- Jihua Laboratory, Foshan 528200, China
| |
Collapse
|
4
|
Rojano AE, Córdoba A, Walther JH, Zambrano HA. Effect of charge inversion on nanoconfined flow of multivalent ionic solutions. Phys Chem Chem Phys 2022; 24:4935-4943. [DOI: 10.1039/d1cp02102h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A comprehensive understanding of fluid dynamics of dilute electrolyte solutions in nanoconfinement is essential to develop more efficient nanofluidic devices. In nanoconduits, the electrical double layer can occupy a considerable...
Collapse
|
5
|
Murugasenapathi NK, Ghosh R, Ramanathan S, Ghosh S, Chinnappan A, Mohamed SAJ, Esther Jebakumari KA, Gopinath SCB, Ramakrishna S, Palanisamy T. Transistor-Based Biomolecule Sensors: Recent Technological Advancements and Future Prospects. Crit Rev Anal Chem 2021; 53:1044-1065. [PMID: 34788167 DOI: 10.1080/10408347.2021.2002133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Transistor-based sensors have been widely recognized to be highly sensitive and reliable for point-of-care/bed-side diagnosis. In this line, a range of cutting-edge technologies has been generated to elevate the role of transistors for biomolecule detection. Detection of a wide range of clinical biomarkers has been reported using various configurations of transistors. The inordinate sensitivity of transistors to the field-effect imparts high sensitivity toward wide range of biomolecules. This overview has gleaned the present achievements with the technological advancements using high performance transistor-based sensors. This review encloses transistors incorporated with a variety of functional nanomaterials and organic elements for their excellence in selectivity and sensitivity. In addition, the technological advancements in fabrication of these microdevices or nanodevices and functionalization of the sensing elements have also been discussed. The technological gap in the realization of sensors in transistor platforms and the resulted scope for research has been discussed. Finally, foreseen technological advancements and future research perspectives are described.
Collapse
Affiliation(s)
- Natchimuthu Karuppusamy Murugasenapathi
- Electrodics and Electrocatalysis Division (EEC), CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rituparna Ghosh
- Centre for Nanofiber and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore
| | | | - Soumalya Ghosh
- Department of Production Engineering, Jadavpur University, Kolkata, West Bengal, India
| | - Amutha Chinnappan
- Centre for Nanofiber and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore
| | - Syed Abuthahir Jamal Mohamed
- Electrodics and Electrocatalysis Division (EEC), CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, India
| | - Krishnan Abraham Esther Jebakumari
- Electrodics and Electrocatalysis Division (EEC), CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Subash C B Gopinath
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Perlis, Malaysia
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, Arau, Perlis, Malaysia
| | - Seeram Ramakrishna
- Centre for Nanofiber and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore
| | - Tamilarasan Palanisamy
- Electrodics and Electrocatalysis Division (EEC), CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
6
|
The influence of geometry and other fundamental challenges for bio-sensing with field effect transistors. Biophys Rev 2019; 11:757-763. [PMID: 31588960 DOI: 10.1007/s12551-019-00592-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/03/2019] [Indexed: 12/24/2022] Open
Abstract
We present a review of field effect transistors (FET) from the point of view of their applications to label-free sensing in the era of genomics and proteomics. Here, rather than a collection of Bio-FET achievements, we propose an analysis of the different issues hampering the use of these devices into clinical applications. We make a particular emphasis on the influence of the sensor geometry in the phenomena of mass transport of analytes, which is a topic that has been traditionally overlooked in the analysis and design of biosensors, but that plays a central role in the achievement of low limits of detection. Other issues like the screening of charges by the ions in liquids with physiological ionic strength and the non-specific binding are also reviewed. In conclusion, we give an overview of different solutions that have been proposed to address all these challenges, demonstrating the potential of field effect transistors owing to their ease of integration with other semiconductor components for developing cost-effective, highly multiplexed sensors for next-generation medicines.
Collapse
|
7
|
Jayakumar G, Legallais M, Hellström PE, Mouis M, Pignot-Paintrand I, Stambouli V, Ternon C, Östling M. Wafer-scale HfO 2 encapsulated silicon nanowire field effect transistor for efficient label-free DNA hybridization detection in dry environment. NANOTECHNOLOGY 2019; 30:184002. [PMID: 30654356 DOI: 10.1088/1361-6528/aaffa5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Affiliation(s)
- Ganesh Jayakumar
- KTH Royal Institute of Technology, Department of Electronics, School of Electrical Engineering and Computer Science, Electrum 229, SE-164 40 Kista, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Chauhan D, Gupta PK, Solanki PR. Electrochemical immunosensor based on magnetite nanoparticles incorporated electrospun polyacrylonitrile nanofibers for Vitamin-D3 detection. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 93:145-156. [DOI: 10.1016/j.msec.2018.07.036] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 06/05/2018] [Accepted: 07/12/2018] [Indexed: 12/27/2022]
|
9
|
Macedo LJA, Iost RM, Hassan A, Balasubramanian K, Crespilho FN. Bioelectronics and Interfaces Using Monolayer Graphene. ChemElectroChem 2018. [DOI: 10.1002/celc.201800934] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Lucyano J. A. Macedo
- São Carlos Institute of Chemistry; University of São Paulo; São Carlos SP 13560-970 Brazil
| | - Rodrigo M. Iost
- Department of Chemistry School of Analytical Sciences Adlershof (SALSA) and IRIS Adlershof; Humboldt-Universität zu Berlin; Berlin 10099 Germany
| | - Ayaz Hassan
- São Carlos Institute of Chemistry; University of São Paulo; São Carlos SP 13560-970 Brazil
| | - Kannan Balasubramanian
- Department of Chemistry School of Analytical Sciences Adlershof (SALSA) and IRIS Adlershof; Humboldt-Universität zu Berlin; Berlin 10099 Germany
| | - Frank N. Crespilho
- São Carlos Institute of Chemistry; University of São Paulo; São Carlos SP 13560-970 Brazil
| |
Collapse
|
10
|
Ahmad R, Mahmoudi T, Ahn MS, Hahn YB. Recent advances in nanowires-based field-effect transistors for biological sensor applications. Biosens Bioelectron 2018; 100:312-325. [PMID: 28942344 PMCID: PMC7126762 DOI: 10.1016/j.bios.2017.09.024] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 09/08/2017] [Accepted: 09/14/2017] [Indexed: 12/29/2022]
Abstract
Nanowires (NWs)-based field-effect transistors (FETs) have attracted considerable interest to develop innovative biosensors using NWs of different materials (i.e. semiconductors, polymers, etc.). NWs-based FETs provide significant advantages over the other bulk or non-NWs nanomaterials-based FETs. As the building blocks for FET-based biosensors, one-dimensional NWs offer excellent surface-to-volume ratio and are more suitable and sensitive for sensing applications. During the past decade, FET-based biosensors are smartly designed and used due to their great specificity, sensitivity, and high selectivity. Additionally, they have the advantage of low weight, low cost of mass production, small size and compatible with commercial planar processes for large-scale circuitry. In this respect, we summarize the recent advances of NWs-based FET biosensors for different biomolecule detection i.e. glucose, cholesterol, uric acid, urea, hormone, proteins, nucleotide, biomarkers, etc. A comparative sensing performance, present challenges, and future prospects of NWs-based FET biosensors are discussed in detail.
Collapse
Affiliation(s)
- Rafiq Ahmad
- School of Semiconductor and Chemical Engineering, Nanomaterials Processing Research Center, Chonbuk National University, 567 Baekjedaero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea.
| | - Tahmineh Mahmoudi
- School of Semiconductor and Chemical Engineering, Nanomaterials Processing Research Center, Chonbuk National University, 567 Baekjedaero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Min-Sang Ahn
- School of Semiconductor and Chemical Engineering, Nanomaterials Processing Research Center, Chonbuk National University, 567 Baekjedaero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Yoon-Bong Hahn
- School of Semiconductor and Chemical Engineering, Nanomaterials Processing Research Center, Chonbuk National University, 567 Baekjedaero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea.
| |
Collapse
|
11
|
|
12
|
Zhou W, Dai X, Lieber CM. Advances in nanowire bioelectronics. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2017; 80:016701. [PMID: 27823988 DOI: 10.1088/0034-4885/80/1/016701] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Semiconductor nanowires represent powerful building blocks for next generation bioelectronics given their attractive properties, including nanometer-scale footprint comparable to subcellular structures and bio-molecules, configurable in nonstandard device geometries readily interfaced with biological systems, high surface-to-volume ratios, fast signal responses, and minimum consumption of energy. In this review article, we summarize recent progress in the field of nanowire bioelectronics with a focus primarily on silicon nanowire field-effect transistor biosensors. First, the synthesis and assembly of semiconductor nanowires will be described, including the basics of nanowire FETs crucial to their configuration as biosensors. Second, we will introduce and review recent results in nanowire bioelectronics for biomedical applications ranging from label-free sensing of biomolecules, to extracellular and intracellular electrophysiological recording.
Collapse
Affiliation(s)
- Wei Zhou
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | | | | |
Collapse
|
13
|
Pereira AR, de Souza JC, Iost RM, Sales FC, Crespilho FN. Application of carbon fibers to flexible enzyme electrodes. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
14
|
Radha Shanmugam N, Muthukumar S, Chaudhry S, Anguiano J, Prasad S. Ultrasensitive nanostructure sensor arrays on flexible substrates for multiplexed and simultaneous electrochemical detection of a panel of cardiac biomarkers. Biosens Bioelectron 2016; 89:764-772. [PMID: 27818043 DOI: 10.1016/j.bios.2016.10.046] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/17/2016] [Accepted: 10/19/2016] [Indexed: 12/29/2022]
Abstract
Multiplexed detection of protein biomarkers offers new opportunities for early diagnosis and efficient treatment of complex diseases. Cardiovascular diseases (CVDs) has the highest mortality risk in USA and Europe with 15-20 million cases being reported annually. Cardiac Troponins (T and I) are well established protein biomarkers associated with heart muscle damage and point-of-care monitoring of both these two biomarkers has significant benefits on patient care. A flexible disposable electrochemical biosensor device comprising of vertically oriented zinc oxide (ZnO) nanostructures was developed for rapid and simultaneous screening of cardiac Troponin-I (cTnI) and cardiac-Troponin-T (cTnT) in a point-of-care sensor format. The biosensors were designed by selective hydrothermal growth of ZnO nanostructures onto the working electrodes of polyimide printed circuit board platforms, resulting in the generation of high density nanostructure ZnO arrays based electrodes. The size, density and surface terminations of the nanostructures were leveraged towards achieving surface confinement of the target cTnT and cTnI molecules on to the electrode surface. Multiplexing and simultaneous detection was achieved through sensor platform design comprising of arrays of Troponin functionalized ZnO nanostructure electrodes. The sensitivity and specificity of the biosensor was characterized using two types of electrochemical techniques; electrochemical impedance spectroscopy (EIS) and Mott-Schottky analysis on the same sensor platform to demonstrate multi-configurable modes. Limit of detection of 1pg/mL in human serum was achieved for both cTnI and cTnT. Cross reactivity analysis showed the selectivity of detecting cTnT and cTnI in human serum with wide dynamic range.
Collapse
Affiliation(s)
- Nandhinee Radha Shanmugam
- Department of Bioengineering, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA
| | | | - Shajee Chaudhry
- Department of Natural Sciences & Mathematics, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA
| | - Jonathan Anguiano
- Department of Bioengineering, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA
| | - Shalini Prasad
- Department of Bioengineering, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA.
| |
Collapse
|
15
|
|
16
|
Zambrano HA, Vásquez N, Wagemann E. Wall embedded electrodes to modify electroosmotic flow in silica nanoslits. Phys Chem Chem Phys 2016; 18:1202-11. [PMID: 26658698 DOI: 10.1039/c5cp05785j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Electroosmotic flow in a silica slit channel with nonuniform surface charge density is investigated. In nanoconfinement, the electrical double layer occupies a non-negligible fraction of the system. Therefore, modifying the charge density on specific locations on the channel wall surface allows effective manipulation of the electroosmotic flow rates. In the present study, extensive (160 ns) nonequilibrium molecular dynamics simulations are conducted to investigate the ability of controlling the electroosmotic flow control in a nanoslit by patterning the surface potential. The mechanism to modify the surface charge consists of a set of charged electrodes embedded within one of the channel walls. The presence of the embedded electrodes results in the redistribution of ions in the electrolyte solution and in the alteration of the electroosmotic flow throughout the nanochannel. Indeed, the results reveal significant changes in the electroosmotic driving force and velocity profiles including local flow reversal. This study provides physical insight into the direct manipulation of the electrokinetic flow in nanoslits.
Collapse
Affiliation(s)
- Harvey A Zambrano
- Department of Chemical Engineering, Universidad de Concepcion, Concepcion, Chile.
| | - Nicolás Vásquez
- Department of Chemical Engineering, Universidad de Concepcion, Concepcion, Chile.
| | - Enrique Wagemann
- Department of Chemical Engineering, Universidad de Concepcion, Concepcion, Chile.
| |
Collapse
|
17
|
Shanmugam NR, Muthukumar S, Selvam AP, Prasad S. Electrochemical nanostructured ZnO biosensor for ultrasensitive detection of cardiac troponin-T. Nanomedicine (Lond) 2016; 11:1345-58. [PMID: 27193337 DOI: 10.2217/nnm-2016-0048] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
AIM Vertically oriented zinc oxide nanostructures based disposable diagnostic biosensor for detecting and quantifying levels of cardiac troponin-T from human serum has been developed. MATERIALS & METHODS The biosensors were designed by integrating hydrothermally grown zinc oxide nanostructures on glass and printed circuit board platforms, resulting in the generation of high-density nanostructure arrays with nanotextured zinc oxide based electrodes. The size, density and surface terminations of the nanostructures were leveraged toward achieving surface confinement of the target cTnT molecules on to the nanostructures. A combination of AC and DC spectroscopy was used to characterize the biosensor response to cTnT. RESULTS & CONCLUSION LOD of 0.1 pg/ml in human serum was achieved.
Collapse
Affiliation(s)
| | | | - Anjan Panneer Selvam
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Shalini Prasad
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
18
|
Maedler C, Kim D, Spanjaard RA, Hong M, Erramilli S, Mohanty P. Sensing of the Melanoma Biomarker TROY Using Silicon Nanowire Field-Effect Transistors. ACS Sens 2016. [DOI: 10.1021/acssensors.6b00017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Carsten Maedler
- Department
of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Daniel Kim
- Department
of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Remco A. Spanjaard
- Femto Diagnostics, 53 Bay State
Road, Boston, Massachusetts 02215, United States
| | - Mi Hong
- Department
of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Shyamsunder Erramilli
- Department
of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
- Department
of Biomedical Engineering and Photonics Center, Boston University, 8
St. Mary’s Street, Boston, Massachusetts 02215, United States
| | - Pritiraj Mohanty
- Department
of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| |
Collapse
|
19
|
Rahong S, Yasui T, Kaji N, Baba Y. Recent developments in nanowires for bio-applications from molecular to cellular levels. LAB ON A CHIP 2016; 16:1126-38. [PMID: 26928289 DOI: 10.1039/c5lc01306b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This review highlights the most promising applications of nanowires for bioanalytical chemistry and medical diagnostics. The materials discussed here are metal oxide and Si semiconductors, which are integrated with various microfluidic systems. Nanowire structures offer desirable advantages such as a very small diameter size with a high aspect ratio and a high surface-to-volume ratio without grain boundaries; consequently, nanowires are promising tools to study biological systems. This review starts with the integration of nanowire structures into microfluidic systems, followed by the discussion of the advantages of nanowire structures in the separation, manipulation and purification of biomolecules (DNA, RNA and proteins). Next, some representative nanowire devices are introduced for biosensors from molecular to cellular levels based on electrical and optical approaches. Finally, we conclude the review by highlighting some bio-applications for nanowires and presenting the next challenges that must be overcome to improve the capabilities of nanowire structures for biological and medical systems.
Collapse
Affiliation(s)
- Sakon Rahong
- Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan. and ImPACT Research Center for Advanced Nanobiodevices, Nagoya University, Japan
| | - Takao Yasui
- Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan. and ImPACT Research Center for Advanced Nanobiodevices, Nagoya University, Japan and JST, PRESTO, Graduate School of Engineering, Nagoya University, Japan
| | - Noritada Kaji
- Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan. and ImPACT Research Center for Advanced Nanobiodevices, Nagoya University, Japan and ERATO Higashiyama Live-Holonics Project, Graduate School of Science, Nagoya University, Japan
| | - Yoshinobu Baba
- Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan. and ImPACT Research Center for Advanced Nanobiodevices, Nagoya University, Japan and Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu 761-0395, Japan
| |
Collapse
|
20
|
Liu TC, Chu CY, Chen YY, Chen SY. Newly reduced graphene oxide/gold oxide neural-chemical interface on multi-channel neural probes to enhance the electrochemical properties for biosensors. RSC Adv 2016. [DOI: 10.1039/c6ra01016d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The newly neural-chemical interface designed by rGO-wrapped gold oxide nanocomposites on multi-channel neural probes as a biosensor.
Collapse
Affiliation(s)
- Ta-Chung Liu
- Department of Materials Science and Engineering
- National Chiao Tung University
- Hsinchu
- Republic of China
| | - Chao-Yi Chu
- Department of Materials Science and Engineering
- National Chiao Tung University
- Hsinchu
- Republic of China
| | - You-Yin Chen
- Department of Biomedical Engineering
- National Yang Ming University
- Taipei
- Republic of China
| | - San-Yuan Chen
- Department of Materials Science and Engineering
- National Chiao Tung University
- Hsinchu
- Republic of China
| |
Collapse
|
21
|
Othman A, Karimi A, Andreescu S. Functional nanostructures for enzyme based biosensors: properties, fabrication and applications. J Mater Chem B 2016; 4:7178-7203. [DOI: 10.1039/c6tb02009g] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A review describing functional nanostructures for portable and printable enzyme biosensors. Specific physicochemical and surface properties of nanoparticles used as carriers and sensing components and their assembly are discussed with an overview of current and emerging techniques enabling large scale roll-to-roll fabrication and miniaturization. Their integration in flexible, wearable and inexpensive point-of-use devices, and implementation challenges are also provided with examples of applications.
Collapse
Affiliation(s)
- Ali Othman
- Department of Chemistry and Biomolecular Science
- Clarkson University
- Potsdam
- USA
| | - Anahita Karimi
- Department of Chemistry and Biomolecular Science
- Clarkson University
- Potsdam
- USA
| | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science
- Clarkson University
- Potsdam
- USA
| |
Collapse
|
22
|
Nikolaev K, Ermakov S, Ermolenko Y, Averyaskina E, Offenhäusser A, Mourzina Y. A novel bioelectrochemical interface based on in situ synthesis of gold nanostructures on electrode surfaces and surface activation by Meerwein's salt. A bioelectrochemical sensor for glucose determination. Bioelectrochemistry 2015; 105:34-43. [PMID: 25983284 DOI: 10.1016/j.bioelechem.2015.05.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 04/22/2015] [Accepted: 05/03/2015] [Indexed: 11/26/2022]
Abstract
A novel effective bioelectrochemical sensor interface for enzyme biosensors is proposed. The method is based on in situ synthesis of gold nanostructures (5-15 nm) on the thin-film electrode surface using the oleylamine (OA) method, which provides a high-density, stable, electrode interface nanoarchitecture. New method to activate the surface of the OA-stabilized nanostructured electrochemical interface for further functionalization with biomolecules (glucose oxidase enzyme) using Meerwein's salt is proposed. Using this approach a new biosensor for glucose determination with improved analytical characteristics: wide working range of 0.06-18.5mM with a sensitivity of 22.6 ± 0.5 μAmM(-1)cm(-2), limit of detection 0.02 mM, high reproducibility, and long lifetime (60 d, 93%) was developed. The surface morphology of the electrodes was characterized by scanning electron microscopy (SEM). The electrochemical properties of the interface were studied by cyclic voltammetry and electrochemical impedance spectroscopy using a Fe(II/III) redox couple. The studies revealed an increase in the electroactive surface area and a decrease in the charge transfer resistance following surface activation with Meerwein's reagent. A remarkably enhanced stability and reproducibility of the sensor was achieved using in situ synthesis of gold nanostructures on the electrode surface, while surface activation with Meerwein's salt proved indispensable in achieving an efficient bioelectrochemical interface.
Collapse
Affiliation(s)
- Konstantin Nikolaev
- Peter Grünberg Institute 8, Forschungszentrum Jülich GmbH and Jülich-Aachen Research Alliance-Fundamentals of Future Information Technology (JARA-FIT), 52428 Jülich, Germany; Institute of Chemistry, St. Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia
| | - Sergey Ermakov
- Institute of Chemistry, St. Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia
| | - Yuri Ermolenko
- Institute of Chemistry, St. Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia
| | - Elena Averyaskina
- Institute of Chemistry, St. Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia
| | - Andreas Offenhäusser
- Peter Grünberg Institute 8, Forschungszentrum Jülich GmbH and Jülich-Aachen Research Alliance-Fundamentals of Future Information Technology (JARA-FIT), 52428 Jülich, Germany
| | - Yulia Mourzina
- Peter Grünberg Institute 8, Forschungszentrum Jülich GmbH and Jülich-Aachen Research Alliance-Fundamentals of Future Information Technology (JARA-FIT), 52428 Jülich, Germany.
| |
Collapse
|
23
|
Chou KS, Hsu CY, Liu BT. Salt-mediated polyol synthesis of silver nanowires in a continuous-flow tubular reactor. RSC Adv 2015. [DOI: 10.1039/c5ra00320b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Silver nanowires were successfully synthesized by a polyol reduction method in a continuous-flow reactor with a yield of 2 g h−1.
Collapse
Affiliation(s)
- Kan-Sen Chou
- Department of Chemical Engineering
- National Tsing Hua University
- Hsinchu 30013
- Taiwan
| | - Chung-Yen Hsu
- Department of Chemical Engineering
- National Tsing Hua University
- Hsinchu 30013
- Taiwan
| | - Bo-Tau Liu
- Department of Chemical and Materials Engineering
- National Yunlin University of Science and Technology
- Yunlin 64002
- Taiwan
| |
Collapse
|
24
|
|
25
|
Huang W, Diallo AK, Dailey JL, Besar K, Katz HE. Electrochemical processes and mechanistic aspects of field-effect sensors for biomolecules. JOURNAL OF MATERIALS CHEMISTRY. C 2015; 3:6445-6470. [PMID: 29238595 PMCID: PMC5724786 DOI: 10.1039/c5tc00755k] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Electronic biosensing is a leading technology for determining concentrations of biomolecules. In some cases, the presence of an analyte molecule induces a measured change in current flow, while in other cases, a new potential difference is established. In the particular case of a field effect biosensor, the potential difference is monitored as a change in conductance elsewhere in the device, such as across a film of an underlying semiconductor. Often, the mechanisms that lead to these responses are not specifically determined. Because improved understanding of these mechanisms will lead to improved performance, it is important to highlight those studies where various mechanistic possibilities are investigated. This review explores a range of possible mechanistic contributions to field-effect biosensor signals. First, we define the field-effect biosensor and the chemical interactions that lead to the field effect, followed by a section on theoretical and mechanistic background. We then discuss materials used in field-effect biosensors and approaches to improving signals from field-effect biosensors. We specifically cover the biomolecule interactions that produce local electric fields, structures and processes at interfaces between bioanalyte solutions and electronic materials, semiconductors used in biochemical sensors, dielectric layers used in top-gated sensors, and mechanisms for converting the surface voltage change to higher signal/noise outputs in circuits.
Collapse
Affiliation(s)
- Weiguo Huang
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, 206 Maryland Hall, Baltimore, MD, USA
| | - Abdou Karim Diallo
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, 206 Maryland Hall, Baltimore, MD, USA
| | - Jennifer L Dailey
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, 206 Maryland Hall, Baltimore, MD, USA
| | - Kalpana Besar
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, 206 Maryland Hall, Baltimore, MD, USA
| | - Howard E Katz
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, 206 Maryland Hall, Baltimore, MD, USA
| |
Collapse
|
26
|
Oyarzua E, Walther JH, Mejía A, Zambrano HA. Early regimes of water capillary flow in slit silica nanochannels. Phys Chem Chem Phys 2015; 17:14731-9. [DOI: 10.1039/c5cp01862e] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular simulation of the capillary filling of water in a silica nanoslit. An atomistic description of the capillary filling process allows us to conduct a detailed study of the validity of the Bosanquet equation at the nanoscale.
Collapse
Affiliation(s)
- Elton Oyarzua
- Department of Chemical Engineering
- Universidad de Concepcion
- Concepcion
- Chile
| | - Jens H. Walther
- Department of Mechanical Engineering
- Technical University of Denmark
- Kgs. Lyngby
- Denmark
- Computational Science and Engineering Laboratory
| | - Andrés Mejía
- Department of Chemical Engineering
- Universidad de Concepcion
- Concepcion
- Chile
| | - Harvey A. Zambrano
- Department of Chemical Engineering
- Universidad de Concepcion
- Concepcion
- Chile
| |
Collapse
|
27
|
Yang G, Kampstra KL, Abidian MR. High performance conducting polymer nanofiber biosensors for detection of biomolecules. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:4954-60. [PMID: 24719293 PMCID: PMC4351750 DOI: 10.1002/adma.201400753] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 03/16/2014] [Indexed: 05/26/2023]
Abstract
Sensitive detection and selective determination of the physiologically important chemicals involved in brain function have drawn much attention for the diagnosis and treatment of brain diseases and neurological disorders. This paper reports a novel method for fabrication of enzyme entrapped-conducting polymer nanofibers that offer higher sensitivity and increased lifetime compared to glucose sensors that are based on conducting polymer films.
Collapse
Affiliation(s)
- Guang Yang
- Department of Biomedical Engineering Pennsylvania State University University Park, PA 16802 (USA)
| | - Kelly L. Kampstra
- Department of Biomedical Engineering Pennsylvania State University University Park, PA 16802 (USA)
| | | |
Collapse
|
28
|
Duarte-Guevara C, Lai FL, Cheng CW, Reddy B, Salm E, Swaminathan V, Tsui YK, Tuan HC, Kalnitsky A, Liu YS, Bashir R. Enhanced Biosensing Resolution with Foundry Fabricated Individually Addressable Dual-Gated ISFETs. Anal Chem 2014; 86:8359-67. [DOI: 10.1021/ac501912x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Carlos Duarte-Guevara
- Department
of Electrical and Computer Engineering, University of Illinois at Urbana−Champaign, William L. Everitt Laboratory, 1406 West
Green Street, Urbana, Illinois 61801, United States
- Micro
and Nanotechnology Lab, University of Illinois at Urbana−Champaign, 208 North Wright Street, Urbana, Illinois 61801, United States
| | - Fei-Lung Lai
- Taiwan Semiconductor
Manufacturing Company, 9 Creation Rd,
Hsinchu Science Park, Hsinchu, Taiwan 300-77, R.O.C
| | - Chun-Wen Cheng
- Taiwan Semiconductor
Manufacturing Company, 9 Creation Rd,
Hsinchu Science Park, Hsinchu, Taiwan 300-77, R.O.C
| | - Bobby Reddy
- Department
of Electrical and Computer Engineering, University of Illinois at Urbana−Champaign, William L. Everitt Laboratory, 1406 West
Green Street, Urbana, Illinois 61801, United States
- Micro
and Nanotechnology Lab, University of Illinois at Urbana−Champaign, 208 North Wright Street, Urbana, Illinois 61801, United States
| | - Eric Salm
- Department
of Bioengineering, University of Illinois at Urbana−Champaign, 1270 Digital Computer Laboratory, 1304 West Springfield Avenue, Urbana, Illinois 61801, United States
- Micro
and Nanotechnology Lab, University of Illinois at Urbana−Champaign, 208 North Wright Street, Urbana, Illinois 61801, United States
| | - Vikhram Swaminathan
- Department
of Mechanical Science and Engineering, University of Illinois at Urbana−Champaign, 1206 West Green Street, Urbana, 61801 Illinois, United States
- Micro
and Nanotechnology Lab, University of Illinois at Urbana−Champaign, 208 North Wright Street, Urbana, Illinois 61801, United States
| | - Ying-Kit Tsui
- Taiwan Semiconductor
Manufacturing Company, 9 Creation Rd,
Hsinchu Science Park, Hsinchu, Taiwan 300-77, R.O.C
| | - Hsiao Chin Tuan
- Taiwan Semiconductor
Manufacturing Company, 9 Creation Rd,
Hsinchu Science Park, Hsinchu, Taiwan 300-77, R.O.C
| | - Alex Kalnitsky
- Taiwan Semiconductor
Manufacturing Company, 9 Creation Rd,
Hsinchu Science Park, Hsinchu, Taiwan 300-77, R.O.C
| | - Yi-Shao Liu
- Taiwan Semiconductor
Manufacturing Company, 9 Creation Rd,
Hsinchu Science Park, Hsinchu, Taiwan 300-77, R.O.C
| | - Rashid Bashir
- Department
of Bioengineering, University of Illinois at Urbana−Champaign, 1270 Digital Computer Laboratory, 1304 West Springfield Avenue, Urbana, Illinois 61801, United States
- Micro
and Nanotechnology Lab, University of Illinois at Urbana−Champaign, 208 North Wright Street, Urbana, Illinois 61801, United States
| |
Collapse
|
29
|
Sierra-Rodero M, Fernández-Romero JM, Gómez-Hens A. Strategies to improve the analytical features of microfluidic methods using nanomaterials. Trends Analyt Chem 2014. [DOI: 10.1016/j.trac.2014.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
30
|
Balasubramanian K, Kern K. 25th anniversary article: label-free electrical biodetection using carbon nanostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:1154-75. [PMID: 24452968 DOI: 10.1002/adma.201304912] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 10/25/2013] [Indexed: 05/07/2023]
Abstract
Nanostructures are promising candidates for use as active materials for the detection of chemical and biological species, mainly due to the high surface-to-volume ratio and the unique physical properties arising at the nanoscale. Among the various nanostructures, materials comprised of sp(2) -carbon enjoy a unique position due to the possibility to readily prepare them in various dimensions ranging from 0D, through 1D to 2D. This review focuses on the use of 1D (carbon nanotubes) and 2D (graphene) carbon nanostructures for the detection of biologically relevant molecules. A key advantage is the possibility to perform the sensing operation without the use of any labels or complex reaction schemes. Along this spirit, various strategies reported for the label-free electrical detection of biomolecules using carbon nanostructures are discussed. With their promise for ultimate sensitivity and the capability to attain high selectivity through controlled chemical functionalization, carbon-based nanobiosensors are expected to open avenues to novel diagnostic tools as well as to obtain new fundamental insight into biomolecular interactions down to the single molecule level.
Collapse
Affiliation(s)
- Kannan Balasubramanian
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, D70569, Stuttgart, Germany
| | | |
Collapse
|
31
|
ten Siethoff L, Lard M, Generosi J, Andersson H, Linke H, Månsson A. Molecular motor propelled filaments reveal light-guiding in nanowire arrays for enhanced biosensing. NANO LETTERS 2014; 14:737-42. [PMID: 24367994 PMCID: PMC3924849 DOI: 10.1021/nl404032k] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/17/2013] [Indexed: 05/27/2023]
Abstract
Semiconductor nanowire arrays offer significant potential for biosensing applications with optical read-out due to their high surface area and due to the unique optical properties of one-dimensional materials. A challenge for optical read-out of analyte-binding to the nanowires is the need to efficiently collect and detect light from a three-dimensional volume. Here we show that light from fluorophores attached along several μm long vertical Al2O3 coated gallium phosphide nanowires couples into the wires, is guided along them and emitted at the tip. This enables effective collection of light emitted by fluorescent analytes located at different focal planes along the nanowire. We unequivocally demonstrate the light-guiding effect using a novel method whereby the changes in emitted fluorescence intensity are observed when fluorescent cytoskeletal filaments are propelled by molecular motors along the wires. The findings are discussed in relation to nanobiosensor developments, other nanotechnological applications, and fundamental studies of motor function.
Collapse
Affiliation(s)
- Lasse ten Siethoff
- Department
of Chemistry and Biomedical Sciences, Linnaeus
University, SE-391 82 Kalmar, Sweden
| | - Mercy Lard
- Nanometer
Structure Consortium (nmC@LU) and Solid State Physics Lund University, SE-221 00 Lund, Sweden
| | - Johanna Generosi
- Nanometer
Structure Consortium (nmC@LU) and Solid State Physics Lund University, SE-221 00 Lund, Sweden
| | - Håkan
S. Andersson
- Department
of Chemistry and Biomedical Sciences, Linnaeus
University, SE-391 82 Kalmar, Sweden
| | - Heiner Linke
- Nanometer
Structure Consortium (nmC@LU) and Solid State Physics Lund University, SE-221 00 Lund, Sweden
| | - Alf Månsson
- Department
of Chemistry and Biomedical Sciences, Linnaeus
University, SE-391 82 Kalmar, Sweden
| |
Collapse
|
32
|
Yu Q, Liu H, Chen H. Vertical SiNWAs for biomedical and biotechnology applications. J Mater Chem B 2014; 2:7849-7860. [DOI: 10.1039/c4tb01246a] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Vertical silicon nanowire arrays (SiNWAs) are considered as one of the most promising nanomaterials.
Collapse
Affiliation(s)
- Qian Yu
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123, China
| | - Huan Liu
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123, China
| | - Hong Chen
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123, China
| |
Collapse
|
33
|
Lam B, Holmes RD, Das J, Poudineh M, Sage A, Sargent EH, Kelley SO. Optimized templates for bottom-up growth of high-performance integrated biomolecular detectors. LAB ON A CHIP 2013; 13:2569-2575. [PMID: 23455732 DOI: 10.1039/c3lc41416g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Electrochemical deposition of metals represents an important approach in the bottom-up fabrication of nanostructures and microstructures. We have used this approach to generate high-performance chip-based biosensors using silicon as a platform for the generation of sensor arrays. Here, we explore the applicability of different materials to support the electrodeposition and identify the parameters that are essential for robust sensor growth. We show that inexpensive materials can be used as templates for electrodeposition, and demonstrate that these low-cost sensors exhibit clinically-relevant levels of sensitivity and specificity. In particular, we prove herein that the glass-based sensors successfully detect E. coli in urine, when present at the 100 cfu μL(-1) levels found typically in samples of patients with urinary tract infections.
Collapse
Affiliation(s)
- Brian Lam
- Department of Chemistry, Faculty of Arts and Sciences, University of Toronto, Toronto, ON, Canada M5S 3M2
| | | | | | | | | | | | | |
Collapse
|
34
|
Gong X, Li J, Guo C, Xu K, Yang H. Molecular switch for tuning ions across nanopores by an external electric field. NANOTECHNOLOGY 2013; 24:025502. [PMID: 23237863 DOI: 10.1088/0957-4484/24/2/025502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Active control of ion transport in nanoscale channels is attracting increasing attention. Recently, experimental and theoretical results have verified that depending on the charged surface of nanopores, the solution inside nanopores can contain either negative or positive ions, which does not happen in macroscale channels. However, the control of the surface chemistry of synthetic nanopores is difficult and the design of nanotubes with novel recognition mechanisms that regulate the ionic selectivity of negative and positive charges remains a challenge. We present here a design for an ion-selective nanopore that is controllable by external charges. Our molecular dynamics simulations show that this remarkable selectivity can be switched from predominantly negative to positive ions and that the magnitude of the ionic flux can be varied by changing the distance of the external charges. The results suggest that the hydration structures around ions play a prominent role in the selectivity process, which is tuned by the external charge. These studies may be useful for developing ways to control the behavior, properties and chemical composition of liquids and provide possible technical applications for nanofluidic field effect transistors.
Collapse
Affiliation(s)
- Xiaojing Gong
- Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215125, People's Republic of China.
| | | | | | | | | |
Collapse
|
35
|
Vilela D, Garoz J, Colina Á, González MC, Escarpa A. Carbon Nanotubes Press-Transferred on PMMA Substrates as Exclusive Transducers for Electrochemical Microfluidic Sensing. Anal Chem 2012; 84:10838-44. [DOI: 10.1021/ac303049x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Diana Vilela
- Department of Analytical
Chemistry and Chemical Engineering, University of Alcalá, E-28871 Alcalá de Henares,
Madrid, Spain
| | - Jesús Garoz
- Department of Chemistry, Universidad de Burgos, Pza. Misael Bañuelos
s/n, E-09001 Burgos, Spain
| | - Álvaro Colina
- Department of Chemistry, Universidad de Burgos, Pza. Misael Bañuelos
s/n, E-09001 Burgos, Spain
| | - María Cristina González
- Department of Analytical
Chemistry and Chemical Engineering, University of Alcalá, E-28871 Alcalá de Henares,
Madrid, Spain
| | - Alberto Escarpa
- Department of Analytical
Chemistry and Chemical Engineering, University of Alcalá, E-28871 Alcalá de Henares,
Madrid, Spain
| |
Collapse
|
36
|
Fahrenkopf NM, Rice PZ, Bergkvist M, Deskins NA, Cady NC. Immobilization mechanisms of deoxyribonucleic acid (DNA) to hafnium dioxide (HfO2) surfaces for biosensing applications. ACS APPLIED MATERIALS & INTERFACES 2012; 4:5360-5368. [PMID: 22947770 DOI: 10.1021/am3013032] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Immobilization of biomolecular probes to the sensing substrate is a critical step for biosensor fabrication. In this work we investigated the phosphate-dependent, oriented immobilization of DNA to hafnium dioxide surfaces for biosensing applications. Phosphate-dependent immobilization was confirmed on a wide range of hafnium oxide surfaces; however, a second interaction mode was observed on monoclinic hafnium dioxide. On the basis of previous materials studies on these films, DNA immobilization studies, and density functional theory (DFT) modeling, we propose that this secondary interaction is between the exposed nucleobases of single stranded DNA and the surface. The lattice spacing of monoclinic hafnium dioxide matches the base-to-base pitch of DNA. Monoclinic hafnium dioxide is advantageous for nanoelectronic applications, yet because of this secondary DNA immobilization mechanism, it could impede DNA hybridization or cause nonspecific surface intereactions. Nonetheless, DNA immobilization on polycrystalline and amorphous hafnium dioxide is predominately mediated by the terminal phosphate in an oriented manner which is desirable for biosensing applications.
Collapse
Affiliation(s)
- Nicholas M Fahrenkopf
- College of Nanoscale Science and Engineering, University at Albany, SUNY, 257 Fuller Road, Albany, New York 12203, USA
| | | | | | | | | |
Collapse
|
37
|
de la Escosura-Muñiz A, Merkoçi A. Nanochannels preparation and application in biosensing. ACS NANO 2012; 6:7556-83. [PMID: 22880686 DOI: 10.1021/nn301368z] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Selective transport in nanochannels (protein-based ion channels) is already used in living systems for electrical signaling in nerves and muscles, and this natural behavior is being approached for the application of biomimetic nanochannels in biosensors. On the basis of this principle, single nanochannels and nanochannel arrays seem to bring new advantages for biosensor development and applications. The purpose of this review is to provide a general comprehensive and critical overview on the latest trends in the development of nanochannel-based biosensing systems. A detailed description and discussion of representative and recent works covering the main nanochannel fabrication techniques, nanoporous material characterizations, and especially their application in both electrochemical and optical sensing systems is given. The state-of-the-art of the developed technology may open the way to new advances in the integration of nanochannels with (bio)molecules and synthetic receptors for the development of novel biodetection systems that can be extended to many other applications with interest for clinical analysis, safety, and security as well as environmental and other industrial studies and applications.
Collapse
Affiliation(s)
- Alfredo de la Escosura-Muñiz
- Nanobioelectronics & Biosensors Group, CIN2, ICN-CSIC, Catalan Institute of Nanotechnology, Campus UAB, Bellaterra, Barcelona, Spain
| | | |
Collapse
|
38
|
Xia D, Yan J, Hou S. Fabrication of nanofluidic biochips with nanochannels for applications in DNA analysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2012; 8:2787-801. [PMID: 22778064 DOI: 10.1002/smll.201200240] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 03/19/2012] [Indexed: 05/15/2023]
Abstract
With the development of nanotechnology, great progress has been made in the fabrication of nanochannels. Nanofluidic biochips based on nanochannel structures allow biomolecule transport, bioseparation, and biodetection. The domain applications of nanofluidic biochips with nanochannels are DNA stretching and separation. In this Review, the general fabrication methods for nanochannel structures and their applications in DNA analysis are discussed. These representative fabrication approaches include conventional photolithography, interference lithography, electron-beam lithography, nanoimprint lithography and polymer nanochannels. Other nanofabrication methods used to fabricate unique nanochannels, including sub-10-nm nanochannels, single nanochannels, and vertical nanochannels, are also mentioned. These nanofabrication methods provide an effective way to form nanoscale channel structures for nanofluidics and biosensor devices for DNA separation, detection, and sensing. The broad applications of nanochannels and future perspectives are also discussed.
Collapse
Affiliation(s)
- Deying Xia
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| | | | | |
Collapse
|
39
|
Kurkina T, Sundaram S, Sundaram RS, Re F, Masserini M, Kern K, Balasubramanian K. Self-assembled electrical biodetector based on reduced graphene oxide. ACS NANO 2012; 6:5514-5520. [PMID: 22545858 DOI: 10.1021/nn301429k] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Large-scale fabrication of graphene-based devices is an aspect of great importance for various applications including chemical and biological sensing. Toward this goal, we present here a novel chemical route for the site-specific realization of devices based on reduced graphene oxide (RGO). Electrodes patterned by photolithography are modified with amino functional groups through electrodeposition. The amine groups function as hooks for the attachment of graphene oxide flakes selectively onto the electrodes. Graphene-like electrical behavior is attained by a subsequent thermal annealing step. We show that this anchoring strategy can be scaled-up to obtain RGO devices at a wafer scale in a facile manner. The scalability of our approach coupled with the use of photolithography is promising for the rapid realization of graphene-based devices. We demonstrate one possible application of the fabricated RGO devices as electrical biosensors through the immunodetection of amyloid beta peptide.
Collapse
Affiliation(s)
- Tetiana Kurkina
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, D-70569 Stuttgart, Germany.
| | | | | | | | | | | | | |
Collapse
|
40
|
Xue Q, Bian C, Tong J, Sun J, Zhang H, Xia S. Fabrication of a 3D interdigitated double-coil microelectrode chip by MEMS technique. Mikrochim Acta 2012. [DOI: 10.1007/s00604-012-0770-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
41
|
Duan X, Li Y, Rajan NK, Routenberg DA, Modis Y, Reed MA. Quantification of the affinities and kinetics of protein interactions using silicon nanowire biosensors. NATURE NANOTECHNOLOGY 2012; 7:401-7. [PMID: 22635097 PMCID: PMC4180882 DOI: 10.1038/nnano.2012.82] [Citation(s) in RCA: 206] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 04/27/2012] [Indexed: 05/19/2023]
Abstract
Monitoring the binding affinities and kinetics of protein interactions is important in clinical diagnostics and drug development because such information is used to identify new therapeutic candidates. Surface plasmon resonance is at present the standard method used for such analysis, but this is limited by low sensitivity and low-throughput analysis. Here, we show that silicon nanowire field-effect transistors can be used as biosensors to measure protein-ligand binding affinities and kinetics with sensitivities down to femtomolar concentrations. Based on this sensing mechanism, we develop an analytical model to calibrate the sensor response and quantify the molecular binding affinities of two representative protein-ligand binding pairs. The rate constant of the association and dissociation of the protein-ligand pair is determined by monitoring the reaction kinetics, demonstrating that silicon nanowire field-effect transistors can be readily used as high-throughput biosensors to quantify protein interactions.
Collapse
Affiliation(s)
- Xuexin Duan
- Department of Electrical Engineering, Yale University, New Haven, Connecticut 06520, USA
| | - Yue Li
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Nitin K. Rajan
- Department of Applied Physics, Yale University, New Haven, Connecticut 06520, USA
| | - David A. Routenberg
- Department of Electrical Engineering, Yale University, New Haven, Connecticut 06520, USA
| | - Yorgo Modis
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Mark A. Reed
- Department of Electrical Engineering, Yale University, New Haven, Connecticut 06520, USA
- Department of Applied Physics, Yale University, New Haven, Connecticut 06520, USA
- Correspondence and requests for materials should be addressed to M.A.R.
| |
Collapse
|
42
|
Lee I, Luo X, Huang J, Cui XT, Yun M. Detection of cardiac biomarkers using single polyaniline nanowire-based conductometric biosensors. BIOSENSORS-BASEL 2012; 2:205-20. [PMID: 25585711 PMCID: PMC4263570 DOI: 10.3390/bios2020205] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 04/20/2012] [Accepted: 04/25/2012] [Indexed: 12/04/2022]
Abstract
The detection of myoglobin (Myo), cardiac troponin I (cTnI), creatine kinase-MB (CK-MB), and b-type natriuretic peptide (BNP) plays a vital role in diagnosing cardiovascular diseases. Here we present single site-specific polyaniline (PANI) nanowire biosensors that can detect cardiac biomarkers such as Myo, cTnI, CK-MB, and BNP with ultra-high sensitivity and good specificity. Using single PANI nanowire-based biosensors integrated with microfluidic channels, very low concentrations of Myo (100 pg/mL), cTnI (250 fg/mL), CK-MB (150 fg/mL), and BNP (50 fg/mL) were detected. The single PANI nanowire-based biosensors displayed linear sensing profiles for concentrations ranging from hundreds (fg/mL) to tens (ng/mL). In addition, devices showed a fast (few minutes) response satisfying respective reference conditions for Myo, cTnI, CK-MB, and BNP diagnosis of heart failure and for determining the stage of the disease. This single PANI nanowire-based biosensor demonstrated superior biosensing reliability with the feasibility of label free detection and improved processing cost efficiency due to good biocompatibility of PANI to monoclonal antibodies (mAbs). Therefore, this development of single PANI nanowire-based biosensors can be applied to other biosensors for cancer or other diseases.
Collapse
Affiliation(s)
- Innam Lee
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Xiliang Luo
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | - Jiyong Huang
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Xinyan Tracy Cui
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | - Minhee Yun
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
43
|
Balasubramanian K. Label-free indicator-free nucleic acid biosensors using carbon nanotubes. Eng Life Sci 2012. [DOI: 10.1002/elsc.201100055] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
44
|
Microfluidic strategies applied to biomarker discovery and validation for multivariate diagnostics. Bioanalysis 2012; 3:2233-51. [PMID: 21985417 DOI: 10.4155/bio.11.224] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Complex diseases are caused by combinatorial genetic, environmental and lifestyle factors. The emergence of multibiomarker tests to define these diseases and to identify the early, presymptomatic stages offers several advantages to the conventional use of single marker tests. The development of multibiomarker protein-based tests remains constrained by technological and operational limitations in assaying hundreds to thousands of proteins in thousands of samples. In order to develop a multibiomarker test that stratifies risk for Type 2 diabetes, we took a candidate-driven immunoassay approach utilizing a microfluidics platform to analyze 89 candidate proteins in thousands of samples, which allowed us to move from discovery to a commercial test in 2 years. Future multibiomarker test development will be enhanced by advancements in the number of proteins that can be analyzed, analytical sensitivity and throughput, and sample volume requirements, all of which depend on the further advancement of microfluidics, detection technologies and affinity-based reagents.
Collapse
|
45
|
Kurkina T, Balasubramanian K. Towards in vitro molecular diagnostics using nanostructures. Cell Mol Life Sci 2012; 69:373-88. [PMID: 22009454 PMCID: PMC11115035 DOI: 10.1007/s00018-011-0855-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 09/29/2011] [Accepted: 09/29/2011] [Indexed: 10/16/2022]
Abstract
Nanostructures appear to be promising for a number of applications in molecular diagnostics, mainly due to the increased surface-to-volume ratio they can offer, the very low limit of detection achievable, and the possibility to fabricate point-of-care diagnostic devices. In this paper, we review examples of the use of nanostructures as diagnostic tools that bring in marked improvements over prevalent classical assays. The focus is laid on the various sensing paradigms that possess the potential or have demonstrated the capability to replace or augment current analytical strategies. We start with a brief introduction of the various types of nanostructures and their physical properties that determine the transduction principle. This is followed by a concise collection of various functionalization protocols used to immobilize biomolecules on the nanostructure surface. The sensing paradigms are discussed in two contexts: the nanostructure acting as a label for detection, or the nanostructure acting as a support upon which the molecular recognition events take place. In order to be successful in the field of molecular diagnostics, it is important that the nanoanalytical tools be evaluated in the appropriate biological environment. The final section of the review compiles such examples, where the nanostructure-based diagnostic tools have been tested on realistic samples such as serum, demonstrating their analytical power even in the presence of complex matrix effects. The ability of nanodiagnostic tools to detect ultralow concentrations of one or more analytes coupled with portability and the use of low sample volumes is expected to have a broad impact in the field of molecular diagnostics.
Collapse
Affiliation(s)
- Tetiana Kurkina
- Max-Planck-Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
| | - Kannan Balasubramanian
- Max-Planck-Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
| |
Collapse
|
46
|
Ispas CR, Crivat G, Andreescu S. Review: Recent Developments in Enzyme-Based Biosensors for Biomedical Analysis. ANAL LETT 2012. [DOI: 10.1080/00032719.2011.633188] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
47
|
Kurkina T, Vlandas A, Ahmad A, Kern K, Balasubramanian K. Label-free detection of few copies of DNA with carbon nanotube impedance biosensors. Angew Chem Int Ed Engl 2011; 50:3710-4. [PMID: 21425218 DOI: 10.1002/anie.201006806] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 02/07/2011] [Indexed: 11/06/2022]
Affiliation(s)
- Tetiana Kurkina
- Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, 70569 Stuttgart, Germany
| | | | | | | | | |
Collapse
|
48
|
Kurkina T, Vlandas A, Ahmad A, Kern K, Balasubramanian K. Label-Free Detection of Few Copies of DNA with Carbon Nanotube Impedance Biosensors. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201006806] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
49
|
Characteristics of polysilicon wire glucose sensors with a surface modified by silica nanoparticles/γ-APTES nanocomposite. SENSORS 2011; 11:2796-808. [PMID: 22163767 PMCID: PMC3231599 DOI: 10.3390/s110302796] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 02/14/2011] [Accepted: 02/28/2011] [Indexed: 11/17/2022]
Abstract
This report investigates the sensing characteristics of polysilicon wire (PSW) glucose biosensors, including thickness characteristics and line-width effects on detection limits, linear range and interference immunity with membranes coated by micropipette/spin-coating and focus-ion-beam (FIB) processed capillary atomic-force-microscopy (C-AFM) tip scan/coating methods. The PSW surface was modified with a mixture of 3-aminopropyl-triethoxysilane (γ-APTES) and polydimethylsiloxane (PDMS)-treated hydrophobic fumed silica nanoparticles (NPs). We found that the thickness of the γ-APTES+NPs nonocomposite could be controlled well at about 22 nm with small relative standard deviation (RSD) with repeated C-AFM tip scan/coatings. The detection limit increased and linear range decreased with the line width of the PSW through the tip-coating process. Interestingly, the interference immunity ability improves as the line width increases. For a 500 nm-wide PSW, the percentage changes of the channel current density changes (ΔJ) caused by acetaminophen (AP) can be kept below 3.5% at an ultra-high AP-to-glucose concentration ratio of 600:1. Simulation results showed that the line width dependence of interference immunity was strongly correlated with the channel electrical field of the PSW biosensor.
Collapse
|
50
|
Feigel IM, Vedala H, Star A. Biosensors based on one-dimensional nanostructures. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1jm10521c] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|